- Compacting datasets with bz2
- Refactoring generate_flrg and train methods - Introducing batches and model saving on fit method
This commit is contained in:
parent
cbc0974a3b
commit
00db6a30ad
8
MANIFEST
8
MANIFEST
@ -1,6 +1,8 @@
|
|||||||
include data/Enrollments.csv
|
include data/Enrollments.csv
|
||||||
include data/AirPassengers.csv
|
include data/AirPassengers.csv
|
||||||
include data/NASDAQ.csv
|
include data/NASDAQ.csv.bz2
|
||||||
include data/SP500.csv
|
include data/SP500.csv.bz2
|
||||||
include data/sunspots.csv
|
include data/sunspots.csv
|
||||||
include data/TAIEX.csv
|
include data/TAIEX.csv.bz2
|
||||||
|
include data/INMET.csv.bz2
|
||||||
|
include data/SONDA_BSB.csv.bz2
|
@ -16,7 +16,7 @@ class FuzzySet(FuzzySet.FuzzySet):
|
|||||||
Create an empty composite fuzzy set
|
Create an empty composite fuzzy set
|
||||||
:param name: fuzzy set name
|
:param name: fuzzy set name
|
||||||
"""
|
"""
|
||||||
super(FuzzySet, self).__init__(self, name, None, None, None, type='composite')
|
super(FuzzySet, self).__init__(name, None, None, None, type='composite')
|
||||||
self.superset = superset
|
self.superset = superset
|
||||||
if self.superset:
|
if self.superset:
|
||||||
self.sets = []
|
self.sets = []
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from pyFTS.common import FuzzySet, SortedCollection, tree
|
from pyFTS.common import FuzzySet, SortedCollection, tree, Util
|
||||||
|
|
||||||
|
|
||||||
class FTS(object):
|
class FTS(object):
|
||||||
@ -164,9 +164,42 @@ class FTS(object):
|
|||||||
|
|
||||||
:param data:
|
:param data:
|
||||||
:param kwargs:
|
:param kwargs:
|
||||||
|
|
||||||
|
:keyword
|
||||||
|
num_batches: split the training data in num_batches to save memory during the training process
|
||||||
|
save_model: save final model on disk
|
||||||
|
batch_save: save the model between each batch
|
||||||
|
file_path: path to save the model
|
||||||
:return:
|
:return:
|
||||||
"""
|
"""
|
||||||
self.train(data, **kwargs)
|
|
||||||
|
num_batches = kwargs.get('num_batches', None)
|
||||||
|
|
||||||
|
save = kwargs.get('save_model', False) # save model on disk
|
||||||
|
|
||||||
|
batch_save = kwargs.get('batch_save', True) #save model between batches
|
||||||
|
|
||||||
|
file_path = kwargs.get('file_path', None)
|
||||||
|
|
||||||
|
if num_batches is not None:
|
||||||
|
n = len(data)
|
||||||
|
batch_size = round(n / num_batches, 0)
|
||||||
|
for ct in range(self.order, n, batch_size):
|
||||||
|
if self.is_multivariate:
|
||||||
|
ndata = data.iloc[ct - self.order:ct + batch_size]
|
||||||
|
else:
|
||||||
|
ndata = data[ct - self.order : ct + batch_size]
|
||||||
|
|
||||||
|
self.train(ndata, **kwargs)
|
||||||
|
|
||||||
|
if batch_save:
|
||||||
|
Util.persist_obj(self,file_path)
|
||||||
|
|
||||||
|
else:
|
||||||
|
self.train(data, **kwargs)
|
||||||
|
|
||||||
|
if save:
|
||||||
|
Util.persist_obj(self, file_path)
|
||||||
|
|
||||||
def append_transformation(self, transformation):
|
def append_transformation(self, transformation):
|
||||||
if transformation is not None:
|
if transformation is not None:
|
||||||
|
BIN
pyFTS/data/INMET.csv.bz2
Normal file
BIN
pyFTS/data/INMET.csv.bz2
Normal file
Binary file not shown.
26
pyFTS/data/INMET.py
Normal file
26
pyFTS/data/INMET.py
Normal file
@ -0,0 +1,26 @@
|
|||||||
|
#--------------------
|
||||||
|
#BDMEP - INMET
|
||||||
|
#--------------------
|
||||||
|
#Estação : BELO HORIZONTE - MG (OMM: 83587)
|
||||||
|
#Latitude (graus) : -19.93
|
||||||
|
#Longitude (graus) : -43.93
|
||||||
|
#Altitude (metros): 915.00
|
||||||
|
#Estação Operante
|
||||||
|
#Inicio de operação: 03/03/1910
|
||||||
|
#Periodo solicitado dos dados: 01/01/2000 a 31/12/2012
|
||||||
|
#Os dados listados abaixo são os que encontram-se digitados no BDMEP
|
||||||
|
#Hora em UTC
|
||||||
|
|
||||||
|
# http://www.inmet.gov.br
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
import os
|
||||||
|
import pkg_resources
|
||||||
|
|
||||||
|
|
||||||
|
def get_dataframe():
|
||||||
|
filename = pkg_resources.resource_filename('pyFTS', 'data/INMET.csv.bz2')
|
||||||
|
dat = pd.read_csv(filename, sep=";", compression='bz2')
|
||||||
|
dat["DataHora"] = pd.to_datetime(dat["DataHora"], format='%d/%m/%Y %H:%M')
|
||||||
|
return dat
|
File diff suppressed because it is too large
Load Diff
BIN
pyFTS/data/NASDAQ.csv.bz2
Normal file
BIN
pyFTS/data/NASDAQ.csv.bz2
Normal file
Binary file not shown.
@ -5,7 +5,7 @@ import pkg_resources
|
|||||||
|
|
||||||
|
|
||||||
def get_data():
|
def get_data():
|
||||||
filename = pkg_resources.resource_filename('pyFTS', 'data/NASDAQ.csv')
|
filename = pkg_resources.resource_filename('pyFTS', 'data/NASDAQ.csv.bz2')
|
||||||
dat = pd.read_csv(filename, sep=";")
|
dat = pd.read_csv(filename, sep=";", compression='bz2')
|
||||||
dat = np.array(dat["avg"])
|
dat = np.array(dat["avg"])
|
||||||
return dat
|
return dat
|
||||||
|
18
pyFTS/data/SONDA.py
Normal file
18
pyFTS/data/SONDA.py
Normal file
@ -0,0 +1,18 @@
|
|||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
import os
|
||||||
|
import pkg_resources
|
||||||
|
|
||||||
|
|
||||||
|
def get_data(field):
|
||||||
|
filename = pkg_resources.resource_filename('pyFTS', 'data/SONDA_BSB.csv.bz2')
|
||||||
|
dat = pd.read_csv(filename, sep=";", compression='bz2')
|
||||||
|
dat = np.array(dat[field])
|
||||||
|
return dat
|
||||||
|
|
||||||
|
|
||||||
|
def get_dataframe():
|
||||||
|
filename = pkg_resources.resource_filename('pyFTS', 'data/SONDA_BSB.csv.bz2')
|
||||||
|
dat = pd.read_csv(filename, sep=";", compression='bz2')
|
||||||
|
dat["datahora"] = pd.to_datetime(dat["datahora"], format='%Y-%m-%d %H:%M:%S')
|
||||||
|
return dat
|
BIN
pyFTS/data/SONDA_BSB.csv.bz2
Normal file
BIN
pyFTS/data/SONDA_BSB.csv.bz2
Normal file
Binary file not shown.
16924
pyFTS/data/SP500.csv
16924
pyFTS/data/SP500.csv
File diff suppressed because it is too large
Load Diff
BIN
pyFTS/data/SP500.csv.bz2
Normal file
BIN
pyFTS/data/SP500.csv.bz2
Normal file
Binary file not shown.
@ -5,7 +5,7 @@ import pkg_resources
|
|||||||
|
|
||||||
|
|
||||||
def get_data():
|
def get_data():
|
||||||
filename = pkg_resources.resource_filename('pyFTS', 'data/SP500.csv')
|
filename = pkg_resources.resource_filename('pyFTS', 'data/SP500.csv.bz2')
|
||||||
dat = pd.read_csv(filename, sep=",")
|
dat = pd.read_csv(filename, sep=",", compression='bz2')
|
||||||
dat = np.array(dat["Avg"])
|
dat = np.array(dat["Avg"])
|
||||||
return dat
|
return dat
|
||||||
|
5261
pyFTS/data/TAIEX.csv
5261
pyFTS/data/TAIEX.csv
File diff suppressed because it is too large
Load Diff
BIN
pyFTS/data/TAIEX.csv.bz2
Normal file
BIN
pyFTS/data/TAIEX.csv.bz2
Normal file
Binary file not shown.
@ -5,14 +5,14 @@ import pkg_resources
|
|||||||
|
|
||||||
|
|
||||||
def get_data():
|
def get_data():
|
||||||
filename = pkg_resources.resource_filename('pyFTS', 'data/TAIEX.csv')
|
filename = pkg_resources.resource_filename('pyFTS', 'data/TAIEX.csv.bz2')
|
||||||
dat = pd.read_csv(filename, sep=",")
|
dat = pd.read_csv(filename, sep=",", compression='bz2')
|
||||||
dat = np.array(dat["avg"])
|
dat = np.array(dat["avg"])
|
||||||
return dat
|
return dat
|
||||||
|
|
||||||
|
|
||||||
def get_dataframe():
|
def get_dataframe():
|
||||||
filename = pkg_resources.resource_filename('pyFTS', 'data/TAIEX.csv')
|
filename = pkg_resources.resource_filename('pyFTS', 'data/TAIEX.csv.bz2')
|
||||||
dat = pd.read_csv(filename, sep=",")
|
dat = pd.read_csv(filename, sep=",", compression='bz2')
|
||||||
dat["Date"] = pd.to_datetime(dat["Date"])
|
dat["Date"] = pd.to_datetime(dat["Date"])
|
||||||
return dat
|
return dat
|
||||||
|
@ -37,14 +37,12 @@ class ConventionalFTS(fts.FTS):
|
|||||||
self.flrgs = {}
|
self.flrgs = {}
|
||||||
|
|
||||||
def generate_flrg(self, flrs):
|
def generate_flrg(self, flrs):
|
||||||
flrgs = {}
|
|
||||||
for flr in flrs:
|
for flr in flrs:
|
||||||
if flr.LHS.name in flrgs:
|
if flr.LHS.name in self.flrgs:
|
||||||
flrgs[flr.LHS.name].append(flr.RHS)
|
self.flrgs[flr.LHS.name].append(flr.RHS)
|
||||||
else:
|
else:
|
||||||
flrgs[flr.LHS.name] = ConventionalFLRG(flr.LHS)
|
self.flrgs[flr.LHS.name] = ConventionalFLRG(flr.LHS)
|
||||||
flrgs[flr.LHS.name].append(flr.RHS)
|
self.flrgs[flr.LHS.name].append(flr.RHS)
|
||||||
return (flrgs)
|
|
||||||
|
|
||||||
def train(self, data, **kwargs):
|
def train(self, data, **kwargs):
|
||||||
if kwargs.get('sets', None) is not None:
|
if kwargs.get('sets', None) is not None:
|
||||||
@ -52,7 +50,7 @@ class ConventionalFTS(fts.FTS):
|
|||||||
ndata = self.apply_transformations(data)
|
ndata = self.apply_transformations(data)
|
||||||
tmpdata = FuzzySet.fuzzyfy_series_old(ndata, self.sets)
|
tmpdata = FuzzySet.fuzzyfy_series_old(ndata, self.sets)
|
||||||
flrs = FLR.generate_non_recurrent_flrs(tmpdata)
|
flrs = FLR.generate_non_recurrent_flrs(tmpdata)
|
||||||
self.flrgs = self.generate_flrg(flrs)
|
self.generate_flrg(flrs)
|
||||||
|
|
||||||
def forecast(self, data, **kwargs):
|
def forecast(self, data, **kwargs):
|
||||||
|
|
||||||
|
@ -53,11 +53,9 @@ class TrendWeightedFTS(yu.WeightedFTS):
|
|||||||
self.is_high_order = False
|
self.is_high_order = False
|
||||||
|
|
||||||
def generate_FLRG(self, flrs):
|
def generate_FLRG(self, flrs):
|
||||||
flrgs = {}
|
|
||||||
for flr in flrs:
|
for flr in flrs:
|
||||||
if flr.LHS.name in flrgs:
|
if flr.LHS.name in self.flrgs:
|
||||||
flrgs[flr.LHS.name].append(flr.RHS)
|
self.flrgs[flr.LHS.name].append(flr.RHS)
|
||||||
else:
|
else:
|
||||||
flrgs[flr.LHS.name] = TrendWeightedFLRG(flr.LHS)
|
self.flrgs[flr.LHS.name] = TrendWeightedFLRG(flr.LHS)
|
||||||
flrgs[flr.LHS.name].append(flr.RHS)
|
self.flrgs[flr.LHS.name].append(flr.RHS)
|
||||||
return (flrgs)
|
|
||||||
|
@ -32,12 +32,12 @@ class EnsembleFTS(fts.FTS):
|
|||||||
self.point_method = kwargs.get('point_method', 'mean')
|
self.point_method = kwargs.get('point_method', 'mean')
|
||||||
self.interval_method = kwargs.get('interval_method', 'quantile')
|
self.interval_method = kwargs.get('interval_method', 'quantile')
|
||||||
|
|
||||||
def appendModel(self, model):
|
def append_model(self, model):
|
||||||
self.models.append(model)
|
self.models.append(model)
|
||||||
if model.order > self.order:
|
if model.order > self.order:
|
||||||
self.order = model.order
|
self.order = model.order
|
||||||
|
|
||||||
def train(self, data, sets, order=1,parameters=None):
|
def train(self, data, **kwargs):
|
||||||
self.original_max = max(data)
|
self.original_max = max(data)
|
||||||
self.original_min = min(data)
|
self.original_min = min(data)
|
||||||
|
|
||||||
@ -228,10 +228,12 @@ class AllMethodEnsembleFTS(EnsembleFTS):
|
|||||||
for t in self.transformations:
|
for t in self.transformations:
|
||||||
model.append_transformation(t)
|
model.append_transformation(t)
|
||||||
|
|
||||||
def train(self, data, sets, order=1, parameters=None):
|
def train(self, data, **kwargs):
|
||||||
self.original_max = max(data)
|
self.original_max = max(data)
|
||||||
self.original_min = min(data)
|
self.original_min = min(data)
|
||||||
|
|
||||||
|
order = kwargs.get('order',2)
|
||||||
|
|
||||||
fo_methods = [song.ConventionalFTS, chen.ConventionalFTS, yu.WeightedFTS, cheng.TrendWeightedFTS,
|
fo_methods = [song.ConventionalFTS, chen.ConventionalFTS, yu.WeightedFTS, cheng.TrendWeightedFTS,
|
||||||
sadaei.ExponentialyWeightedFTS, ismailefendi.ImprovedWeightedFTS]
|
sadaei.ExponentialyWeightedFTS, ismailefendi.ImprovedWeightedFTS]
|
||||||
|
|
||||||
@ -240,16 +242,16 @@ class AllMethodEnsembleFTS(EnsembleFTS):
|
|||||||
for method in fo_methods:
|
for method in fo_methods:
|
||||||
model = method("")
|
model = method("")
|
||||||
self.set_transformations(model)
|
self.set_transformations(model)
|
||||||
model.train(data, sets)
|
model.train(data, **kwargs)
|
||||||
self.appendModel(model)
|
self.append_model(model)
|
||||||
|
|
||||||
for method in ho_methods:
|
for method in ho_methods:
|
||||||
for o in np.arange(1, order+1):
|
for o in np.arange(1, order+1):
|
||||||
model = method("")
|
model = method("")
|
||||||
if model.min_order >= o:
|
if model.min_order >= o:
|
||||||
self.set_transformations(model)
|
self.set_transformations(model)
|
||||||
model.train(data, sets, order=o)
|
model.train(data, **kwargs)
|
||||||
self.appendModel(model)
|
self.append_model(model)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -41,7 +41,7 @@ class SeasonalEnsembleFTS(ensemble.EnsembleFTS):
|
|||||||
self.original_max = max(self.indexer.get_data(data))
|
self.original_max = max(self.indexer.get_data(data))
|
||||||
self.original_min = min(self.indexer.get_data(data))
|
self.original_min = min(self.indexer.get_data(data))
|
||||||
|
|
||||||
def train(self, data, sets, order=1, parameters=None):
|
def train(self, data, **kwargs):
|
||||||
self.original_max = max(self.indexer.get_data(data))
|
self.original_max = max(self.indexer.get_data(data))
|
||||||
self.original_min = min(self.indexer.get_data(data))
|
self.original_min = min(self.indexer.get_data(data))
|
||||||
|
|
||||||
@ -59,7 +59,7 @@ class SeasonalEnsembleFTS(ensemble.EnsembleFTS):
|
|||||||
for m in pool.keys())
|
for m in pool.keys())
|
||||||
|
|
||||||
for tmp in results:
|
for tmp in results:
|
||||||
self.appendModel(tmp)
|
self.append_model(tmp)
|
||||||
|
|
||||||
cUtil.persist_obj(self, "models/"+self.name+".pkl")
|
cUtil.persist_obj(self, "models/"+self.name+".pkl")
|
||||||
|
|
||||||
|
@ -77,7 +77,6 @@ class HighOrderFTS(fts.FTS):
|
|||||||
self.build_tree_without_order(child, lags, level + 1)
|
self.build_tree_without_order(child, lags, level + 1)
|
||||||
|
|
||||||
def generateFLRG(self, flrs):
|
def generateFLRG(self, flrs):
|
||||||
flrgs = {}
|
|
||||||
l = len(flrs)
|
l = len(flrs)
|
||||||
for k in np.arange(self.order + 1, l):
|
for k in np.arange(self.order + 1, l):
|
||||||
flrg = HighOrderFLRG(self.order)
|
flrg = HighOrderFLRG(self.order)
|
||||||
@ -85,15 +84,13 @@ class HighOrderFTS(fts.FTS):
|
|||||||
for kk in np.arange(k - self.order, k):
|
for kk in np.arange(k - self.order, k):
|
||||||
flrg.append_lhs(flrs[kk].LHS)
|
flrg.append_lhs(flrs[kk].LHS)
|
||||||
|
|
||||||
if flrg.str_lhs() in flrgs:
|
if flrg.str_lhs() in self.flrgs:
|
||||||
flrgs[flrg.str_lhs()].append_rhs(flrs[k].RHS)
|
self.flrgs[flrg.str_lhs()].append_rhs(flrs[k].RHS)
|
||||||
else:
|
else:
|
||||||
flrgs[flrg.str_lhs()] = flrg;
|
self.flrgs[flrg.str_lhs()] = flrg;
|
||||||
flrgs[flrg.str_lhs()].append_rhs(flrs[k].RHS)
|
self.flrgs[flrg.str_lhs()].append_rhs(flrs[k].RHS)
|
||||||
return (flrgs)
|
|
||||||
|
|
||||||
def generate_flrg(self, data):
|
def generate_flrg(self, data):
|
||||||
flrgs = {}
|
|
||||||
l = len(data)
|
l = len(data)
|
||||||
for k in np.arange(self.order, l):
|
for k in np.arange(self.order, l):
|
||||||
if self.dump: print("FLR: " + str(k))
|
if self.dump: print("FLR: " + str(k))
|
||||||
@ -121,13 +118,12 @@ class HighOrderFTS(fts.FTS):
|
|||||||
for lhs in path:
|
for lhs in path:
|
||||||
flrg.append_lhs(lhs)
|
flrg.append_lhs(lhs)
|
||||||
|
|
||||||
if flrg.str_lhs() not in flrgs:
|
if flrg.str_lhs() not in self.flrgs:
|
||||||
flrgs[flrg.str_lhs()] = flrg;
|
self.flrgs[flrg.str_lhs()] = flrg;
|
||||||
|
|
||||||
for st in rhs:
|
for st in rhs:
|
||||||
flrgs[flrg.str_lhs()].append_rhs(st)
|
self.flrgs[flrg.str_lhs()].append_rhs(st)
|
||||||
|
|
||||||
return flrgs
|
|
||||||
|
|
||||||
def train(self, data, **kwargs):
|
def train(self, data, **kwargs):
|
||||||
|
|
||||||
@ -138,7 +134,7 @@ class HighOrderFTS(fts.FTS):
|
|||||||
if kwargs.get('sets', None) is not None:
|
if kwargs.get('sets', None) is not None:
|
||||||
self.sets = kwargs.get('sets', None)
|
self.sets = kwargs.get('sets', None)
|
||||||
for s in self.sets: self.setsDict[s.name] = s
|
for s in self.sets: self.setsDict[s.name] = s
|
||||||
self.flrgs = self.generate_flrg(data)
|
self.generate_flrg(data)
|
||||||
|
|
||||||
def forecast(self, data, **kwargs):
|
def forecast(self, data, **kwargs):
|
||||||
|
|
||||||
|
@ -54,14 +54,12 @@ class ImprovedWeightedFTS(fts.FTS):
|
|||||||
self.setsDict = {}
|
self.setsDict = {}
|
||||||
|
|
||||||
def generate_flrg(self, flrs):
|
def generate_flrg(self, flrs):
|
||||||
flrgs = {}
|
|
||||||
for flr in flrs:
|
for flr in flrs:
|
||||||
if flr.LHS.name in flrgs:
|
if flr.LHS.name in self.flrgs:
|
||||||
flrgs[flr.LHS.name].append(flr.RHS)
|
self.flrgs[flr.LHS.name].append(flr.RHS)
|
||||||
else:
|
else:
|
||||||
flrgs[flr.LHS.name] = ImprovedWeightedFLRG(flr.LHS);
|
self.flrgs[flr.LHS.name] = ImprovedWeightedFLRG(flr.LHS);
|
||||||
flrgs[flr.LHS.name].append(flr.RHS)
|
self.flrgs[flr.LHS.name].append(flr.RHS)
|
||||||
return (flrgs)
|
|
||||||
|
|
||||||
def train(self, data, **kwargs):
|
def train(self, data, **kwargs):
|
||||||
if kwargs.get('sets', None) is not None:
|
if kwargs.get('sets', None) is not None:
|
||||||
@ -73,7 +71,7 @@ class ImprovedWeightedFTS(fts.FTS):
|
|||||||
|
|
||||||
tmpdata = FuzzySet.fuzzyfy_series_old(ndata, self.sets)
|
tmpdata = FuzzySet.fuzzyfy_series_old(ndata, self.sets)
|
||||||
flrs = FLR.generate_recurrent_flrs(tmpdata)
|
flrs = FLR.generate_recurrent_flrs(tmpdata)
|
||||||
self.flrgs = self.generate_flrg(flrs)
|
self.generate_flrg(flrs)
|
||||||
|
|
||||||
def forecast(self, data, **kwargs):
|
def forecast(self, data, **kwargs):
|
||||||
l = 1
|
l = 1
|
||||||
|
@ -15,6 +15,7 @@ class MVFTS(fts.FTS):
|
|||||||
self.explanatory_variables = []
|
self.explanatory_variables = []
|
||||||
self.target_variable = None
|
self.target_variable = None
|
||||||
self.flrgs = {}
|
self.flrgs = {}
|
||||||
|
self.is_multivariate = True
|
||||||
|
|
||||||
def append_variable(self, var):
|
def append_variable(self, var):
|
||||||
self.explanatory_variables.append(var)
|
self.explanatory_variables.append(var)
|
||||||
@ -76,24 +77,21 @@ class MVFTS(fts.FTS):
|
|||||||
return flrs
|
return flrs
|
||||||
|
|
||||||
def generate_flrg(self, flrs):
|
def generate_flrg(self, flrs):
|
||||||
flrgs = {}
|
|
||||||
|
|
||||||
for flr in flrs:
|
for flr in flrs:
|
||||||
flrg = mvflrg.FLRG(lhs=flr.LHS)
|
flrg = mvflrg.FLRG(lhs=flr.LHS)
|
||||||
|
|
||||||
if flrg.get_key() not in flrgs:
|
if flrg.get_key() not in self.flrgs:
|
||||||
flrgs[flrg.get_key()] = flrg
|
self.flrgs[flrg.get_key()] = flrg
|
||||||
|
|
||||||
flrgs[flrg.get_key()].append_rhs(flr.RHS)
|
self.flrgs[flrg.get_key()].append_rhs(flr.RHS)
|
||||||
|
|
||||||
return flrgs
|
|
||||||
|
|
||||||
def train(self, data, **kwargs):
|
def train(self, data, **kwargs):
|
||||||
|
|
||||||
ndata = self.apply_transformations(data)
|
ndata = self.apply_transformations(data)
|
||||||
|
|
||||||
flrs = self.generate_flrs(ndata)
|
flrs = self.generate_flrs(ndata)
|
||||||
self.flrgs = self.generate_flrg(flrs)
|
self.generate_flrg(flrs)
|
||||||
|
|
||||||
def forecast(self, data, **kwargs):
|
def forecast(self, data, **kwargs):
|
||||||
ret = []
|
ret = []
|
||||||
|
@ -33,9 +33,10 @@ class Variable:
|
|||||||
mf = kwargs.get('func', Membership.trimf)
|
mf = kwargs.get('func', Membership.trimf)
|
||||||
np = kwargs.get('npart', 10)
|
np = kwargs.get('npart', 10)
|
||||||
data = kwargs.get('data', None)
|
data = kwargs.get('data', None)
|
||||||
|
kw = kwargs.get('partitioner_specific', {})
|
||||||
self.partitioner = fs(data=data[self.data_label].values, npart=np, func=mf,
|
self.partitioner = fs(data=data[self.data_label].values, npart=np, func=mf,
|
||||||
transformation=self.transformation, prefix=self.alias,
|
transformation=self.transformation, prefix=self.alias,
|
||||||
variable=self.name)
|
variable=self.name, **kw)
|
||||||
|
|
||||||
self.partitioner.name = self.name + " " + self.partitioner.name
|
self.partitioner.name = self.name + " " + self.partitioner.name
|
||||||
|
|
||||||
|
@ -31,7 +31,7 @@ class FuzzySet(FS.FuzzySet):
|
|||||||
- noise: Pertubation function that adds noise on the membership function
|
- noise: Pertubation function that adds noise on the membership function
|
||||||
- noise_params: Parameters for noise pertubation function
|
- noise_params: Parameters for noise pertubation function
|
||||||
"""
|
"""
|
||||||
super(FuzzySet, self).__init__(name=name, mf=mf, parameters=parameters, centroid=None)
|
super(FuzzySet, self).__init__(name=name, mf=mf, parameters=parameters, centroid=None, alpha=1.0, **kwargs)
|
||||||
|
|
||||||
self.location = kwargs.get("location", None)
|
self.location = kwargs.get("location", None)
|
||||||
self.location_params = kwargs.get("location_params", None)
|
self.location_params = kwargs.get("location_params", None)
|
||||||
@ -42,6 +42,7 @@ class FuzzySet(FS.FuzzySet):
|
|||||||
self.noise = kwargs.get("noise", None)
|
self.noise = kwargs.get("noise", None)
|
||||||
self.noise_params = kwargs.get("noise_params", None)
|
self.noise_params = kwargs.get("noise_params", None)
|
||||||
self.perturbated_parameters = {}
|
self.perturbated_parameters = {}
|
||||||
|
self.type = 'nonstationary'
|
||||||
|
|
||||||
if self.location is not None and not isinstance(self.location, (list, set)):
|
if self.location is not None and not isinstance(self.location, (list, set)):
|
||||||
self.location = [self.location]
|
self.location = [self.location]
|
||||||
|
@ -22,11 +22,9 @@ class ConditionalVarianceFTS(chen.ConventionalFTS):
|
|||||||
self.min_stack = [0,0,0]
|
self.min_stack = [0,0,0]
|
||||||
self.max_stack = [0,0,0]
|
self.max_stack = [0,0,0]
|
||||||
|
|
||||||
def train(self, data, sets = None, order=1,parameters=None):
|
def train(self, data, **kwargs):
|
||||||
if sets is not None:
|
if kwargs.get('sets', None) is not None:
|
||||||
self.sets = sets
|
self.sets = kwargs.get('sets', None)
|
||||||
else:
|
|
||||||
self.sets = self.partitioner.sets
|
|
||||||
|
|
||||||
ndata = self.apply_transformations(data)
|
ndata = self.apply_transformations(data)
|
||||||
|
|
||||||
@ -35,17 +33,15 @@ class ConditionalVarianceFTS(chen.ConventionalFTS):
|
|||||||
|
|
||||||
tmpdata = common.fuzzySeries(ndata, self.sets, method='fuzzy', const_t=0)
|
tmpdata = common.fuzzySeries(ndata, self.sets, method='fuzzy', const_t=0)
|
||||||
flrs = FLR.generate_non_recurrent_flrs(tmpdata)
|
flrs = FLR.generate_non_recurrent_flrs(tmpdata)
|
||||||
self.flrgs = self.generate_flrg(flrs)
|
self.generate_flrg(flrs)
|
||||||
|
|
||||||
def generate_flrg(self, flrs, **kwargs):
|
def generate_flrg(self, flrs, **kwargs):
|
||||||
flrgs = {}
|
|
||||||
for flr in flrs:
|
for flr in flrs:
|
||||||
if flr.LHS.name in flrgs:
|
if flr.LHS.name in self.flrgs:
|
||||||
flrgs[flr.LHS.name].append(flr.RHS)
|
self.flrgs[flr.LHS.name].append(flr.RHS)
|
||||||
else:
|
else:
|
||||||
flrgs[flr.LHS.name] = nsfts.ConventionalNonStationaryFLRG(flr.LHS)
|
self.flrgs[flr.LHS.name] = nsfts.ConventionalNonStationaryFLRG(flr.LHS)
|
||||||
flrgs[flr.LHS.name].append(flr.RHS)
|
self.flrgs[flr.LHS.name].append(flr.RHS)
|
||||||
return flrgs
|
|
||||||
|
|
||||||
def _smooth(self, a):
|
def _smooth(self, a):
|
||||||
return .1 * a[0] + .3 * a[1] + .6 * a[2]
|
return .1 * a[0] + .3 * a[1] + .6 * a[2]
|
||||||
|
@ -46,7 +46,6 @@ class HighOrderNonStationaryFTS(hofts.HighOrderFTS):
|
|||||||
self.flrgs = {}
|
self.flrgs = {}
|
||||||
|
|
||||||
def generate_flrg(self, data, **kwargs):
|
def generate_flrg(self, data, **kwargs):
|
||||||
flrgs = {}
|
|
||||||
l = len(data)
|
l = len(data)
|
||||||
window_size = kwargs.get("window_size", 1)
|
window_size = kwargs.get("window_size", 1)
|
||||||
for k in np.arange(self.order, l):
|
for k in np.arange(self.order, l):
|
||||||
@ -84,30 +83,27 @@ class HighOrderNonStationaryFTS(hofts.HighOrderFTS):
|
|||||||
for c, e in enumerate(path, start=0):
|
for c, e in enumerate(path, start=0):
|
||||||
flrg.appendLHS(e)
|
flrg.appendLHS(e)
|
||||||
|
|
||||||
if flrg.strLHS() not in flrgs:
|
if flrg.strLHS() not in self.flrgs:
|
||||||
flrgs[flrg.strLHS()] = flrg;
|
self.flrgs[flrg.strLHS()] = flrg;
|
||||||
|
|
||||||
for st in rhs:
|
for st in rhs:
|
||||||
flrgs[flrg.strLHS()].append_rhs(st)
|
self.flrgs[flrg.strLHS()].append_rhs(st)
|
||||||
|
|
||||||
# flrgs = sorted(flrgs, key=lambda flrg: flrg.get_midpoint(0, window_size=1))
|
# flrgs = sorted(flrgs, key=lambda flrg: flrg.get_midpoint(0, window_size=1))
|
||||||
|
|
||||||
return flrgs
|
def train(self, data, **kwargs):
|
||||||
|
|
||||||
def train(self, data, sets=None, order=2, parameters=None):
|
if kwargs.get('order', None) is not None:
|
||||||
|
self.order = kwargs.get('order', 1)
|
||||||
|
|
||||||
self.order = order
|
if kwargs.get('sets', None) is not None:
|
||||||
|
self.sets = kwargs.get('sets', None)
|
||||||
if sets is not None:
|
|
||||||
self.sets = sets
|
|
||||||
else:
|
|
||||||
self.sets = self.partitioner.sets
|
|
||||||
|
|
||||||
ndata = self.apply_transformations(data)
|
ndata = self.apply_transformations(data)
|
||||||
#tmpdata = common.fuzzyfy_series_old(ndata, self.sets)
|
#tmpdata = common.fuzzyfy_series_old(ndata, self.sets)
|
||||||
#flrs = FLR.generate_recurrent_flrs(ndata)
|
#flrs = FLR.generate_recurrent_flrs(ndata)
|
||||||
window_size = parameters if parameters is not None else 1
|
window_size = kwargs.get('parameters', 1)
|
||||||
self.flrgs = self.generate_flrg(ndata, window_size=window_size)
|
self.generate_flrg(ndata, window_size=window_size)
|
||||||
|
|
||||||
def _affected_flrgs(self, sample, k, time_displacement, window_size):
|
def _affected_flrgs(self, sample, k, time_displacement, window_size):
|
||||||
# print("input: " + str(ndata[k]))
|
# print("input: " + str(ndata[k]))
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from pyFTS.common import FLR, fts
|
from pyFTS.common import FLR, fts
|
||||||
from pyFTS.nonstationary import common, flrg
|
from pyFTS.models.nonstationary import common, flrg
|
||||||
|
|
||||||
|
|
||||||
class ConventionalNonStationaryFLRG(flrg.NonStationaryFLRG):
|
class ConventionalNonStationaryFLRG(flrg.NonStationaryFLRG):
|
||||||
@ -34,29 +34,25 @@ class NonStationaryFTS(fts.FTS):
|
|||||||
self.method = kwargs.get("method",'fuzzy')
|
self.method = kwargs.get("method",'fuzzy')
|
||||||
|
|
||||||
def generate_flrg(self, flrs, **kwargs):
|
def generate_flrg(self, flrs, **kwargs):
|
||||||
flrgs = {}
|
|
||||||
for flr in flrs:
|
for flr in flrs:
|
||||||
if flr.LHS.name in flrgs:
|
if flr.LHS.name in self.flrgs:
|
||||||
flrgs[flr.LHS.name].append(flr.RHS)
|
self.flrgs[flr.LHS.name].append(flr.RHS)
|
||||||
else:
|
else:
|
||||||
flrgs[flr.LHS.name] = ConventionalNonStationaryFLRG(flr.LHS)
|
self.flrgs[flr.LHS.name] = ConventionalNonStationaryFLRG(flr.LHS)
|
||||||
flrgs[flr.LHS.name].append(flr.RHS)
|
self.flrgs[flr.LHS.name].append(flr.RHS)
|
||||||
return flrgs
|
|
||||||
|
|
||||||
def train(self, data, sets=None, order=1, parameters=None):
|
def train(self, data, **kwargs):
|
||||||
|
|
||||||
if sets is not None:
|
if kwargs.get('sets', None) is not None:
|
||||||
self.sets = sets
|
self.sets = kwargs.get('sets', None)
|
||||||
else:
|
|
||||||
self.sets = self.partitioner.sets
|
|
||||||
|
|
||||||
ndata = self.apply_transformations(data)
|
ndata = self.apply_transformations(data)
|
||||||
window_size = parameters if parameters is not None else 1
|
window_size = kwargs.get('parameters', 1)
|
||||||
tmpdata = common.fuzzySeries(ndata, self.sets, window_size, method=self.method)
|
tmpdata = common.fuzzySeries(ndata, self.sets, window_size, method=self.method)
|
||||||
#print([k[0].name for k in tmpdata])
|
#print([k[0].name for k in tmpdata])
|
||||||
flrs = FLR.generate_recurrent_flrs(tmpdata)
|
flrs = FLR.generate_recurrent_flrs(tmpdata)
|
||||||
#print([str(k) for k in flrs])
|
#print([str(k) for k in flrs])
|
||||||
self.flrgs = self.generate_flrg(flrs)
|
self.generate_flrg(flrs)
|
||||||
|
|
||||||
def forecast(self, data, **kwargs):
|
def forecast(self, data, **kwargs):
|
||||||
|
|
||||||
|
@ -128,12 +128,11 @@ class ProbabilisticWeightedFTS(ifts.IntervalFTS):
|
|||||||
if parameters == 'Monotonic':
|
if parameters == 'Monotonic':
|
||||||
tmpdata = FuzzySet.fuzzyfy_series_old(data, self.sets)
|
tmpdata = FuzzySet.fuzzyfy_series_old(data, self.sets)
|
||||||
flrs = FLR.generate_recurrent_flrs(tmpdata)
|
flrs = FLR.generate_recurrent_flrs(tmpdata)
|
||||||
self.flrgs = self.generateFLRG(flrs)
|
self.generateFLRG(flrs)
|
||||||
else:
|
else:
|
||||||
self.flrgs = self.generate_flrg(data)
|
self.generate_flrg(data)
|
||||||
|
|
||||||
def generate_flrg(self, data):
|
def generate_flrg(self, data):
|
||||||
flrgs = {}
|
|
||||||
l = len(data)
|
l = len(data)
|
||||||
for k in np.arange(self.order, l):
|
for k in np.arange(self.order, l):
|
||||||
if self.dump: print("FLR: " + str(k))
|
if self.dump: print("FLR: " + str(k))
|
||||||
@ -168,20 +167,17 @@ class ProbabilisticWeightedFTS(ifts.IntervalFTS):
|
|||||||
|
|
||||||
lhs_mv = np.prod(tmp_path)
|
lhs_mv = np.prod(tmp_path)
|
||||||
|
|
||||||
if flrg.str_lhs() not in flrgs:
|
if flrg.str_lhs() not in self.flrgs:
|
||||||
flrgs[flrg.str_lhs()] = flrg;
|
self.flrgs[flrg.str_lhs()] = flrg;
|
||||||
|
|
||||||
for st in idx:
|
for st in idx:
|
||||||
flrgs[flrg.str_lhs()].appendRHSFuzzy(self.sets[st], lhs_mv * mv[st])
|
self.flrgs[flrg.str_lhs()].appendRHSFuzzy(self.sets[st], lhs_mv * mv[st])
|
||||||
|
|
||||||
tmp_fq = sum([lhs_mv*kk for kk in mv if kk > 0])
|
tmp_fq = sum([lhs_mv*kk for kk in mv if kk > 0])
|
||||||
|
|
||||||
self.global_frequency_count = self.global_frequency_count + tmp_fq
|
self.global_frequency_count = self.global_frequency_count + tmp_fq
|
||||||
|
|
||||||
return flrgs
|
|
||||||
|
|
||||||
def generateFLRG(self, flrs):
|
def generateFLRG(self, flrs):
|
||||||
flrgs = {}
|
|
||||||
l = len(flrs)
|
l = len(flrs)
|
||||||
for k in np.arange(self.order, l+1):
|
for k in np.arange(self.order, l+1):
|
||||||
if self.dump: print("FLR: " + str(k))
|
if self.dump: print("FLR: " + str(k))
|
||||||
@ -191,15 +187,14 @@ class ProbabilisticWeightedFTS(ifts.IntervalFTS):
|
|||||||
flrg.append_lhs(flrs[kk].LHS)
|
flrg.append_lhs(flrs[kk].LHS)
|
||||||
if self.dump: print("LHS: " + str(flrs[kk]))
|
if self.dump: print("LHS: " + str(flrs[kk]))
|
||||||
|
|
||||||
if flrg.str_lhs() in flrgs:
|
if flrg.str_lhs() in self.flrgs:
|
||||||
flrgs[flrg.str_lhs()].append_rhs(flrs[k - 1].RHS)
|
self.flrgs[flrg.str_lhs()].append_rhs(flrs[k - 1].RHS)
|
||||||
else:
|
else:
|
||||||
flrgs[flrg.str_lhs()] = flrg
|
self.flrgs[flrg.str_lhs()] = flrg
|
||||||
flrgs[flrg.str_lhs()].append_rhs(flrs[k - 1].RHS)
|
self.flrgs[flrg.str_lhs()].append_rhs(flrs[k - 1].RHS)
|
||||||
if self.dump: print("RHS: " + str(flrs[k-1]))
|
if self.dump: print("RHS: " + str(flrs[k-1]))
|
||||||
|
|
||||||
self.global_frequency_count += 1
|
self.global_frequency_count += 1
|
||||||
return (flrgs)
|
|
||||||
|
|
||||||
def update_model(self,data):
|
def update_model(self,data):
|
||||||
|
|
||||||
|
@ -58,14 +58,12 @@ class ExponentialyWeightedFTS(fts.FTS):
|
|||||||
self.c = kwargs.get('c', default_c)
|
self.c = kwargs.get('c', default_c)
|
||||||
|
|
||||||
def generate_flrg(self, flrs, c):
|
def generate_flrg(self, flrs, c):
|
||||||
flrgs = {}
|
|
||||||
for flr in flrs:
|
for flr in flrs:
|
||||||
if flr.LHS.name in flrgs:
|
if flr.LHS.name in self.flrgs:
|
||||||
flrgs[flr.LHS.name].append(flr.RHS)
|
self.flrgs[flr.LHS.name].append(flr.RHS)
|
||||||
else:
|
else:
|
||||||
flrgs[flr.LHS.name] = ExponentialyWeightedFLRG(flr.LHS, c=c);
|
self.flrgs[flr.LHS.name] = ExponentialyWeightedFLRG(flr.LHS, c=c);
|
||||||
flrgs[flr.LHS.name].append(flr.RHS)
|
self.flrgs[flr.LHS.name].append(flr.RHS)
|
||||||
return (flrgs)
|
|
||||||
|
|
||||||
def train(self, data, **kwargs):
|
def train(self, data, **kwargs):
|
||||||
self.c = kwargs.get('parameters', default_c)
|
self.c = kwargs.get('parameters', default_c)
|
||||||
@ -74,7 +72,7 @@ class ExponentialyWeightedFTS(fts.FTS):
|
|||||||
ndata = self.apply_transformations(data)
|
ndata = self.apply_transformations(data)
|
||||||
tmpdata = FuzzySet.fuzzyfy_series_old(ndata, self.sets)
|
tmpdata = FuzzySet.fuzzyfy_series_old(ndata, self.sets)
|
||||||
flrs = FLR.generate_recurrent_flrs(tmpdata)
|
flrs = FLR.generate_recurrent_flrs(tmpdata)
|
||||||
self.flrgs = self.generate_flrg(flrs, self.c)
|
self.generate_flrg(flrs, self.c)
|
||||||
|
|
||||||
def forecast(self, data, **kwargs):
|
def forecast(self, data, **kwargs):
|
||||||
l = 1
|
l = 1
|
||||||
|
@ -44,25 +44,23 @@ class ContextualMultiSeasonalFTS(sfts.SeasonalFTS):
|
|||||||
self.indexer = indexer
|
self.indexer = indexer
|
||||||
self.flrgs = {}
|
self.flrgs = {}
|
||||||
|
|
||||||
def generateFLRG(self, flrs):
|
def generate_flrg(self, flrs):
|
||||||
flrgs = {}
|
|
||||||
|
|
||||||
for flr in flrs:
|
for flr in flrs:
|
||||||
|
|
||||||
if str(flr.index) not in flrgs:
|
if str(flr.index) not in self.flrgs:
|
||||||
flrgs[str(flr.index)] = ContextualSeasonalFLRG(flr.index)
|
self.flrgs[str(flr.index)] = ContextualSeasonalFLRG(flr.index)
|
||||||
|
|
||||||
flrgs[str(flr.index)].append(flr)
|
self.flrgs[str(flr.index)].append(flr)
|
||||||
|
|
||||||
return (flrgs)
|
def train(self, data, **kwargs):
|
||||||
|
if kwargs.get('sets', None) is not None:
|
||||||
def train(self, data, sets, order=1, parameters=None):
|
self.sets = kwargs.get('sets', None)
|
||||||
self.sets = sets
|
if kwargs.get('parameters', None) is not None:
|
||||||
self.seasonality = parameters
|
self.seasonality = kwargs.get('parameters', None)
|
||||||
flrs = FLR.generate_indexed_flrs(self.sets, self.indexer, data)
|
flrs = FLR.generate_indexed_flrs(self.sets, self.indexer, data)
|
||||||
self.flrgs = self.generateFLRG(flrs)
|
self.generate_flrg(flrs)
|
||||||
|
|
||||||
def getMidpoints(self, flrg, data):
|
def get_midpoints(self, flrg, data):
|
||||||
if data.name in flrg.flrgs:
|
if data.name in flrg.flrgs:
|
||||||
ret = np.array([s.centroid for s in flrg.flrgs[data.name].RHS])
|
ret = np.array([s.centroid for s in flrg.flrgs[data.name].RHS])
|
||||||
return ret
|
return ret
|
||||||
@ -82,7 +80,7 @@ class ContextualMultiSeasonalFTS(sfts.SeasonalFTS):
|
|||||||
|
|
||||||
d = FuzzySet.get_maximum_membership_fuzzyset(ndata[k], self.sets)
|
d = FuzzySet.get_maximum_membership_fuzzyset(ndata[k], self.sets)
|
||||||
|
|
||||||
mp = self.getMidpoints(flrg, d)
|
mp = self.get_midpoints(flrg, d)
|
||||||
|
|
||||||
ret.append(sum(mp) / len(mp))
|
ret.append(sum(mp) / len(mp))
|
||||||
|
|
||||||
@ -90,12 +88,12 @@ class ContextualMultiSeasonalFTS(sfts.SeasonalFTS):
|
|||||||
|
|
||||||
return ret
|
return ret
|
||||||
|
|
||||||
def forecastAhead(self, data, steps, **kwargs):
|
def forecast_ahead(self, data, steps, **kwargs):
|
||||||
ret = []
|
ret = []
|
||||||
for i in steps:
|
for i in steps:
|
||||||
flrg = self.flrgs[str(i)]
|
flrg = self.flrgs[str(i)]
|
||||||
|
|
||||||
mp = self.getMidpoints(flrg)
|
mp = self.get_midpoints(flrg)
|
||||||
|
|
||||||
ret.append(sum(mp) / len(mp))
|
ret.append(sum(mp) / len(mp))
|
||||||
|
|
||||||
|
@ -28,7 +28,7 @@ class DateTime(Enum):
|
|||||||
second_of_day = 86400
|
second_of_day = 86400
|
||||||
|
|
||||||
|
|
||||||
def strip_datepart(self, date, date_part):
|
def strip_datepart(date, date_part):
|
||||||
if date_part == DateTime.year:
|
if date_part == DateTime.year:
|
||||||
tmp = date.year
|
tmp = date.year
|
||||||
elif date_part == DateTime.month:
|
elif date_part == DateTime.month:
|
||||||
@ -90,7 +90,8 @@ class FuzzySet(FuzzySet.FuzzySet):
|
|||||||
def __init__(self, datepart, name, mf, parameters, centroid, alpha=1.0, **kwargs):
|
def __init__(self, datepart, name, mf, parameters, centroid, alpha=1.0, **kwargs):
|
||||||
super(FuzzySet, self).__init__(name, mf, parameters, centroid, alpha, type = 'datetime', **kwargs)
|
super(FuzzySet, self).__init__(name, mf, parameters, centroid, alpha, type = 'datetime', **kwargs)
|
||||||
self.datepart = datepart
|
self.datepart = datepart
|
||||||
|
self.type = 'seasonal'
|
||||||
|
|
||||||
def membership(self, x):
|
def membership(self, x):
|
||||||
dp = strip_datepart(x, self.datepart)
|
dp = strip_datepart(x, self.datepart)
|
||||||
return self.mf.membership(dp)
|
return self.mf(dp, self.parameters) * self.alpha
|
@ -20,24 +20,22 @@ class MultiSeasonalFTS(sfts.SeasonalFTS):
|
|||||||
self.indexer = indexer
|
self.indexer = indexer
|
||||||
self.flrgs = {}
|
self.flrgs = {}
|
||||||
|
|
||||||
def generateFLRG(self, flrs):
|
def generate_flrg(self, flrs):
|
||||||
flrgs = {}
|
|
||||||
|
|
||||||
for flr in flrs:
|
for flr in flrs:
|
||||||
|
|
||||||
if str(flr.index) not in self.flrgs:
|
if str(flr.index) not in self.flrgs:
|
||||||
flrgs[str(flr.index)] = sfts.SeasonalFLRG(flr.index)
|
self.flrgs[str(flr.index)] = sfts.SeasonalFLRG(flr.index)
|
||||||
|
|
||||||
flrgs[str(flr.index)].append(flr.RHS)
|
self.flrgs[str(flr.index)].append(flr.RHS)
|
||||||
|
|
||||||
return (flrgs)
|
def train(self, data, **kwargs):
|
||||||
|
if kwargs.get('sets', None) is not None:
|
||||||
def train(self, data, sets, order=1, parameters=None):
|
self.sets = kwargs.get('sets', None)
|
||||||
self.sets = sets
|
if kwargs.get('parameters', None) is not None:
|
||||||
self.seasonality = parameters
|
self.seasonality = kwargs.get('parameters', None)
|
||||||
#ndata = self.indexer.set_data(data,self.doTransformations(self.indexer.get_data(data)))
|
#ndata = self.indexer.set_data(data,self.doTransformations(self.indexer.get_data(data)))
|
||||||
flrs = FLR.generate_indexed_flrs(self.sets, self.indexer, data)
|
flrs = FLR.generate_indexed_flrs(self.sets, self.indexer, data)
|
||||||
self.flrgs = self.generateFLRG(flrs)
|
self.generate_flrg(flrs)
|
||||||
|
|
||||||
def forecast(self, data, **kwargs):
|
def forecast(self, data, **kwargs):
|
||||||
|
|
||||||
|
@ -17,7 +17,7 @@ class TimeGridPartitioner(partitioner.Partitioner):
|
|||||||
:param npart: The number of universe of discourse partitions, i.e., the number of fuzzy sets that will be created
|
:param npart: The number of universe of discourse partitions, i.e., the number of fuzzy sets that will be created
|
||||||
:param func: Fuzzy membership function (pyFTS.common.Membership)
|
:param func: Fuzzy membership function (pyFTS.common.Membership)
|
||||||
"""
|
"""
|
||||||
super(TimeGridPartitioner, self).__init__(name="TimeGrid", **kwargs)
|
super(TimeGridPartitioner, self).__init__(name="TimeGrid", preprocess=False, **kwargs)
|
||||||
|
|
||||||
self.season = kwargs.get('seasonality', DateTime.day_of_year)
|
self.season = kwargs.get('seasonality', DateTime.day_of_year)
|
||||||
data = kwargs.get('data', None)
|
data = kwargs.get('data', None)
|
||||||
@ -101,11 +101,12 @@ class TimeGridPartitioner(partitioner.Partitioner):
|
|||||||
ticks = []
|
ticks = []
|
||||||
x = []
|
x = []
|
||||||
for s in self.sets:
|
for s in self.sets:
|
||||||
if s.type == 'common':
|
if s.type == 'composite':
|
||||||
self.plot_set(ax, s)
|
|
||||||
elif s.type == 'composite':
|
|
||||||
for ss in s.sets:
|
for ss in s.sets:
|
||||||
self.plot_set(ax, ss)
|
self.plot_set(ax, ss)
|
||||||
# ticks.append(str(round(s.centroid, 0)) + '\n' + s.name)
|
else:
|
||||||
# x.append(s.centroid)
|
self.plot_set(ax, s)
|
||||||
# plt.xticks(x, ticks)
|
ticks.append(str(round(s.centroid, 0)) + '\n' + s.name)
|
||||||
|
x.append(s.centroid)
|
||||||
|
ax.xaxis.set_ticklabels(ticks)
|
||||||
|
ax.xaxis.set_ticks(x)
|
||||||
|
@ -43,29 +43,29 @@ class SeasonalFTS(fts.FTS):
|
|||||||
self.has_seasonality = True
|
self.has_seasonality = True
|
||||||
self.has_point_forecasting = True
|
self.has_point_forecasting = True
|
||||||
self.is_high_order = False
|
self.is_high_order = False
|
||||||
|
self.flrgs = {}
|
||||||
|
|
||||||
|
def generate_flrg(self, flrs):
|
||||||
|
|
||||||
def generateFLRG(self, flrs):
|
|
||||||
flrgs = {}
|
|
||||||
for ct, flr in enumerate(flrs, start=1):
|
for ct, flr in enumerate(flrs, start=1):
|
||||||
|
|
||||||
season = self.indexer.get_season_by_index(ct)[0]
|
season = self.indexer.get_season_by_index(ct)[0]
|
||||||
|
|
||||||
ss = str(season)
|
ss = str(season)
|
||||||
|
|
||||||
if ss not in flrgs:
|
if ss not in self.flrgs:
|
||||||
flrgs[ss] = SeasonalFLRG(season)
|
self.flrgs[ss] = SeasonalFLRG(season)
|
||||||
|
|
||||||
#print(season)
|
#print(season)
|
||||||
flrgs[ss].append(flr.RHS)
|
self.flrgs[ss].append(flr.RHS)
|
||||||
|
|
||||||
return (flrgs)
|
def train(self, data, **kwargs):
|
||||||
|
if kwargs.get('sets', None) is not None:
|
||||||
def train(self, data, sets, order=1, parameters=None):
|
self.sets = kwargs.get('sets', None)
|
||||||
self.sets = sets
|
|
||||||
ndata = self.apply_transformations(data)
|
ndata = self.apply_transformations(data)
|
||||||
tmpdata = FuzzySet.fuzzyfy_series_old(ndata, sets)
|
tmpdata = FuzzySet.fuzzyfy_series_old(ndata, self.sets)
|
||||||
flrs = FLR.generate_recurrent_flrs(tmpdata)
|
flrs = FLR.generate_recurrent_flrs(tmpdata)
|
||||||
self.flrgs = self.generateFLRG(flrs)
|
self.generate_flrg(flrs)
|
||||||
|
|
||||||
def forecast(self, data, **kwargs):
|
def forecast(self, data, **kwargs):
|
||||||
|
|
||||||
|
@ -14,8 +14,15 @@ class ConventionalFTS(fts.FTS):
|
|||||||
super(ConventionalFTS, self).__init__(1, "FTS " + name, **kwargs)
|
super(ConventionalFTS, self).__init__(1, "FTS " + name, **kwargs)
|
||||||
self.name = "Traditional FTS"
|
self.name = "Traditional FTS"
|
||||||
self.detail = "Song & Chissom"
|
self.detail = "Song & Chissom"
|
||||||
|
if self.sets is not None and self.partitioner is not None:
|
||||||
|
self.sets = self.partitioner.sets
|
||||||
|
|
||||||
self.R = None
|
self.R = None
|
||||||
|
|
||||||
|
if self.sets is not None:
|
||||||
|
self.R = np.zeros((len(self.sets),len(self.sets)))
|
||||||
|
|
||||||
|
|
||||||
def flr_membership_matrix(self, flr):
|
def flr_membership_matrix(self, flr):
|
||||||
lm = [flr.LHS.membership(k.centroid) for k in self.sets]
|
lm = [flr.LHS.membership(k.centroid) for k in self.sets]
|
||||||
rm = [flr.RHS.membership(k.centroid) for k in self.sets]
|
rm = [flr.RHS.membership(k.centroid) for k in self.sets]
|
||||||
@ -28,14 +35,14 @@ class ConventionalFTS(fts.FTS):
|
|||||||
return r
|
return r
|
||||||
|
|
||||||
def operation_matrix(self, flrs):
|
def operation_matrix(self, flrs):
|
||||||
r = np.zeros((len(self.sets),len(self.sets)))
|
if self.R is None:
|
||||||
|
self.R = np.zeros((len(self.sets), len(self.sets)))
|
||||||
for k in flrs:
|
for k in flrs:
|
||||||
mm = self.flr_membership_matrix(k)
|
mm = self.flr_membership_matrix(k)
|
||||||
for k in range(0, len(self.sets)):
|
for k in range(0, len(self.sets)):
|
||||||
for l in range(0, len(self.sets)):
|
for l in range(0, len(self.sets)):
|
||||||
r[k][l] = max(r[k][l], mm[k][l])
|
self.R[k][l] = max(r[k][l], mm[k][l])
|
||||||
|
|
||||||
return r
|
|
||||||
|
|
||||||
def train(self, data, **kwargs):
|
def train(self, data, **kwargs):
|
||||||
if kwargs.get('sets', None) is not None:
|
if kwargs.get('sets', None) is not None:
|
||||||
@ -43,7 +50,7 @@ class ConventionalFTS(fts.FTS):
|
|||||||
ndata = self.apply_transformations(data)
|
ndata = self.apply_transformations(data)
|
||||||
tmpdata = FuzzySet.fuzzyfy_series_old(ndata, self.sets)
|
tmpdata = FuzzySet.fuzzyfy_series_old(ndata, self.sets)
|
||||||
flrs = FLR.generate_non_recurrent_flrs(tmpdata)
|
flrs = FLR.generate_non_recurrent_flrs(tmpdata)
|
||||||
self.R = self.operation_matrix(flrs)
|
self.operation_matrix(flrs)
|
||||||
|
|
||||||
def forecast(self, data, **kwargs):
|
def forecast(self, data, **kwargs):
|
||||||
|
|
||||||
|
@ -47,14 +47,12 @@ class WeightedFTS(fts.FTS):
|
|||||||
self.detail = "Yu"
|
self.detail = "Yu"
|
||||||
|
|
||||||
def generate_FLRG(self, flrs):
|
def generate_FLRG(self, flrs):
|
||||||
flrgs = {}
|
|
||||||
for flr in flrs:
|
for flr in flrs:
|
||||||
if flr.LHS.name in flrgs:
|
if flr.LHS.name in self.flrgs:
|
||||||
flrgs[flr.LHS.name].append(flr.RHS)
|
self.flrgs[flr.LHS.name].append(flr.RHS)
|
||||||
else:
|
else:
|
||||||
flrgs[flr.LHS.name] = WeightedFLRG(flr.LHS);
|
self.flrgs[flr.LHS.name] = WeightedFLRG(flr.LHS);
|
||||||
flrgs[flr.LHS.name].append(flr.RHS)
|
self.flrgs[flr.LHS.name].append(flr.RHS)
|
||||||
return (flrgs)
|
|
||||||
|
|
||||||
def train(self, data, **kwargs):
|
def train(self, data, **kwargs):
|
||||||
if kwargs.get('sets', None) is not None:
|
if kwargs.get('sets', None) is not None:
|
||||||
@ -62,7 +60,7 @@ class WeightedFTS(fts.FTS):
|
|||||||
ndata = self.apply_transformations(data)
|
ndata = self.apply_transformations(data)
|
||||||
tmpdata = FuzzySet.fuzzyfy_series_old(ndata, self.sets)
|
tmpdata = FuzzySet.fuzzyfy_series_old(ndata, self.sets)
|
||||||
flrs = FLR.generate_recurrent_flrs(tmpdata)
|
flrs = FLR.generate_recurrent_flrs(tmpdata)
|
||||||
self.flrgs = self.generate_FLRG(flrs)
|
self.generate_FLRG(flrs)
|
||||||
|
|
||||||
def forecast(self, data, **kwargs):
|
def forecast(self, data, **kwargs):
|
||||||
l = 1
|
l = 1
|
||||||
|
File diff suppressed because one or more lines are too long
@ -37,7 +37,7 @@ for method in fo_methods:
|
|||||||
model = method("")
|
model = method("")
|
||||||
model.append_transformation(diff)
|
model.append_transformation(diff)
|
||||||
model.train(passengers, fs.sets)
|
model.train(passengers, fs.sets)
|
||||||
e.appendModel(model)
|
e.append_model(model)
|
||||||
|
|
||||||
|
|
||||||
for method in ho_methods:
|
for method in ho_methods:
|
||||||
@ -45,7 +45,7 @@ for method in ho_methods:
|
|||||||
model = method("")
|
model = method("")
|
||||||
model.append_transformation(diff)
|
model.append_transformation(diff)
|
||||||
model.train(passengers, fs.sets, order=order)
|
model.train(passengers, fs.sets, order=order)
|
||||||
e.appendModel(model)
|
e.append_model(model)
|
||||||
|
|
||||||
|
|
||||||
arima100 = arima.ARIMA("", alpha=0.25)
|
arima100 = arima.ARIMA("", alpha=0.25)
|
||||||
@ -65,10 +65,10 @@ arima201 = arima.ARIMA("", alpha=0.25)
|
|||||||
arima201.train(passengers, None, order=(2,0,1))
|
arima201.train(passengers, None, order=(2,0,1))
|
||||||
|
|
||||||
|
|
||||||
e.appendModel(arima100)
|
e.append_model(arima100)
|
||||||
e.appendModel(arima101)
|
e.append_model(arima101)
|
||||||
e.appendModel(arima200)
|
e.append_model(arima200)
|
||||||
e.appendModel(arima201)
|
e.append_model(arima201)
|
||||||
|
|
||||||
e.train(passengers, None)
|
e.train(passengers, None)
|
||||||
|
|
||||||
|
@ -4,16 +4,33 @@ from pyFTS.partitioners import Util
|
|||||||
from pyFTS.common import Membership
|
from pyFTS.common import Membership
|
||||||
|
|
||||||
|
|
||||||
#fs = partitioner.TimeGridPartitioner(None, 12, common.DateTime.day_of_year, func=Membership.trapmf,
|
#fs = partitioner.TimeGridPartitioner(data=None, npart=12, seasonality=common.DateTime.day_of_year,
|
||||||
|
# func=Membership.trapmf,
|
||||||
# names=['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'])
|
# names=['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'])
|
||||||
|
|
||||||
|
|
||||||
#fs = partitioner.TimeGridPartitioner(None, 24, common.DateTime.minute_of_day, func=Membership.trapmf)
|
#fs = partitioner.TimeGridPartitioner(None, 24, common.DateTime.minute_of_day, func=Membership.trapmf)
|
||||||
|
|
||||||
fs = partitioner.TimeGridPartitioner(None, 7, common.DateTime.hour_of_week, func=Membership.trapmf)
|
#fs = partitioner.TimeGridPartitioner(None, 7, common.DateTime.hour_of_week, func=Membership.trapmf)
|
||||||
|
|
||||||
|
|
||||||
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=[6, 8])
|
#fig, ax = plt.subplots(nrows=1, ncols=1, figsize=[6, 8])
|
||||||
|
|
||||||
fs.plot(ax)
|
#fs.plot(ax)
|
||||||
plt.show()
|
#plt.show()
|
||||||
|
|
||||||
|
"""
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
from pyFTS.data import SONDA
|
||||||
|
df = SONDA.get_dataframe()
|
||||||
|
|
||||||
|
df = df.drop(df[df.rain.values > 100].index)
|
||||||
|
df = df.drop(df[df.press.values < 800].index)
|
||||||
|
df = df.drop(df[df.humid.values < 15].index)
|
||||||
|
|
||||||
|
df.to_csv("SONDA_BSB_MOD.csv", sep=";", index=False)
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
print(os.getcwd())
|
Loading…
Reference in New Issue
Block a user