pyFTS/pyFTS/models/ensemble/multiseasonal.py
Petrônio Cândido 00db6a30ad - Compacting datasets with bz2
- Refactoring generate_flrg and train methods
 - Introducing batches and model saving on fit method
2018-03-02 19:20:21 -03:00

91 lines
2.8 KiB
Python

#!/usr/bin/python
# -*- coding: utf8 -*-
import numpy as np
from pyFTS.common import Util as cUtil
from pyFTS.models.ensemble import ensemble
from pyFTS.models.seasonal import cmsfts
from pyFTS.probabilistic import ProbabilityDistribution
from copy import deepcopy
from joblib import Parallel, delayed
import multiprocessing
def train_individual_model(partitioner, train_data, indexer):
pttr = str(partitioner.__module__).split('.')[-1]
diff = "_diff" if partitioner.transformation is not None else ""
_key = "msfts_" + pttr + str(partitioner.partitions) + diff + "_" + indexer.name
print(_key)
model = cmsfts.ContextualMultiSeasonalFTS(_key, indexer=indexer)
model.append_transformation(partitioner.transformation)
model.train(train_data, partitioner.sets, order=1)
cUtil.persist_obj(model, "models/"+_key+".pkl")
return model
class SeasonalEnsembleFTS(ensemble.EnsembleFTS):
def __init__(self, name, **kwargs):
super(SeasonalEnsembleFTS, self).__init__(name="Seasonal Ensemble FTS", **kwargs)
self.min_order = 1
self.indexers = []
self.partitioners = []
self.is_multivariate = True
self.has_seasonality = True
self.has_probability_forecasting = True
def update_uod(self, data):
self.original_max = max(self.indexer.get_data(data))
self.original_min = min(self.indexer.get_data(data))
def train(self, data, **kwargs):
self.original_max = max(self.indexer.get_data(data))
self.original_min = min(self.indexer.get_data(data))
num_cores = multiprocessing.cpu_count()
pool = {}
count = 0
for ix in self.indexers:
for pt in self.partitioners:
pool[count] = {'ix': ix, 'pt': pt}
count += 1
results = Parallel(n_jobs=num_cores)(
delayed(train_individual_model)(deepcopy(pool[m]['pt']), data, deepcopy(pool[m]['ix']))
for m in pool.keys())
for tmp in results:
self.append_model(tmp)
cUtil.persist_obj(self, "models/"+self.name+".pkl")
def forecast_distribution(self, data, **kwargs):
ret = []
smooth = kwargs.get("smooth", "KDE")
alpha = kwargs.get("alpha", None)
uod = self.get_UoD()
for k in data.index:
tmp = self.get_models_forecasts(data.ix[k])
if alpha is None:
tmp = np.ravel(tmp).tolist()
else:
tmp = self.get_distribution_interquantile( np.ravel(tmp).tolist(), alpha)
name = str(self.indexer.get_index(data.ix[k]))
dist = ProbabilityDistribution.ProbabilityDistribution(smooth, uod=uod, data=tmp,
name=name, **kwargs)
ret.append(dist)
return ret