pyFTS/pyFTS/models/song.py
Petrônio Cândido 00db6a30ad - Compacting datasets with bz2
- Refactoring generate_flrg and train methods
 - Introducing batches and model saving on fit method
2018-03-02 19:20:21 -03:00

85 lines
2.6 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
First Order Traditional Fuzzy Time Series method by Song & Chissom (1993)
Q. Song and B. S. Chissom, “Fuzzy time series and its models,” Fuzzy Sets Syst., vol. 54, no. 3, pp. 269277, 1993.
"""
import numpy as np
from pyFTS.common import FuzzySet, FLR, fts
class ConventionalFTS(fts.FTS):
"""Traditional Fuzzy Time Series"""
def __init__(self, name, **kwargs):
super(ConventionalFTS, self).__init__(1, "FTS " + name, **kwargs)
self.name = "Traditional FTS"
self.detail = "Song & Chissom"
if self.sets is not None and self.partitioner is not None:
self.sets = self.partitioner.sets
self.R = None
if self.sets is not None:
self.R = np.zeros((len(self.sets),len(self.sets)))
def flr_membership_matrix(self, flr):
lm = [flr.LHS.membership(k.centroid) for k in self.sets]
rm = [flr.RHS.membership(k.centroid) for k in self.sets]
r = np.zeros((len(self.sets), len(self.sets)))
for k in range(0,len(self.sets)):
for l in range(0, len(self.sets)):
r[k][l] = min(lm[k],rm[l])
return r
def operation_matrix(self, flrs):
if self.R is None:
self.R = np.zeros((len(self.sets), len(self.sets)))
for k in flrs:
mm = self.flr_membership_matrix(k)
for k in range(0, len(self.sets)):
for l in range(0, len(self.sets)):
self.R[k][l] = max(r[k][l], mm[k][l])
def train(self, data, **kwargs):
if kwargs.get('sets', None) is not None:
self.sets = kwargs.get('sets', None)
ndata = self.apply_transformations(data)
tmpdata = FuzzySet.fuzzyfy_series_old(ndata, self.sets)
flrs = FLR.generate_non_recurrent_flrs(tmpdata)
self.operation_matrix(flrs)
def forecast(self, data, **kwargs):
ndata = np.array(self.apply_transformations(data))
l = len(ndata)
npart = len(self.sets)
ret = []
for k in np.arange(0, l):
mv = FuzzySet.fuzzyfy_instance(ndata[k], self.sets)
r = [max([ min(self.R[i][j], mv[j]) for j in np.arange(0,npart) ]) for i in np.arange(0,npart)]
fs = np.ravel(np.argwhere(r == max(r)))
if len(fs) == 1:
ret.append(self.sets[fs[0]].centroid)
else:
mp = [self.sets[s].centroid for s in fs]
ret.append( sum(mp)/len(mp))
ret = self.apply_inverse_transformations(ret, params=[data])
return ret
def __str__(self):
tmp = self.name + ":\n"
return tmp + str(self.R)