00db6a30ad
- Refactoring generate_flrg and train methods - Introducing batches and model saving on fit method
79 lines
2.3 KiB
Python
79 lines
2.3 KiB
Python
"""
|
||
First Order Conventional Fuzzy Time Series by Chen (1996)
|
||
|
||
S.-M. Chen, “Forecasting enrollments based on fuzzy time series,” Fuzzy Sets Syst., vol. 81, no. 3, pp. 311–319, 1996.
|
||
"""
|
||
|
||
import numpy as np
|
||
from pyFTS.common import FuzzySet, FLR, fts, flrg
|
||
|
||
|
||
class ConventionalFLRG(flrg.FLRG):
|
||
"""First Order Conventional Fuzzy Logical Relationship Group"""
|
||
def __init__(self, LHS, **kwargs):
|
||
super(ConventionalFLRG, self).__init__(1, **kwargs)
|
||
self.LHS = LHS
|
||
self.RHS = set()
|
||
|
||
def append(self, c):
|
||
self.RHS.add(c)
|
||
|
||
def __str__(self):
|
||
tmp = self.LHS.name + " -> "
|
||
tmp2 = ""
|
||
for c in sorted(self.RHS, key=lambda s: s.name):
|
||
if len(tmp2) > 0:
|
||
tmp2 = tmp2 + ","
|
||
tmp2 = tmp2 + c.name
|
||
return tmp + tmp2
|
||
|
||
|
||
class ConventionalFTS(fts.FTS):
|
||
"""Conventional Fuzzy Time Series"""
|
||
def __init__(self, name, **kwargs):
|
||
super(ConventionalFTS, self).__init__(1, "CFTS " + name, **kwargs)
|
||
self.name = "Conventional FTS"
|
||
self.detail = "Chen"
|
||
self.flrgs = {}
|
||
|
||
def generate_flrg(self, flrs):
|
||
for flr in flrs:
|
||
if flr.LHS.name in self.flrgs:
|
||
self.flrgs[flr.LHS.name].append(flr.RHS)
|
||
else:
|
||
self.flrgs[flr.LHS.name] = ConventionalFLRG(flr.LHS)
|
||
self.flrgs[flr.LHS.name].append(flr.RHS)
|
||
|
||
def train(self, data, **kwargs):
|
||
if kwargs.get('sets', None) is not None:
|
||
self.sets = kwargs.get('sets', None)
|
||
ndata = self.apply_transformations(data)
|
||
tmpdata = FuzzySet.fuzzyfy_series_old(ndata, self.sets)
|
||
flrs = FLR.generate_non_recurrent_flrs(tmpdata)
|
||
self.generate_flrg(flrs)
|
||
|
||
def forecast(self, data, **kwargs):
|
||
|
||
ndata = np.array(self.apply_transformations(data))
|
||
|
||
l = len(ndata)
|
||
|
||
ret = []
|
||
|
||
for k in np.arange(0, l):
|
||
|
||
mv = FuzzySet.fuzzyfy_instance(ndata[k], self.sets)
|
||
|
||
actual = self.sets[np.argwhere(mv == max(mv))[0, 0]]
|
||
|
||
if actual.name not in self.flrgs:
|
||
ret.append(actual.centroid)
|
||
else:
|
||
_flrg = self.flrgs[actual.name]
|
||
|
||
ret.append(_flrg.get_midpoint())
|
||
|
||
ret = self.apply_inverse_transformations(ret, params=[data])
|
||
|
||
return ret
|