422 lines
14 KiB
Python
422 lines
14 KiB
Python
import numpy as np
|
|
import pandas as pd
|
|
import math
|
|
from pyFTS.common import FuzzySet, FLR
|
|
import hofts, ifts, tree
|
|
|
|
|
|
class ProbabilisticFLRG(hofts.HighOrderFLRG):
|
|
def __init__(self, order):
|
|
super(ProbabilisticFLRG, self).__init__(order)
|
|
self.RHS = {}
|
|
self.frequencyCount = 0
|
|
|
|
def appendRHS(self, c):
|
|
self.frequencyCount = self.frequencyCount + 1
|
|
if c.name in self.RHS:
|
|
self.RHS[c.name] = self.RHS[c.name] + 1
|
|
else:
|
|
self.RHS[c.name] = 1
|
|
|
|
def getProbability(self, c):
|
|
return self.RHS[c] / self.frequencyCount
|
|
|
|
def __str__(self):
|
|
tmp2 = ""
|
|
for c in sorted(self.RHS):
|
|
if len(tmp2) > 0:
|
|
tmp2 = tmp2 + ", "
|
|
tmp2 = tmp2 + c + "(" + str(round(self.RHS[c] / self.frequencyCount, 3)) + ")"
|
|
return self.strLHS() + " -> " + tmp2
|
|
|
|
|
|
class ProbabilisticFTS(ifts.IntervalFTS):
|
|
def __init__(self, name):
|
|
super(ProbabilisticFTS, self).__init__("PIFTS")
|
|
self.shortname = "PIFTS " + name
|
|
self.name = "Probabilistic FTS"
|
|
self.detail = "Silva, P.; Guimarães, F.; Sadaei, H."
|
|
self.flrgs = {}
|
|
self.globalFrequency = 0
|
|
self.isInterval = True
|
|
self.isDensity = True
|
|
|
|
def generateFLRG(self, flrs):
|
|
flrgs = {}
|
|
l = len(flrs)
|
|
for k in np.arange(self.order + 1, l):
|
|
flrg = ProbabilisticFLRG(self.order)
|
|
|
|
for kk in np.arange(k - self.order, k):
|
|
flrg.appendLHS(flrs[kk].LHS)
|
|
|
|
if flrg.strLHS() in flrgs:
|
|
flrgs[flrg.strLHS()].appendRHS(flrs[k].RHS)
|
|
else:
|
|
flrgs[flrg.strLHS()] = flrg;
|
|
flrgs[flrg.strLHS()].appendRHS(flrs[k].RHS)
|
|
|
|
self.globalFrequency = self.globalFrequency + 1
|
|
return (flrgs)
|
|
|
|
def getProbability(self, flrg):
|
|
if flrg.strLHS() in self.flrgs:
|
|
return self.flrgs[flrg.strLHS()].frequencyCount / self.globalFrequency
|
|
else:
|
|
return 1.0 / self.globalFrequency
|
|
|
|
def getMidpoints(self, flrg):
|
|
if flrg.strLHS() in self.flrgs:
|
|
tmp = self.flrgs[flrg.strLHS()]
|
|
ret = sum(np.array([tmp.getProbability(s) * self.setsDict[s].midpoint for s in tmp.RHS]))
|
|
else:
|
|
ret = sum(np.array([0.33 * s.midpoint for s in flrg.LHS]))
|
|
return ret
|
|
|
|
def getUpper(self, flrg):
|
|
if flrg.strLHS() in self.flrgs:
|
|
tmp = self.flrgs[flrg.strLHS()]
|
|
ret = sum(np.array([tmp.getProbability(s) * self.setsDict[s].upper for s in tmp.RHS]))
|
|
else:
|
|
ret = sum(np.array([0.33 * s.upper for s in flrg.LHS]))
|
|
return ret
|
|
|
|
def getLower(self, flrg):
|
|
if flrg.strLHS() in self.flrgs:
|
|
tmp = self.flrgs[flrg.strLHS()]
|
|
ret = sum(np.array([tmp.getProbability(s) * self.setsDict[s].lower for s in tmp.RHS]))
|
|
else:
|
|
ret = sum(np.array([0.33 * s.lower for s in flrg.LHS]))
|
|
return ret
|
|
|
|
def forecast(self, data):
|
|
|
|
ndata = np.array(data)
|
|
|
|
l = len(ndata)
|
|
|
|
ret = []
|
|
|
|
for k in np.arange(self.order - 1, l):
|
|
|
|
# print(k)
|
|
|
|
affected_flrgs = []
|
|
affected_flrgs_memberships = []
|
|
norms = []
|
|
|
|
mp = []
|
|
|
|
# Find the sets which membership > 0 for each lag
|
|
count = 0
|
|
lags = {}
|
|
if self.order > 1:
|
|
subset = ndata[k - (self.order - 1): k + 1]
|
|
|
|
for instance in subset:
|
|
mb = FuzzySet.fuzzyInstance(instance, self.sets)
|
|
tmp = np.argwhere(mb)
|
|
idx = np.ravel(tmp) # flatten the array
|
|
|
|
if idx.size == 0: # the element is out of the bounds of the Universe of Discourse
|
|
if math.ceil(instance) <= self.sets[0].lower:
|
|
idx = [0]
|
|
elif math.ceil(instance) >= self.sets[-1].upper:
|
|
idx = [len(self.sets) - 1]
|
|
else:
|
|
raise Exception(instance)
|
|
|
|
lags[count] = idx
|
|
count = count + 1
|
|
|
|
# Build the tree with all possible paths
|
|
|
|
root = tree.FLRGTreeNode(None)
|
|
|
|
self.buildTree(root, lags, 0)
|
|
|
|
# Trace the possible paths and build the PFLRG's
|
|
|
|
for p in root.paths():
|
|
path = list(reversed(list(filter(None.__ne__, p))))
|
|
flrg = hofts.HighOrderFLRG(self.order)
|
|
for kk in path: flrg.appendLHS(self.sets[kk])
|
|
|
|
assert len(flrg.LHS) == subset.size, str(subset) + " -> " + str([s.name for s in flrg.LHS])
|
|
|
|
##
|
|
affected_flrgs.append(flrg)
|
|
|
|
# Find the general membership of FLRG
|
|
affected_flrgs_memberships.append(min(self.getSequenceMembership(subset, flrg.LHS)))
|
|
|
|
else:
|
|
|
|
mv = FuzzySet.fuzzyInstance(ndata[k], self.sets) # get all membership values
|
|
tmp = np.argwhere(mv) # get the indices of values > 0
|
|
idx = np.ravel(tmp) # flatten the array
|
|
|
|
if idx.size == 0: # the element is out of the bounds of the Universe of Discourse
|
|
if math.ceil(ndata[k]) <= self.sets[0].lower:
|
|
idx = [0]
|
|
elif math.ceil(ndata[k]) >= self.sets[-1].upper:
|
|
idx = [len(self.sets) - 1]
|
|
else:
|
|
raise Exception(ndata[k])
|
|
|
|
for kk in idx:
|
|
flrg = hofts.HighOrderFLRG(self.order)
|
|
flrg.appendLHS(self.sets[kk])
|
|
affected_flrgs.append(flrg)
|
|
affected_flrgs_memberships.append(mv[kk])
|
|
|
|
count = 0
|
|
for flrg in affected_flrgs:
|
|
# achar o os bounds de cada FLRG, ponderados pela probabilidade e pertinência
|
|
norm = self.getProbability(flrg) * affected_flrgs_memberships[count]
|
|
if norm == 0:
|
|
norm = self.getProbability(flrg) # * 0.001
|
|
mp.append(norm * self.getMidpoints(flrg))
|
|
norms.append(norm)
|
|
count = count + 1
|
|
|
|
# gerar o intervalo
|
|
norm = sum(norms)
|
|
if norm == 0:
|
|
ret.append([0, 0])
|
|
else:
|
|
ret.append(sum(mp) / norm)
|
|
|
|
return ret
|
|
|
|
def forecastInterval(self, data):
|
|
|
|
ndata = np.array(data)
|
|
|
|
l = len(ndata)
|
|
|
|
ret = []
|
|
|
|
for k in np.arange(self.order - 1, l):
|
|
|
|
# print(k)
|
|
|
|
affected_flrgs = []
|
|
affected_flrgs_memberships = []
|
|
norms = []
|
|
|
|
up = []
|
|
lo = []
|
|
|
|
# Find the sets which membership > 0 for each lag
|
|
count = 0
|
|
lags = {}
|
|
if self.order > 1:
|
|
subset = ndata[k - (self.order - 1): k + 1]
|
|
|
|
for instance in subset:
|
|
mb = FuzzySet.fuzzyInstance(instance, self.sets)
|
|
tmp = np.argwhere(mb)
|
|
idx = np.ravel(tmp) # flatten the array
|
|
|
|
if idx.size == 0: # the element is out of the bounds of the Universe of Discourse
|
|
if math.ceil(instance) <= self.sets[0].lower:
|
|
idx = [0]
|
|
elif math.ceil(instance) >= self.sets[-1].upper:
|
|
idx = [len(self.sets) - 1]
|
|
else:
|
|
raise Exception(instance)
|
|
|
|
lags[count] = idx
|
|
count = count + 1
|
|
|
|
# Build the tree with all possible paths
|
|
|
|
root = tree.FLRGTreeNode(None)
|
|
|
|
self.buildTree(root, lags, 0)
|
|
|
|
# Trace the possible paths and build the PFLRG's
|
|
|
|
for p in root.paths():
|
|
path = list(reversed(list(filter(None.__ne__, p))))
|
|
flrg = hofts.HighOrderFLRG(self.order)
|
|
for kk in path: flrg.appendLHS(self.sets[kk])
|
|
|
|
assert len(flrg.LHS) == subset.size, str(subset) + " -> " + str([s.name for s in flrg.LHS])
|
|
|
|
##
|
|
affected_flrgs.append(flrg)
|
|
|
|
# Find the general membership of FLRG
|
|
affected_flrgs_memberships.append(min(self.getSequenceMembership(subset, flrg.LHS)))
|
|
|
|
else:
|
|
|
|
mv = FuzzySet.fuzzyInstance(ndata[k], self.sets) # get all membership values
|
|
tmp = np.argwhere(mv) # get the indices of values > 0
|
|
idx = np.ravel(tmp) # flatten the array
|
|
|
|
if idx.size == 0: # the element is out of the bounds of the Universe of Discourse
|
|
if math.ceil(ndata[k]) <= self.sets[0].lower:
|
|
idx = [0]
|
|
elif math.ceil(ndata[k]) >= self.sets[-1].upper:
|
|
idx = [len(self.sets) - 1]
|
|
else:
|
|
raise Exception(ndata[k])
|
|
|
|
for kk in idx:
|
|
flrg = hofts.HighOrderFLRG(self.order)
|
|
flrg.appendLHS(self.sets[kk])
|
|
affected_flrgs.append(flrg)
|
|
affected_flrgs_memberships.append(mv[kk])
|
|
|
|
count = 0
|
|
for flrg in affected_flrgs:
|
|
# achar o os bounds de cada FLRG, ponderados pela probabilidade e pertinência
|
|
norm = self.getProbability(flrg) * affected_flrgs_memberships[count]
|
|
if norm == 0:
|
|
norm = self.getProbability(flrg) # * 0.001
|
|
up.append(norm * self.getUpper(flrg))
|
|
lo.append(norm * self.getLower(flrg))
|
|
norms.append(norm)
|
|
count = count + 1
|
|
|
|
# gerar o intervalo
|
|
norm = sum(norms)
|
|
if norm == 0:
|
|
ret.append([0, 0])
|
|
else:
|
|
ret.append([sum(lo) / norm, sum(up) / norm])
|
|
|
|
return ret
|
|
|
|
def forecastAhead(self, data, steps):
|
|
ret = [data[k] for k in np.arange(len(data) - self.order, len(data))]
|
|
|
|
for k in np.arange(self.order - 1, steps):
|
|
|
|
if ret[-1] <= self.sets[0].lower or ret[-1] >= self.sets[-1].upper:
|
|
ret.append(ret[-1])
|
|
else:
|
|
mp = self.forecast([ret[x] for x in np.arange(k - self.order, k)])
|
|
|
|
ret.append(mp)
|
|
|
|
return ret
|
|
|
|
def forecastAheadInterval(self, data, steps):
|
|
ret = [[data[k], data[k]] for k in np.arange(len(data) - self.order, len(data))]
|
|
|
|
for k in np.arange(self.order - 1, steps):
|
|
|
|
if ret[-1][0] <= self.sets[0].lower and ret[-1][1] >= self.sets[-1].upper:
|
|
ret.append(ret[-1])
|
|
else:
|
|
lower = self.forecastInterval([ret[x][0] for x in np.arange(k - self.order, k)])
|
|
upper = self.forecastInterval([ret[x][1] for x in np.arange(k - self.order, k)])
|
|
|
|
ret.append([np.min(lower), np.max(upper)])
|
|
|
|
return ret
|
|
|
|
def getGridClean(self, resolution):
|
|
grid = {}
|
|
for sbin in np.arange(self.sets[0].lower, self.sets[-1].upper, resolution):
|
|
grid[sbin] = 0
|
|
|
|
return grid
|
|
|
|
def gridCount(self, grid, resolution, interval):
|
|
for sbin in sorted(grid):
|
|
if sbin >= interval[0] and (sbin + resolution) <= interval[1]:
|
|
grid[sbin] = grid[sbin] + 1
|
|
return grid
|
|
|
|
def forecastDistributionAhead2(self, data, steps, resolution):
|
|
|
|
ret = []
|
|
|
|
intervals = self.forecastAhead(data, steps)
|
|
|
|
for k in np.arange(self.order, steps):
|
|
|
|
grid = self.getGridClean(resolution)
|
|
grid = self.gridCount(grid, resolution, intervals[k])
|
|
|
|
lags = {}
|
|
|
|
cc = 0
|
|
for x in np.arange(k - self.order, k):
|
|
tmp = []
|
|
for qt in np.arange(0, 100, 5):
|
|
tmp.append(intervals[x][0] + qt * (intervals[x][1] - intervals[x][0]) / 100)
|
|
tmp.append(intervals[x][1] - qt * (intervals[x][1] - intervals[x][0]) / 100)
|
|
tmp.append(intervals[x][0] + (intervals[x][1] - intervals[x][0]) / 2)
|
|
|
|
lags[cc] = tmp
|
|
|
|
cc = cc + 1
|
|
# Build the tree with all possible paths
|
|
|
|
root = tree.FLRGTreeNode(None)
|
|
|
|
self.buildTree(root, lags, 0)
|
|
|
|
# Trace the possible paths and build the PFLRG's
|
|
|
|
for p in root.paths():
|
|
path = list(reversed(list(filter(None.__ne__, p))))
|
|
|
|
subset = [kk for kk in path]
|
|
|
|
qtle = self.forecast(subset)
|
|
grid = self.gridCount(grid, resolution, np.ravel(qtle))
|
|
|
|
tmp = np.array([grid[k] for k in sorted(grid)])
|
|
ret.append(tmp / sum(tmp))
|
|
|
|
grid = self.getGridClean(resolution)
|
|
df = pd.DataFrame(ret, columns=sorted(grid))
|
|
return df
|
|
|
|
def forecastAheadDistribution(self, data, steps, resolution):
|
|
|
|
ret = []
|
|
|
|
intervals = self.forecastAheadInterval(data, steps)
|
|
|
|
for k in np.arange(self.order, steps):
|
|
|
|
grid = self.getGridClean(resolution)
|
|
grid = self.gridCount(grid, resolution, intervals[k])
|
|
|
|
for qt in np.arange(1, 50, 2):
|
|
# print(qt)
|
|
qtle_lower = self.forecastInterval(
|
|
[intervals[x][0] + qt * (intervals[x][1] - intervals[x][0]) / 100 for x in
|
|
np.arange(k - self.order, k)])
|
|
grid = self.gridCount(grid, resolution, np.ravel(qtle_lower))
|
|
qtle_upper = self.forecastInterval(
|
|
[intervals[x][1] - qt * (intervals[x][1] - intervals[x][0]) / 100 for x in
|
|
np.arange(k - self.order, k)])
|
|
grid = self.gridCount(grid, resolution, np.ravel(qtle_upper))
|
|
qtle_mid = self.forecastInterval(
|
|
[intervals[x][0] + (intervals[x][1] - intervals[x][0]) / 2 for x in np.arange(k - self.order, k)])
|
|
grid = self.gridCount(grid, resolution, np.ravel(qtle_mid))
|
|
|
|
tmp = np.array([grid[k] for k in sorted(grid)])
|
|
|
|
ret.append(tmp / sum(tmp))
|
|
|
|
grid = self.getGridClean(resolution)
|
|
df = pd.DataFrame(ret, columns=sorted(grid))
|
|
return df
|
|
|
|
def __str__(self):
|
|
tmp = self.name + ":\n"
|
|
for r in sorted(self.flrgs):
|
|
p = round(self.flrgs[r].frequencyCount / self.globalFrequency, 3)
|
|
tmp = tmp + "(" + str(p) + ") " + str(self.flrgs[r]) + "\n"
|
|
return tmp
|