Refatoração de PIFTS para PFTS; acrescentando as packages data e models
This commit is contained in:
parent
2022c2a032
commit
dba1919a18
0
data/__init__.py
Normal file
0
data/__init__.py
Normal file
0
models/__init__.py
Normal file
0
models/__init__.py
Normal file
@ -1,7 +1,7 @@
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import math
|
||||
from pyFTS.common import FuzzySet,FLR
|
||||
from pyFTS.common import FuzzySet, FLR
|
||||
import hofts, ifts, tree
|
||||
|
||||
|
||||
@ -30,11 +30,11 @@ class ProbabilisticFLRG(hofts.HighOrderFLRG):
|
||||
return self.strLHS() + " -> " + tmp2
|
||||
|
||||
|
||||
class ProbabilisticIntervalFTS(ifts.IntervalFTS):
|
||||
class ProbabilisticFTS(ifts.IntervalFTS):
|
||||
def __init__(self, name):
|
||||
super(ProbabilisticIntervalFTS, self).__init__("PIFTS")
|
||||
super(ProbabilisticFTS, self).__init__("PIFTS")
|
||||
self.shortname = "PIFTS " + name
|
||||
self.name = "Probabilistic Interval FTS"
|
||||
self.name = "Probabilistic FTS"
|
||||
self.detail = "Silva, P.; Guimarães, F.; Sadaei, H."
|
||||
self.flrgs = {}
|
||||
self.globalFrequency = 0
|
||||
@ -65,6 +65,14 @@ class ProbabilisticIntervalFTS(ifts.IntervalFTS):
|
||||
else:
|
||||
return 1.0 / self.globalFrequency
|
||||
|
||||
def getMidpoints(self, flrg):
|
||||
if flrg.strLHS() in self.flrgs:
|
||||
tmp = self.flrgs[flrg.strLHS()]
|
||||
ret = sum(np.array([tmp.getProbability(s) * self.setsDict[s].midpoint for s in tmp.RHS]))
|
||||
else:
|
||||
ret = sum(np.array([0.33 * s.midpoint for s in flrg.LHS]))
|
||||
return ret
|
||||
|
||||
def getUpper(self, flrg):
|
||||
if flrg.strLHS() in self.flrgs:
|
||||
tmp = self.flrgs[flrg.strLHS()]
|
||||
@ -89,6 +97,106 @@ class ProbabilisticIntervalFTS(ifts.IntervalFTS):
|
||||
|
||||
ret = []
|
||||
|
||||
for k in np.arange(self.order - 1, l):
|
||||
|
||||
# print(k)
|
||||
|
||||
affected_flrgs = []
|
||||
affected_flrgs_memberships = []
|
||||
norms = []
|
||||
|
||||
mp = []
|
||||
|
||||
# Find the sets which membership > 0 for each lag
|
||||
count = 0
|
||||
lags = {}
|
||||
if self.order > 1:
|
||||
subset = ndata[k - (self.order - 1): k + 1]
|
||||
|
||||
for instance in subset:
|
||||
mb = FuzzySet.fuzzyInstance(instance, self.sets)
|
||||
tmp = np.argwhere(mb)
|
||||
idx = np.ravel(tmp) # flatten the array
|
||||
|
||||
if idx.size == 0: # the element is out of the bounds of the Universe of Discourse
|
||||
if math.ceil(instance) <= self.sets[0].lower:
|
||||
idx = [0]
|
||||
elif math.ceil(instance) >= self.sets[-1].upper:
|
||||
idx = [len(self.sets) - 1]
|
||||
else:
|
||||
raise Exception(instance)
|
||||
|
||||
lags[count] = idx
|
||||
count = count + 1
|
||||
|
||||
# Build the tree with all possible paths
|
||||
|
||||
root = tree.FLRGTreeNode(None)
|
||||
|
||||
self.buildTree(root, lags, 0)
|
||||
|
||||
# Trace the possible paths and build the PFLRG's
|
||||
|
||||
for p in root.paths():
|
||||
path = list(reversed(list(filter(None.__ne__, p))))
|
||||
flrg = hofts.HighOrderFLRG(self.order)
|
||||
for kk in path: flrg.appendLHS(self.sets[kk])
|
||||
|
||||
assert len(flrg.LHS) == subset.size, str(subset) + " -> " + str([s.name for s in flrg.LHS])
|
||||
|
||||
##
|
||||
affected_flrgs.append(flrg)
|
||||
|
||||
# Find the general membership of FLRG
|
||||
affected_flrgs_memberships.append(min(self.getSequenceMembership(subset, flrg.LHS)))
|
||||
|
||||
else:
|
||||
|
||||
mv = FuzzySet.fuzzyInstance(ndata[k], self.sets) # get all membership values
|
||||
tmp = np.argwhere(mv) # get the indices of values > 0
|
||||
idx = np.ravel(tmp) # flatten the array
|
||||
|
||||
if idx.size == 0: # the element is out of the bounds of the Universe of Discourse
|
||||
if math.ceil(ndata[k]) <= self.sets[0].lower:
|
||||
idx = [0]
|
||||
elif math.ceil(ndata[k]) >= self.sets[-1].upper:
|
||||
idx = [len(self.sets) - 1]
|
||||
else:
|
||||
raise Exception(ndata[k])
|
||||
|
||||
for kk in idx:
|
||||
flrg = hofts.HighOrderFLRG(self.order)
|
||||
flrg.appendLHS(self.sets[kk])
|
||||
affected_flrgs.append(flrg)
|
||||
affected_flrgs_memberships.append(mv[kk])
|
||||
|
||||
count = 0
|
||||
for flrg in affected_flrgs:
|
||||
# achar o os bounds de cada FLRG, ponderados pela probabilidade e pertinência
|
||||
norm = self.getProbability(flrg) * affected_flrgs_memberships[count]
|
||||
if norm == 0:
|
||||
norm = self.getProbability(flrg) # * 0.001
|
||||
mp.append(norm * self.getMidpoints(flrg))
|
||||
norms.append(norm)
|
||||
count = count + 1
|
||||
|
||||
# gerar o intervalo
|
||||
norm = sum(norms)
|
||||
if norm == 0:
|
||||
ret.append([0, 0])
|
||||
else:
|
||||
ret.append(sum(mp) / norm)
|
||||
|
||||
return ret
|
||||
|
||||
def forecastInterval(self, data):
|
||||
|
||||
ndata = np.array(data)
|
||||
|
||||
l = len(ndata)
|
||||
|
||||
ret = []
|
||||
|
||||
for k in np.arange(self.order - 1, l):
|
||||
|
||||
# print(k)
|
||||
@ -184,6 +292,20 @@ class ProbabilisticIntervalFTS(ifts.IntervalFTS):
|
||||
return ret
|
||||
|
||||
def forecastAhead(self, data, steps):
|
||||
ret = [data[k] for k in np.arange(len(data) - self.order, len(data))]
|
||||
|
||||
for k in np.arange(self.order - 1, steps):
|
||||
|
||||
if ret[-1] <= self.sets[0].lower or ret[-1] >= self.sets[-1].upper:
|
||||
ret.append(ret[-1])
|
||||
else:
|
||||
mp = self.forecast([ret[x] for x in np.arange(k - self.order, k)])
|
||||
|
||||
ret.append(mp)
|
||||
|
||||
return ret
|
||||
|
||||
def forecastAheadInterval(self, data, steps):
|
||||
ret = [[data[k], data[k]] for k in np.arange(len(data) - self.order, len(data))]
|
||||
|
||||
for k in np.arange(self.order - 1, steps):
|
||||
@ -191,8 +313,8 @@ class ProbabilisticIntervalFTS(ifts.IntervalFTS):
|
||||
if ret[-1][0] <= self.sets[0].lower and ret[-1][1] >= self.sets[-1].upper:
|
||||
ret.append(ret[-1])
|
||||
else:
|
||||
lower = self.forecast([ret[x][0] for x in np.arange(k - self.order, k)])
|
||||
upper = self.forecast([ret[x][1] for x in np.arange(k - self.order, k)])
|
||||
lower = self.forecastInterval([ret[x][0] for x in np.arange(k - self.order, k)])
|
||||
upper = self.forecastInterval([ret[x][1] for x in np.arange(k - self.order, k)])
|
||||
|
||||
ret.append([np.min(lower), np.max(upper)])
|
||||
|
||||
@ -258,11 +380,11 @@ class ProbabilisticIntervalFTS(ifts.IntervalFTS):
|
||||
df = pd.DataFrame(ret, columns=sorted(grid))
|
||||
return df
|
||||
|
||||
def forecastDistributionAhead(self, data, steps, resolution):
|
||||
def forecastAheadDistribution(self, data, steps, resolution):
|
||||
|
||||
ret = []
|
||||
|
||||
intervals = self.forecastAhead(data, steps)
|
||||
intervals = self.forecastAheadInterval(data, steps)
|
||||
|
||||
for k in np.arange(self.order, steps):
|
||||
|
||||
@ -271,13 +393,15 @@ class ProbabilisticIntervalFTS(ifts.IntervalFTS):
|
||||
|
||||
for qt in np.arange(1, 50, 2):
|
||||
# print(qt)
|
||||
qtle_lower = self.forecast([intervals[x][0] + qt * (intervals[x][1] - intervals[x][0]) / 100 for x in
|
||||
np.arange(k - self.order, k)])
|
||||
qtle_lower = self.forecastInterval(
|
||||
[intervals[x][0] + qt * (intervals[x][1] - intervals[x][0]) / 100 for x in
|
||||
np.arange(k - self.order, k)])
|
||||
grid = self.gridCount(grid, resolution, np.ravel(qtle_lower))
|
||||
qtle_upper = self.forecast([intervals[x][1] - qt * (intervals[x][1] - intervals[x][0]) / 100 for x in
|
||||
np.arange(k - self.order, k)])
|
||||
qtle_upper = self.forecastInterval(
|
||||
[intervals[x][1] - qt * (intervals[x][1] - intervals[x][0]) / 100 for x in
|
||||
np.arange(k - self.order, k)])
|
||||
grid = self.gridCount(grid, resolution, np.ravel(qtle_upper))
|
||||
qtle_mid = self.forecast(
|
||||
qtle_mid = self.forecastInterval(
|
||||
[intervals[x][0] + (intervals[x][1] - intervals[x][0]) / 2 for x in np.arange(k - self.order, k)])
|
||||
grid = self.gridCount(grid, resolution, np.ravel(qtle_mid))
|
||||
|
Loading…
Reference in New Issue
Block a user