pyFTS/pifts.py

298 lines
10 KiB
Python

import numpy as np
import pandas as pd
import math
from pyFTS.common import FuzzySet,FLR
import hofts, ifts, tree
class ProbabilisticFLRG(hofts.HighOrderFLRG):
def __init__(self, order):
super(ProbabilisticFLRG, self).__init__(order)
self.RHS = {}
self.frequencyCount = 0
def appendRHS(self, c):
self.frequencyCount = self.frequencyCount + 1
if c.name in self.RHS:
self.RHS[c.name] = self.RHS[c.name] + 1
else:
self.RHS[c.name] = 1
def getProbability(self, c):
return self.RHS[c] / self.frequencyCount
def __str__(self):
tmp2 = ""
for c in sorted(self.RHS):
if len(tmp2) > 0:
tmp2 = tmp2 + ", "
tmp2 = tmp2 + c + "(" + str(round(self.RHS[c] / self.frequencyCount, 3)) + ")"
return self.strLHS() + " -> " + tmp2
class ProbabilisticIntervalFTS(ifts.IntervalFTS):
def __init__(self, name):
super(ProbabilisticIntervalFTS, self).__init__("PIFTS")
self.shortname = "PIFTS " + name
self.name = "Probabilistic Interval FTS"
self.detail = "Silva, P.; Guimarães, F.; Sadaei, H."
self.flrgs = {}
self.globalFrequency = 0
self.isInterval = True
self.isDensity = True
def generateFLRG(self, flrs):
flrgs = {}
l = len(flrs)
for k in np.arange(self.order + 1, l):
flrg = ProbabilisticFLRG(self.order)
for kk in np.arange(k - self.order, k):
flrg.appendLHS(flrs[kk].LHS)
if flrg.strLHS() in flrgs:
flrgs[flrg.strLHS()].appendRHS(flrs[k].RHS)
else:
flrgs[flrg.strLHS()] = flrg;
flrgs[flrg.strLHS()].appendRHS(flrs[k].RHS)
self.globalFrequency = self.globalFrequency + 1
return (flrgs)
def getProbability(self, flrg):
if flrg.strLHS() in self.flrgs:
return self.flrgs[flrg.strLHS()].frequencyCount / self.globalFrequency
else:
return 1.0 / self.globalFrequency
def getUpper(self, flrg):
if flrg.strLHS() in self.flrgs:
tmp = self.flrgs[flrg.strLHS()]
ret = sum(np.array([tmp.getProbability(s) * self.setsDict[s].upper for s in tmp.RHS]))
else:
ret = sum(np.array([0.33 * s.upper for s in flrg.LHS]))
return ret
def getLower(self, flrg):
if flrg.strLHS() in self.flrgs:
tmp = self.flrgs[flrg.strLHS()]
ret = sum(np.array([tmp.getProbability(s) * self.setsDict[s].lower for s in tmp.RHS]))
else:
ret = sum(np.array([0.33 * s.lower for s in flrg.LHS]))
return ret
def forecast(self, data):
ndata = np.array(data)
l = len(ndata)
ret = []
for k in np.arange(self.order - 1, l):
# print(k)
affected_flrgs = []
affected_flrgs_memberships = []
norms = []
up = []
lo = []
# Find the sets which membership > 0 for each lag
count = 0
lags = {}
if self.order > 1:
subset = ndata[k - (self.order - 1): k + 1]
for instance in subset:
mb = FuzzySet.fuzzyInstance(instance, self.sets)
tmp = np.argwhere(mb)
idx = np.ravel(tmp) # flatten the array
if idx.size == 0: # the element is out of the bounds of the Universe of Discourse
if math.ceil(instance) <= self.sets[0].lower:
idx = [0]
elif math.ceil(instance) >= self.sets[-1].upper:
idx = [len(self.sets) - 1]
else:
raise Exception(instance)
lags[count] = idx
count = count + 1
# Build the tree with all possible paths
root = tree.FLRGTreeNode(None)
self.buildTree(root, lags, 0)
# Trace the possible paths and build the PFLRG's
for p in root.paths():
path = list(reversed(list(filter(None.__ne__, p))))
flrg = hofts.HighOrderFLRG(self.order)
for kk in path: flrg.appendLHS(self.sets[kk])
assert len(flrg.LHS) == subset.size, str(subset) + " -> " + str([s.name for s in flrg.LHS])
##
affected_flrgs.append(flrg)
# Find the general membership of FLRG
affected_flrgs_memberships.append(min(self.getSequenceMembership(subset, flrg.LHS)))
else:
mv = FuzzySet.fuzzyInstance(ndata[k], self.sets) # get all membership values
tmp = np.argwhere(mv) # get the indices of values > 0
idx = np.ravel(tmp) # flatten the array
if idx.size == 0: # the element is out of the bounds of the Universe of Discourse
if math.ceil(ndata[k]) <= self.sets[0].lower:
idx = [0]
elif math.ceil(ndata[k]) >= self.sets[-1].upper:
idx = [len(self.sets) - 1]
else:
raise Exception(ndata[k])
for kk in idx:
flrg = hofts.HighOrderFLRG(self.order)
flrg.appendLHS(self.sets[kk])
affected_flrgs.append(flrg)
affected_flrgs_memberships.append(mv[kk])
count = 0
for flrg in affected_flrgs:
# achar o os bounds de cada FLRG, ponderados pela probabilidade e pertinência
norm = self.getProbability(flrg) * affected_flrgs_memberships[count]
if norm == 0:
norm = self.getProbability(flrg) # * 0.001
up.append(norm * self.getUpper(flrg))
lo.append(norm * self.getLower(flrg))
norms.append(norm)
count = count + 1
# gerar o intervalo
norm = sum(norms)
if norm == 0:
ret.append([0, 0])
else:
ret.append([sum(lo) / norm, sum(up) / norm])
return ret
def forecastAhead(self, data, steps):
ret = [[data[k], data[k]] for k in np.arange(len(data) - self.order, len(data))]
for k in np.arange(self.order - 1, steps):
if ret[-1][0] <= self.sets[0].lower and ret[-1][1] >= self.sets[-1].upper:
ret.append(ret[-1])
else:
lower = self.forecast([ret[x][0] for x in np.arange(k - self.order, k)])
upper = self.forecast([ret[x][1] for x in np.arange(k - self.order, k)])
ret.append([np.min(lower), np.max(upper)])
return ret
def getGridClean(self, resolution):
grid = {}
for sbin in np.arange(self.sets[0].lower, self.sets[-1].upper, resolution):
grid[sbin] = 0
return grid
def gridCount(self, grid, resolution, interval):
for sbin in sorted(grid):
if sbin >= interval[0] and (sbin + resolution) <= interval[1]:
grid[sbin] = grid[sbin] + 1
return grid
def forecastDistributionAhead2(self, data, steps, resolution):
ret = []
intervals = self.forecastAhead(data, steps)
for k in np.arange(self.order, steps):
grid = self.getGridClean(resolution)
grid = self.gridCount(grid, resolution, intervals[k])
lags = {}
cc = 0
for x in np.arange(k - self.order, k):
tmp = []
for qt in np.arange(0, 100, 5):
tmp.append(intervals[x][0] + qt * (intervals[x][1] - intervals[x][0]) / 100)
tmp.append(intervals[x][1] - qt * (intervals[x][1] - intervals[x][0]) / 100)
tmp.append(intervals[x][0] + (intervals[x][1] - intervals[x][0]) / 2)
lags[cc] = tmp
cc = cc + 1
# Build the tree with all possible paths
root = tree.FLRGTreeNode(None)
self.buildTree(root, lags, 0)
# Trace the possible paths and build the PFLRG's
for p in root.paths():
path = list(reversed(list(filter(None.__ne__, p))))
subset = [kk for kk in path]
qtle = self.forecast(subset)
grid = self.gridCount(grid, resolution, np.ravel(qtle))
tmp = np.array([grid[k] for k in sorted(grid)])
ret.append(tmp / sum(tmp))
grid = self.getGridClean(resolution)
df = pd.DataFrame(ret, columns=sorted(grid))
return df
def forecastDistributionAhead(self, data, steps, resolution):
ret = []
intervals = self.forecastAhead(data, steps)
for k in np.arange(self.order, steps):
grid = self.getGridClean(resolution)
grid = self.gridCount(grid, resolution, intervals[k])
for qt in np.arange(1, 50, 2):
# print(qt)
qtle_lower = self.forecast([intervals[x][0] + qt * (intervals[x][1] - intervals[x][0]) / 100 for x in
np.arange(k - self.order, k)])
grid = self.gridCount(grid, resolution, np.ravel(qtle_lower))
qtle_upper = self.forecast([intervals[x][1] - qt * (intervals[x][1] - intervals[x][0]) / 100 for x in
np.arange(k - self.order, k)])
grid = self.gridCount(grid, resolution, np.ravel(qtle_upper))
qtle_mid = self.forecast(
[intervals[x][0] + (intervals[x][1] - intervals[x][0]) / 2 for x in np.arange(k - self.order, k)])
grid = self.gridCount(grid, resolution, np.ravel(qtle_mid))
tmp = np.array([grid[k] for k in sorted(grid)])
ret.append(tmp / sum(tmp))
grid = self.getGridClean(resolution)
df = pd.DataFrame(ret, columns=sorted(grid))
return df
def __str__(self):
tmp = self.name + ":\n"
for r in sorted(self.flrgs):
p = round(self.flrgs[r].frequencyCount / self.globalFrequency, 3)
tmp = tmp + "(" + str(p) + ") " + str(self.flrgs[r]) + "\n"
return tmp