pyFTS.models.incremental package¶
Module contents¶
FTS methods with incremental/online learning
Submodules¶
pyFTS.models.incremental.TimeVariant module¶
Meta model that wraps another FTS method and continously retrain it using a data window with the most recent data
-
class
pyFTS.models.incremental.TimeVariant.
Retrainer
(**kwargs)¶ Bases:
pyFTS.common.fts.FTS
Meta model for incremental/online learning that retrain its internal model after data windows controlled by the parameter ‘batch_size’, using as the training data a window of recent lags, whose size is controlled by the parameter ‘window_length’.
-
forecast
(data, **kwargs)¶ Point forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the forecasted values
-
forecast_ahead
(data, steps, **kwargs)¶ Point forecast n steps ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- steps – the number of steps ahead to forecast (default: 1)
- start_at – in the multi step forecasting, the index of the data where to start forecasting (default: 0)
Returns: a list with the forecasted values
-
offset
()¶ Returns the number of lags to skip in the input test data in order to synchronize it with the forecasted values given by the predict function. This is necessary due to the order of the model, among other parameters.
Returns: An integer with the number of lags to skip
-
train
(data, **kwargs)¶ Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-
pyFTS.models.incremental.IncrementalEnsemble module¶
Time Variant/Incremental Ensemble of FTS methods
-
class
pyFTS.models.incremental.IncrementalEnsemble.
IncrementalEnsembleFTS
(**kwargs)¶ Bases:
pyFTS.models.ensemble.ensemble.EnsembleFTS
Time Variant/Incremental Ensemble of FTS methods
-
forecast
(data, **kwargs)¶ Point forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the forecasted values
-
forecast_ahead
(data, steps, **kwargs)¶ Point forecast n steps ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- steps – the number of steps ahead to forecast (default: 1)
- start_at – in the multi step forecasting, the index of the data where to start forecasting (default: 0)
Returns: a list with the forecasted values
-
offset
()¶ Returns the number of lags to skip in the input test data in order to synchronize it with the forecasted values given by the predict function. This is necessary due to the order of the model, among other parameters.
Returns: An integer with the number of lags to skip
-
train
(data, **kwargs)¶ Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-