pyFTS.models.ensemble package¶
Submodules¶
pyFTS.models.ensemble.ensemble module¶
EnsembleFTS wraps several FTS methods to ensemble their forecasts, providing point, interval and probabilistic forecasting.
Silva, P. C. L et al. Probabilistic Forecasting with Seasonal Ensemble Fuzzy Time-Series XIII Brazilian Congress on Computational Intelligence, 2017. Rio de Janeiro, Brazil.
-
class
pyFTS.models.ensemble.ensemble.
AllMethodEnsembleFTS
(**kwargs)¶ Bases:
pyFTS.models.ensemble.ensemble.EnsembleFTS
Creates an EnsembleFTS with all point forecast methods, sharing the same partitioner
-
set_transformations
(model)¶
-
train
(data, **kwargs)¶ Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-
-
class
pyFTS.models.ensemble.ensemble.
EnsembleFTS
(**kwargs)¶ Bases:
pyFTS.common.fts.FTS
Ensemble FTS
-
append_model
(model)¶ Append a new trained model to the ensemble
Parameters: model – FTS model
-
forecast
(data, **kwargs)¶ Point forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the forecasted values
-
forecast_ahead_distribution
(data, steps, **kwargs)¶ Probabilistic forecast n steps ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- steps – the number of steps ahead to forecast
- start_at – in the multi step forecasting, the index of the data where to start forecasting (default: 0)
Returns: a list with the forecasted Probability Distributions
-
forecast_ahead_interval
(data, steps, **kwargs)¶ Interval forecast n steps ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- steps – the number of steps ahead to forecast
- start_at – in the multi step forecasting, the index of the data where to start forecasting (default: 0)
Returns: a list with the forecasted intervals
-
forecast_distribution
(data, **kwargs)¶ Probabilistic forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions
-
forecast_interval
(data, **kwargs)¶ Interval forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the prediction intervals
-
get_UoD
()¶ Returns the interval of the known bounds of the universe of discourse (UoD), i. e., the known minimum and maximum values of the time series.
Returns: A set with the lower and the upper bounds of the UoD
-
get_distribution_interquantile
(forecasts, alpha)¶
-
get_interval
(forecasts)¶
-
get_models_forecasts
(data)¶
-
get_point
(forecasts, **kwargs)¶
-
train
(data, **kwargs)¶ Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-
-
class
pyFTS.models.ensemble.ensemble.
SimpleEnsembleFTS
(**kwargs)¶ Bases:
pyFTS.models.ensemble.ensemble.EnsembleFTS
An homogeneous FTS method ensemble with variations on partitionings and orders.
-
train
(data, **kwargs)¶ Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-
-
pyFTS.models.ensemble.ensemble.
sampler
(data, quantiles, bounds=False)¶
pyFTS.models.ensemble.multiseasonal module¶
Silva, P. C. L et al. Probabilistic Forecasting with Seasonal Ensemble Fuzzy Time-Series XIII Brazilian Congress on Computational Intelligence, 2017. Rio de Janeiro, Brazil.
-
class
pyFTS.models.ensemble.multiseasonal.
SeasonalEnsembleFTS
(name, **kwargs)¶ Bases:
pyFTS.models.ensemble.ensemble.EnsembleFTS
-
forecast_distribution
(data, **kwargs)¶ Probabilistic forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions
-
train
(data, **kwargs)¶ Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-
update_uod
(data)¶
-
-
pyFTS.models.ensemble.multiseasonal.
train_individual_model
(partitioner, train_data, indexer)¶
Module contents¶
Meta FTS that aggregates other FTS methods