pyFTS.models.multivariate package¶
Module contents¶
Multivariate Fuzzy Time Series methods
Submodules¶
pyFTS.models.multivariate.FLR module¶
pyFTS.models.multivariate.common module¶
- class pyFTS.models.multivariate.common.MultivariateFuzzySet(**kwargs)[source]¶
Bases:
pyFTS.common.Composite.FuzzySet
Multivariate Composite Fuzzy Set
- append_set(variable, set)[source]¶
Appends a new fuzzy set from a new variable
- Parameters
variable – an multivariate.variable instance
set – an common.FuzzySet instance
pyFTS.models.multivariate.variable module¶
pyFTS.models.multivariate.flrg module¶
- class pyFTS.models.multivariate.flrg.FLRG(**kwargs)[source]¶
Bases:
pyFTS.common.flrg.FLRG
Multivariate Fuzzy Logical Rule Group
- get_lower(sets)[source]¶
Returns the lower bound value for the RHS fuzzy sets
- Parameters
sets – fuzzy sets
- Returns
lower bound value
- get_membership(data, variables)[source]¶
Returns the membership value of the FLRG for the input data
- Parameters
data – input data
sets – fuzzy sets
- Returns
the membership value
pyFTS.models.multivariate.partitioner module¶
- class pyFTS.models.multivariate.partitioner.MultivariatePartitioner(**kwargs)[source]¶
Bases:
pyFTS.partitioners.partitioner.Partitioner
Base class for partitioners which use the MultivariateFuzzySet
- build(data)[source]¶
Perform the partitioning of the Universe of Discourse
- Parameters
data – training data
- Returns
- fuzzyfy(data, **kwargs)[source]¶
Fuzzyfy the input data according to this partitioner fuzzy sets.
- Parameters
data – input value to be fuzzyfied
alpha_cut – the minimal membership value to be considered on fuzzyfication (only for mode=’sets’)
method – the fuzzyfication method (fuzzy: all fuzzy memberships, maximum: only the maximum membership)
mode – the fuzzyfication mode (sets: return the fuzzy sets names, vector: return a vector with the membership
values for all fuzzy sets, both: return a list with tuples (fuzzy set, membership value) )
:returns a list with the fuzzyfied values, depending on the mode
- search(data, **kwargs)[source]¶
Perform a search for the nearest fuzzy sets of the point ‘data’. This function were designed to work with several overlapped fuzzy sets.
- Parameters
data – the value to search for the nearest fuzzy sets
type – the return type: ‘index’ for the fuzzy set indexes or ‘name’ for fuzzy set names.
- Returns
a list with the nearest fuzzy sets
pyFTS.models.multivariate.grid module¶
- class pyFTS.models.multivariate.grid.GridCluster(**kwargs)[source]¶
Bases:
pyFTS.models.multivariate.partitioner.MultivariatePartitioner
A cartesian product of all fuzzy sets of all variables
- class pyFTS.models.multivariate.grid.IncrementalGridCluster(**kwargs)[source]¶
Bases:
pyFTS.models.multivariate.partitioner.MultivariatePartitioner
Create combinations of fuzzy sets of the variables on demand, incrementally increasing the multivariate fuzzy set base.
- fuzzyfy(data, **kwargs)[source]¶
Fuzzyfy the input data according to this partitioner fuzzy sets.
- Parameters
data – input value to be fuzzyfied
alpha_cut – the minimal membership value to be considered on fuzzyfication (only for mode=’sets’)
method – the fuzzyfication method (fuzzy: all fuzzy memberships, maximum: only the maximum membership)
mode – the fuzzyfication mode (sets: return the fuzzy sets names, vector: return a vector with the membership
values for all fuzzy sets, both: return a list with tuples (fuzzy set, membership value) )
:returns a list with the fuzzyfied values, depending on the mode