pyFTS.common package¶
Module contents¶
Submodules¶
pyFTS.common.Activations module¶
Activation functions for Time Series Classification
pyFTS.common.Composite module¶
Composite Fuzzy Sets
- class pyFTS.common.Composite.FuzzySet(name, superset=False, **kwargs)[source]¶
Bases:
pyFTS.common.FuzzySet.FuzzySet
Composite Fuzzy Set
- append(mf, parameters)[source]¶
Adds a new function to composition
- Parameters
mf –
parameters –
- Returns
pyFTS.common.FLR module¶
This module implements functions for Fuzzy Logical Relationship generation
- class pyFTS.common.FLR.FLR(LHS, RHS)[source]¶
Bases:
object
Fuzzy Logical Relationship
Represents a temporal transition of the fuzzy set LHS on time t for the fuzzy set RHS on time t+1.
- LHS¶
Left Hand Side fuzzy set
- RHS¶
Right Hand Side fuzzy set
- class pyFTS.common.FLR.IndexedFLR(index, LHS, RHS)[source]¶
Bases:
pyFTS.common.FLR.FLR
Season Indexed Fuzzy Logical Relationship
- index¶
seasonal index
- pyFTS.common.FLR.generate_high_order_recurrent_flr(fuzzyData)[source]¶
Create a ordered FLR set from a list of fuzzy sets with recurrence
- Parameters
fuzzyData – ordered list of fuzzy sets
- Returns
ordered list of FLR
- pyFTS.common.FLR.generate_indexed_flrs(sets, indexer, data, transformation=None, alpha_cut=0.0)[source]¶
Create a season-indexed ordered FLR set from a list of fuzzy sets with recurrence
- Parameters
sets – fuzzy sets
indexer – seasonality indexer
data – original data
- Returns
ordered list of FLR
pyFTS.common.FuzzySet module¶
- class pyFTS.common.FuzzySet.FuzzySet(name: str, mf, parameters: list, centroid: float, alpha: float = 1.0, **kwargs)[source]¶
Bases:
object
Fuzzy Set
- Z¶
Partition function in respect to the membership function
- membership(x)[source]¶
Calculate the membership value of a given input
- Parameters
x – input value
- Returns
membership value of x at this fuzzy set
- mf¶
The membership function
- partition_function(uod=None, nbins=100)[source]¶
Calculate the partition function over the membership function.
- Parameters
uod –
nbins –
- Returns
- transform(x)[source]¶
Preprocess the data point for non native types
- Parameters
x –
- Returns
return a native type value for the structured type
- variable¶
In multivariate time series, indicate for which variable this fuzzy set belogs
- pyFTS.common.FuzzySet.fuzzyfy(data, partitioner, **kwargs)[source]¶
A general method for fuzzyfication.
- Parameters
data – input value to be fuzzyfied
partitioner – a trained pyFTS.partitioners.Partitioner object
kwargs – dict, optional arguments
alpha_cut – the minimal membership value to be considered on fuzzyfication (only for mode=’sets’)
method – the fuzzyfication method (fuzzy: all fuzzy memberships, maximum: only the maximum membership)
mode – the fuzzyfication mode (sets: return the fuzzy sets names, vector: return a vector with the membership
values for all fuzzy sets, both: return a list with tuples (fuzzy set, membership value) )
:returns a list with the fuzzyfied values, depending on the mode
- pyFTS.common.FuzzySet.fuzzyfy_instance(inst, fuzzy_sets: dict, ordered_sets: Optional[list] = None)[source]¶
Calculate the membership values for a data point given fuzzy sets
- Parameters
inst – data point
fuzzy_sets – a dictionary where the key is the fuzzy set name and the value is the fuzzy set object.
ordered_sets – a list with the fuzzy sets names ordered by their centroids.
- Returns
array of membership values
- pyFTS.common.FuzzySet.fuzzyfy_instances(data: list, fuzzy_sets: dict, ordered_sets=None) list [source]¶
Calculate the membership values for a data point given fuzzy sets
- Parameters
inst – data point
fuzzy_sets – a dictionary where the key is the fuzzy set name and the value is the fuzzy set object.
ordered_sets – a list with the fuzzy sets names ordered by their centroids.
- Returns
array of membership values
- pyFTS.common.FuzzySet.fuzzyfy_series(data, fuzzy_sets, method='maximum', alpha_cut=0.0, ordered_sets=None)[source]¶
- pyFTS.common.FuzzySet.get_fuzzysets(inst, fuzzy_sets: dict, ordered_sets: Optional[list] = None, alpha_cut: float = 0.0) list [source]¶
Return the fuzzy sets which membership value for a inst is greater than the alpha_cut
- Parameters
inst – data point
fuzzy_sets – a dictionary where the key is the fuzzy set name and the value is the fuzzy set object.
ordered_sets – a list with the fuzzy sets names ordered by their centroids.
alpha_cut – Minimal membership to be considered on fuzzyfication process
- Returns
array of membership values
- pyFTS.common.FuzzySet.get_maximum_membership_fuzzyset(inst, fuzzy_sets, ordered_sets=None) pyFTS.common.FuzzySet.FuzzySet [source]¶
Fuzzify a data point, returning the fuzzy set with maximum membership value
- Parameters
inst – data point
fuzzy_sets – a dictionary where the key is the fuzzy set name and the value is the fuzzy set object.
ordered_sets – a list with the fuzzy sets names ordered by their centroids.
- Returns
fuzzy set with maximum membership
pyFTS.common.Membership module¶
Membership functions for Fuzzy Sets
- pyFTS.common.Membership.bellmf(x, parameters)[source]¶
Bell shaped membership function
- Parameters
x –
parameters –
- Returns
- pyFTS.common.Membership.gaussmf(x, parameters)[source]¶
Gaussian fuzzy membership function
- Parameters
x – data point
parameters – a list with 2 real values (mean and variance)
- Returns
the membership value of x given the parameters
- pyFTS.common.Membership.sigmf(x, parameters)[source]¶
Sigmoid / Logistic membership function
- Parameters
x –
parameters – an list with 2 real values (smoothness and midpoint)
:return
- pyFTS.common.Membership.singleton(x, parameters)[source]¶
Singleton membership function, a single value fuzzy function
- Parameters
x –
parameters – a list with one real value
:returns
pyFTS.common.SortedCollection module¶
- class pyFTS.common.SortedCollection.SortedCollection(iterable=(), key=None)[source]¶
Bases:
object
Sequence sorted by a key function.
SortedCollection() is much easier to work with than using bisect() directly. It supports key functions like those use in sorted(), min(), and max(). The result of the key function call is saved so that keys can be searched efficiently.
Instead of returning an insertion-point which can be hard to interpret, the five find-methods return a specific item in the sequence. They can scan for exact matches, the last item less-than-or-equal to a key, or the first item greater-than-or-equal to a key.
Once found, an item’s ordinal position can be located with the index() method. New items can be added with the insert() and insert_right() methods. Old items can be deleted with the remove() method.
The usual sequence methods are provided to support indexing, slicing, length lookup, clearing, copying, forward and reverse iteration, contains checking, item counts, item removal, and a nice looking repr.
Finding and indexing are O(log n) operations while iteration and insertion are O(n). The initial sort is O(n log n).
The key function is stored in the ‘key’ attibute for easy introspection or so that you can assign a new key function (triggering an automatic re-sort).
In short, the class was designed to handle all of the common use cases for bisect but with a simpler API and support for key functions.
>>> from pprint import pprint >>> from operator import itemgetter
>>> s = SortedCollection(key=itemgetter(2)) >>> for record in [ ... ('roger', 'young', 30), ... ('angela', 'jones', 28), ... ('bill', 'smith', 22), ... ('david', 'thomas', 32)]: ... s.insert(record)
>>> pprint(list(s)) # show records sorted by age [('bill', 'smith', 22), ('angela', 'jones', 28), ('roger', 'young', 30), ('david', 'thomas', 32)]
>>> s.find_le(29) # find oldest person aged 29 or younger ('angela', 'jones', 28) >>> s.find_lt(28) # find oldest person under 28 ('bill', 'smith', 22) >>> s.find_gt(28) # find youngest person over 28 ('roger', 'young', 30)
>>> r = s.find_ge(32) # find youngest person aged 32 or older >>> s.index(r) # get the index of their record 3 >>> s[3] # fetch the record at that index ('david', 'thomas', 32)
>>> s.key = itemgetter(0) # now sort by first name >>> pprint(list(s)) [('angela', 'jones', 28), ('bill', 'smith', 22), ('david', 'thomas', 32), ('roger', 'young', 30)]
- property key¶
key function
pyFTS.common.Util module¶
pyFTS.common.flrg module¶
- class pyFTS.common.flrg.FLRG(order, **kwargs)[source]¶
Bases:
object
Fuzzy Logical Relationship Group
Group a set of FLR’s with the same LHS. Represents the temporal patterns for time t+1 (the RHS fuzzy sets) when the LHS pattern is identified on time t.
- LHS¶
Left Hand Side of the rule
- RHS¶
Right Hand Side of the rule
- get_lower(sets)[source]¶
Returns the lower bound value for the RHS fuzzy sets
- Parameters
sets – fuzzy sets
- Returns
lower bound value
- get_membership(data, sets)[source]¶
Returns the membership value of the FLRG for the input data
- Parameters
data – input data
sets – fuzzy sets
- Returns
the membership value
- get_midpoint(sets)[source]¶
Returns the midpoint value for the RHS fuzzy sets
- Parameters
sets – fuzzy sets
- Returns
the midpoint value
- get_upper(sets)[source]¶
Returns the upper bound value for the RHS fuzzy sets
- Parameters
sets – fuzzy sets
- Returns
upper bound value
- order¶
Number of lags on LHS
pyFTS.common.fts module¶
pyFTS.common.tree module¶
Tree data structure