pyFTS.models.incremental package

Module contents

FTS methods with incremental/online learning

Submodules

pyFTS.models.incremental.TimeVariant module

Meta model that wraps another FTS method and continously retrain it using a data window with the most recent data

class pyFTS.models.incremental.TimeVariant.Retrainer(**kwargs)[source]

Bases: pyFTS.common.fts.FTS

Meta model for incremental/online learning that retrain its internal model after data windows controlled by the parameter ‘batch_size’, using as the training data a window of recent lags, whose size is controlled by the parameter ‘window_length’.

auto_update

If true the model is updated at each time and not recreated

batch_size

The batch interval between each retraining

forecast(data, **kwargs)[source]

Point forecast one step ahead

Parameters
  • data – time series data with the minimal length equal to the max_lag of the model

  • kwargs – model specific parameters

Returns

a list with the forecasted values

forecast_ahead(data, steps, **kwargs)[source]

Point forecast from 1 to H steps ahead, where H is given by the steps parameter

Parameters
  • data – time series data with the minimal length equal to the max_lag of the model

  • steps – the number of steps ahead to forecast (default: 1)

  • start_at – in the multi step forecasting, the index of the data where to start forecasting (default: 0)

Returns

a list with the forecasted values

fts_method

The FTS method to be called when a new model is build

fts_params

The FTS method specific parameters

model

The most recent trained model

offset()[source]

Returns the number of lags to skip in the input test data in order to synchronize it with the forecasted values given by the predict function. This is necessary due to the order of the model, among other parameters.

Returns

An integer with the number of lags to skip

partitioner

The most recent trained partitioner

partitioner_method

The partitioner method to be called when a new model is build

partitioner_params

The partitioner method parameters

train(data, **kwargs)[source]

Method specific parameter fitting

Parameters
  • data – training time series data

  • kwargs – Method specific parameters

window_length

The memory window length

pyFTS.models.incremental.IncrementalEnsemble module

Time Variant/Incremental Ensemble of FTS methods

class pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS(**kwargs)[source]

Bases: pyFTS.models.ensemble.ensemble.EnsembleFTS

Time Variant/Incremental Ensemble of FTS methods

batch_size

The batch interval between each retraining

forecast(data, **kwargs)[source]

Point forecast one step ahead

Parameters
  • data – time series data with the minimal length equal to the max_lag of the model

  • kwargs – model specific parameters

Returns

a list with the forecasted values

forecast_ahead(data, steps, **kwargs)[source]

Point forecast from 1 to H steps ahead, where H is given by the steps parameter

Parameters
  • data – time series data with the minimal length equal to the max_lag of the model

  • steps – the number of steps ahead to forecast (default: 1)

  • start_at – in the multi step forecasting, the index of the data where to start forecasting (default: 0)

Returns

a list with the forecasted values

fts_method

The FTS method to be called when a new model is build

fts_params

The FTS method specific parameters

num_models

The number of models to hold in the ensemble

offset()[source]

Returns the number of lags to skip in the input test data in order to synchronize it with the forecasted values given by the predict function. This is necessary due to the order of the model, among other parameters.

Returns

An integer with the number of lags to skip

partitioner_method

The partitioner method to be called when a new model is build

partitioner_params

The partitioner method parameters

train(data, **kwargs)[source]

Method specific parameter fitting

Parameters
  • data – training time series data

  • kwargs – Method specific parameters

window_length

The memory window length