<!doctype html> <html> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0"><script type="text/javascript"> var _gaq = _gaq || []; _gaq.push(['_setAccount', 'UA-55120145-3']); _gaq.push(['_trackPageview']); (function() { var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true; ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s); })(); </script> <title>pyFTS.models.ensemble package — pyFTS 1.6 documentation</title> <link rel="stylesheet" href="_static/bizstyle.css" type="text/css" /> <link rel="stylesheet" href="_static/pygments.css" type="text/css" /> <script id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script> <script src="_static/jquery.js"></script> <script src="_static/underscore.js"></script> <script src="_static/doctools.js"></script> <script src="_static/language_data.js"></script> <script src="_static/bizstyle.js"></script> <link rel="index" title="Index" href="genindex.html" /> <link rel="search" title="Search" href="search.html" /> <link rel="next" title="pyFTS.models.incremental package" href="pyFTS.models.incremental.html" /> <link rel="prev" title="pyFTS.models package" href="pyFTS.models.html" /> <meta name="viewport" content="width=device-width,initial-scale=1.0"> <!--[if lt IE 9]> <script src="_static/css3-mediaqueries.js"></script> <![endif]--> </head><body> <div class="related" role="navigation" aria-label="related navigation"> <h3>Navigation</h3> <ul> <li class="right" style="margin-right: 10px"> <a href="genindex.html" title="General Index" accesskey="I">index</a></li> <li class="right" > <a href="py-modindex.html" title="Python Module Index" >modules</a> |</li> <li class="right" > <a href="pyFTS.models.incremental.html" title="pyFTS.models.incremental package" accesskey="N">next</a> |</li> <li class="right" > <a href="pyFTS.models.html" title="pyFTS.models package" accesskey="P">previous</a> |</li> <li class="nav-item nav-item-0"><a href="index.html">pyFTS 1.6 documentation</a> »</li> <li class="nav-item nav-item-1"><a href="modules.html" >pyFTS</a> »</li> <li class="nav-item nav-item-2"><a href="pyFTS.html" >pyFTS package</a> »</li> <li class="nav-item nav-item-3"><a href="pyFTS.models.html" accesskey="U">pyFTS.models package</a> »</li> <li class="nav-item nav-item-this"><a href="">pyFTS.models.ensemble package</a></li> </ul> </div> <div class="document"> <div class="documentwrapper"> <div class="bodywrapper"> <div class="body" role="main"> <div class="section" id="pyfts-models-ensemble-package"> <h1>pyFTS.models.ensemble package<a class="headerlink" href="#pyfts-models-ensemble-package" title="Permalink to this headline">¶</a></h1> <div class="section" id="submodules"> <h2>Submodules<a class="headerlink" href="#submodules" title="Permalink to this headline">¶</a></h2> </div> <div class="section" id="module-pyFTS.models.ensemble.ensemble"> <span id="pyfts-models-ensemble-ensemble-module"></span><h2>pyFTS.models.ensemble.ensemble module<a class="headerlink" href="#module-pyFTS.models.ensemble.ensemble" title="Permalink to this headline">¶</a></h2> <p>EnsembleFTS wraps several FTS methods to ensemble their forecasts, providing point, interval and probabilistic forecasting.</p> <p>Silva, P. C. L et al. Probabilistic Forecasting with Seasonal Ensemble Fuzzy Time-Series XIII Brazilian Congress on Computational Intelligence, 2017. Rio de Janeiro, Brazil.</p> <dl class="py class"> <dt id="pyFTS.models.ensemble.ensemble.AllMethodEnsembleFTS"> <em class="property">class </em><code class="sig-prename descclassname">pyFTS.models.ensemble.ensemble.</code><code class="sig-name descname">AllMethodEnsembleFTS</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/ensemble.html#AllMethodEnsembleFTS"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.AllMethodEnsembleFTS" title="Permalink to this definition">¶</a></dt> <dd><p>Bases: <a class="reference internal" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS" title="pyFTS.models.ensemble.ensemble.EnsembleFTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.ensemble.ensemble.EnsembleFTS</span></code></a></p> <p>Creates an EnsembleFTS with all point forecast methods, sharing the same partitioner</p> <dl class="py method"> <dt id="pyFTS.models.ensemble.ensemble.AllMethodEnsembleFTS.set_transformations"> <code class="sig-name descname">set_transformations</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">model</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/ensemble.html#AllMethodEnsembleFTS.set_transformations"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.AllMethodEnsembleFTS.set_transformations" title="Permalink to this definition">¶</a></dt> <dd></dd></dl> <dl class="py method"> <dt id="pyFTS.models.ensemble.ensemble.AllMethodEnsembleFTS.train"> <code class="sig-name descname">train</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/ensemble.html#AllMethodEnsembleFTS.train"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.AllMethodEnsembleFTS.train" title="Permalink to this definition">¶</a></dt> <dd><p>Method specific parameter fitting</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> <dd class="field-odd"><ul class="simple"> <li><p><strong>data</strong> – training time series data</p></li> <li><p><strong>kwargs</strong> – Method specific parameters</p></li> </ul> </dd> </dl> </dd></dl> </dd></dl> <dl class="py class"> <dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS"> <em class="property">class </em><code class="sig-prename descclassname">pyFTS.models.ensemble.ensemble.</code><code class="sig-name descname">EnsembleFTS</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/ensemble.html#EnsembleFTS"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS" title="Permalink to this definition">¶</a></dt> <dd><p>Bases: <a class="reference internal" href="pyFTS.common.html#pyFTS.common.fts.FTS" title="pyFTS.common.fts.FTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.common.fts.FTS</span></code></a></p> <p>Ensemble FTS</p> <dl class="py attribute"> <dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS.alpha"> <code class="sig-name descname">alpha</code><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS.alpha" title="Permalink to this definition">¶</a></dt> <dd><p>The quantiles</p> </dd></dl> <dl class="py method"> <dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS.append_model"> <code class="sig-name descname">append_model</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">model</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/ensemble.html#EnsembleFTS.append_model"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS.append_model" title="Permalink to this definition">¶</a></dt> <dd><p>Append a new trained model to the ensemble</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> <dd class="field-odd"><p><strong>model</strong> – FTS model</p> </dd> </dl> </dd></dl> <dl class="py method"> <dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast"> <code class="sig-name descname">forecast</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/ensemble.html#EnsembleFTS.forecast"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast" title="Permalink to this definition">¶</a></dt> <dd><p>Point forecast one step ahead</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> <dd class="field-odd"><ul class="simple"> <li><p><strong>data</strong> – time series data with the minimal length equal to the max_lag of the model</p></li> <li><p><strong>kwargs</strong> – model specific parameters</p></li> </ul> </dd> <dt class="field-even">Returns</dt> <dd class="field-even"><p>a list with the forecasted values</p> </dd> </dl> </dd></dl> <dl class="py method"> <dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_ahead_distribution"> <code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/ensemble.html#EnsembleFTS.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_ahead_distribution" title="Permalink to this definition">¶</a></dt> <dd><p>Probabilistic forecast from 1 to H steps ahead, where H is given by the steps parameter</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> <dd class="field-odd"><ul class="simple"> <li><p><strong>data</strong> – time series data with the minimal length equal to the max_lag of the model</p></li> <li><p><strong>steps</strong> – the number of steps ahead to forecast</p></li> <li><p><strong>start_at</strong> – in the multi step forecasting, the index of the data where to start forecasting (default: 0)</p></li> </ul> </dd> <dt class="field-even">Returns</dt> <dd class="field-even"><p>a list with the forecasted Probability Distributions</p> </dd> </dl> </dd></dl> <dl class="py method"> <dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_ahead_interval"> <code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/ensemble.html#EnsembleFTS.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_ahead_interval" title="Permalink to this definition">¶</a></dt> <dd><p>Interval forecast from 1 to H steps ahead, where H is given by the steps parameter</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> <dd class="field-odd"><ul class="simple"> <li><p><strong>data</strong> – time series data with the minimal length equal to the max_lag of the model</p></li> <li><p><strong>steps</strong> – the number of steps ahead to forecast</p></li> <li><p><strong>start_at</strong> – in the multi step forecasting, the index of the data where to start forecasting (default: 0)</p></li> </ul> </dd> <dt class="field-even">Returns</dt> <dd class="field-even"><p>a list with the forecasted intervals</p> </dd> </dl> </dd></dl> <dl class="py method"> <dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_distribution"> <code class="sig-name descname">forecast_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/ensemble.html#EnsembleFTS.forecast_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_distribution" title="Permalink to this definition">¶</a></dt> <dd><p>Probabilistic forecast one step ahead</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> <dd class="field-odd"><ul class="simple"> <li><p><strong>data</strong> – time series data with the minimal length equal to the max_lag of the model</p></li> <li><p><strong>kwargs</strong> – model specific parameters</p></li> </ul> </dd> <dt class="field-even">Returns</dt> <dd class="field-even"><p>a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions</p> </dd> </dl> </dd></dl> <dl class="py method"> <dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_interval"> <code class="sig-name descname">forecast_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/ensemble.html#EnsembleFTS.forecast_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_interval" title="Permalink to this definition">¶</a></dt> <dd><p>Interval forecast one step ahead</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> <dd class="field-odd"><ul class="simple"> <li><p><strong>data</strong> – time series data with the minimal length equal to the max_lag of the model</p></li> <li><p><strong>kwargs</strong> – model specific parameters</p></li> </ul> </dd> <dt class="field-even">Returns</dt> <dd class="field-even"><p>a list with the prediction intervals</p> </dd> </dl> </dd></dl> <dl class="py method"> <dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS.get_UoD"> <code class="sig-name descname">get_UoD</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/ensemble.html#EnsembleFTS.get_UoD"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS.get_UoD" title="Permalink to this definition">¶</a></dt> <dd><p>Returns the interval of the known bounds of the universe of discourse (UoD), i. e., the known minimum and maximum values of the time series.</p> <dl class="field-list simple"> <dt class="field-odd">Returns</dt> <dd class="field-odd"><p>A set with the lower and the upper bounds of the UoD</p> </dd> </dl> </dd></dl> <dl class="py method"> <dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS.get_distribution_interquantile"> <code class="sig-name descname">get_distribution_interquantile</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">forecasts</span></em>, <em class="sig-param"><span class="n">alpha</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/ensemble.html#EnsembleFTS.get_distribution_interquantile"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS.get_distribution_interquantile" title="Permalink to this definition">¶</a></dt> <dd></dd></dl> <dl class="py method"> <dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS.get_interval"> <code class="sig-name descname">get_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">forecasts</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/ensemble.html#EnsembleFTS.get_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS.get_interval" title="Permalink to this definition">¶</a></dt> <dd></dd></dl> <dl class="py method"> <dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS.get_models_forecasts"> <code class="sig-name descname">get_models_forecasts</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/ensemble.html#EnsembleFTS.get_models_forecasts"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS.get_models_forecasts" title="Permalink to this definition">¶</a></dt> <dd></dd></dl> <dl class="py method"> <dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS.get_point"> <code class="sig-name descname">get_point</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">forecasts</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/ensemble.html#EnsembleFTS.get_point"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS.get_point" title="Permalink to this definition">¶</a></dt> <dd></dd></dl> <dl class="py attribute"> <dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS.interval_method"> <code class="sig-name descname">interval_method</code><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS.interval_method" title="Permalink to this definition">¶</a></dt> <dd><p>The method used to mix the several model’s forecasts into a interval forecast. Options: quantile, extremum, normal</p> </dd></dl> <dl class="py attribute"> <dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS.models"> <code class="sig-name descname">models</code><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS.models" title="Permalink to this definition">¶</a></dt> <dd><p>A list of FTS models, the ensemble components</p> </dd></dl> <dl class="py attribute"> <dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS.parameters"> <code class="sig-name descname">parameters</code><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS.parameters" title="Permalink to this definition">¶</a></dt> <dd><p>A list with the parameters for each component model</p> </dd></dl> <dl class="py attribute"> <dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS.point_method"> <code class="sig-name descname">point_method</code><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS.point_method" title="Permalink to this definition">¶</a></dt> <dd><p>The method used to mix the several model’s forecasts into a unique point forecast. Options: mean, median, quantile, exponential</p> </dd></dl> <dl class="py method"> <dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS.train"> <code class="sig-name descname">train</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/ensemble.html#EnsembleFTS.train"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS.train" title="Permalink to this definition">¶</a></dt> <dd><p>Method specific parameter fitting</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> <dd class="field-odd"><ul class="simple"> <li><p><strong>data</strong> – training time series data</p></li> <li><p><strong>kwargs</strong> – Method specific parameters</p></li> </ul> </dd> </dl> </dd></dl> </dd></dl> <dl class="py class"> <dt id="pyFTS.models.ensemble.ensemble.SimpleEnsembleFTS"> <em class="property">class </em><code class="sig-prename descclassname">pyFTS.models.ensemble.ensemble.</code><code class="sig-name descname">SimpleEnsembleFTS</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/ensemble.html#SimpleEnsembleFTS"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.SimpleEnsembleFTS" title="Permalink to this definition">¶</a></dt> <dd><p>Bases: <a class="reference internal" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS" title="pyFTS.models.ensemble.ensemble.EnsembleFTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.ensemble.ensemble.EnsembleFTS</span></code></a></p> <p>An homogeneous FTS method ensemble with variations on partitionings and orders.</p> <dl class="py attribute"> <dt id="pyFTS.models.ensemble.ensemble.SimpleEnsembleFTS.method"> <code class="sig-name descname">method</code><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.SimpleEnsembleFTS.method" title="Permalink to this definition">¶</a></dt> <dd><p>FTS method class that will be used on internal models</p> </dd></dl> <dl class="py attribute"> <dt id="pyFTS.models.ensemble.ensemble.SimpleEnsembleFTS.orders"> <code class="sig-name descname">orders</code><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.SimpleEnsembleFTS.orders" title="Permalink to this definition">¶</a></dt> <dd><p>Possible variations of order on internal models</p> </dd></dl> <dl class="py attribute"> <dt id="pyFTS.models.ensemble.ensemble.SimpleEnsembleFTS.partitioner_method"> <code class="sig-name descname">partitioner_method</code><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.SimpleEnsembleFTS.partitioner_method" title="Permalink to this definition">¶</a></dt> <dd><p>UoD partitioner class that will be used on internal methods</p> </dd></dl> <dl class="py attribute"> <dt id="pyFTS.models.ensemble.ensemble.SimpleEnsembleFTS.partitions"> <code class="sig-name descname">partitions</code><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.SimpleEnsembleFTS.partitions" title="Permalink to this definition">¶</a></dt> <dd><p>Possible variations of number of partitions on internal models</p> </dd></dl> <dl class="py method"> <dt id="pyFTS.models.ensemble.ensemble.SimpleEnsembleFTS.train"> <code class="sig-name descname">train</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/ensemble.html#SimpleEnsembleFTS.train"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.SimpleEnsembleFTS.train" title="Permalink to this definition">¶</a></dt> <dd><p>Method specific parameter fitting</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> <dd class="field-odd"><ul class="simple"> <li><p><strong>data</strong> – training time series data</p></li> <li><p><strong>kwargs</strong> – Method specific parameters</p></li> </ul> </dd> </dl> </dd></dl> </dd></dl> <dl class="py function"> <dt id="pyFTS.models.ensemble.ensemble.sampler"> <code class="sig-prename descclassname">pyFTS.models.ensemble.ensemble.</code><code class="sig-name descname">sampler</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">quantiles</span></em>, <em class="sig-param"><span class="n">bounds</span><span class="o">=</span><span class="default_value">False</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/ensemble.html#sampler"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.sampler" title="Permalink to this definition">¶</a></dt> <dd></dd></dl> </div> <div class="section" id="module-pyFTS.models.ensemble.multiseasonal"> <span id="pyfts-models-ensemble-multiseasonal-module"></span><h2>pyFTS.models.ensemble.multiseasonal module<a class="headerlink" href="#module-pyFTS.models.ensemble.multiseasonal" title="Permalink to this headline">¶</a></h2> <p>Silva, P. C. L et al. Probabilistic Forecasting with Seasonal Ensemble Fuzzy Time-Series XIII Brazilian Congress on Computational Intelligence, 2017. Rio de Janeiro, Brazil.</p> <dl class="py class"> <dt id="pyFTS.models.ensemble.multiseasonal.SeasonalEnsembleFTS"> <em class="property">class </em><code class="sig-prename descclassname">pyFTS.models.ensemble.multiseasonal.</code><code class="sig-name descname">SeasonalEnsembleFTS</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">name</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/multiseasonal.html#SeasonalEnsembleFTS"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.multiseasonal.SeasonalEnsembleFTS" title="Permalink to this definition">¶</a></dt> <dd><p>Bases: <a class="reference internal" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS" title="pyFTS.models.ensemble.ensemble.EnsembleFTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.ensemble.ensemble.EnsembleFTS</span></code></a></p> <dl class="py method"> <dt id="pyFTS.models.ensemble.multiseasonal.SeasonalEnsembleFTS.forecast_distribution"> <code class="sig-name descname">forecast_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/multiseasonal.html#SeasonalEnsembleFTS.forecast_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.multiseasonal.SeasonalEnsembleFTS.forecast_distribution" title="Permalink to this definition">¶</a></dt> <dd><p>Probabilistic forecast one step ahead</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> <dd class="field-odd"><ul class="simple"> <li><p><strong>data</strong> – time series data with the minimal length equal to the max_lag of the model</p></li> <li><p><strong>kwargs</strong> – model specific parameters</p></li> </ul> </dd> <dt class="field-even">Returns</dt> <dd class="field-even"><p>a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions</p> </dd> </dl> </dd></dl> <dl class="py method"> <dt id="pyFTS.models.ensemble.multiseasonal.SeasonalEnsembleFTS.train"> <code class="sig-name descname">train</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/multiseasonal.html#SeasonalEnsembleFTS.train"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.multiseasonal.SeasonalEnsembleFTS.train" title="Permalink to this definition">¶</a></dt> <dd><p>Method specific parameter fitting</p> <dl class="field-list simple"> <dt class="field-odd">Parameters</dt> <dd class="field-odd"><ul class="simple"> <li><p><strong>data</strong> – training time series data</p></li> <li><p><strong>kwargs</strong> – Method specific parameters</p></li> </ul> </dd> </dl> </dd></dl> <dl class="py method"> <dt id="pyFTS.models.ensemble.multiseasonal.SeasonalEnsembleFTS.update_uod"> <code class="sig-name descname">update_uod</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/multiseasonal.html#SeasonalEnsembleFTS.update_uod"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.multiseasonal.SeasonalEnsembleFTS.update_uod" title="Permalink to this definition">¶</a></dt> <dd></dd></dl> </dd></dl> <dl class="py function"> <dt id="pyFTS.models.ensemble.multiseasonal.train_individual_model"> <code class="sig-prename descclassname">pyFTS.models.ensemble.multiseasonal.</code><code class="sig-name descname">train_individual_model</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">partitioner</span></em>, <em class="sig-param"><span class="n">train_data</span></em>, <em class="sig-param"><span class="n">indexer</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ensemble/multiseasonal.html#train_individual_model"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ensemble.multiseasonal.train_individual_model" title="Permalink to this definition">¶</a></dt> <dd></dd></dl> </div> <div class="section" id="module-pyFTS.models.ensemble"> <span id="module-contents"></span><h2>Module contents<a class="headerlink" href="#module-pyFTS.models.ensemble" title="Permalink to this headline">¶</a></h2> <p>Meta FTS that aggregates other FTS methods</p> </div> </div> <div class="clearer"></div> </div> </div> </div> <div class="sphinxsidebar" role="navigation" aria-label="main navigation"> <div class="sphinxsidebarwrapper"> <h3><a href="index.html">Table of Contents</a></h3> <ul> <li><a class="reference internal" href="#">pyFTS.models.ensemble package</a><ul> <li><a class="reference internal" href="#submodules">Submodules</a></li> <li><a class="reference internal" href="#module-pyFTS.models.ensemble.ensemble">pyFTS.models.ensemble.ensemble module</a></li> <li><a class="reference internal" href="#module-pyFTS.models.ensemble.multiseasonal">pyFTS.models.ensemble.multiseasonal module</a></li> <li><a class="reference internal" href="#module-pyFTS.models.ensemble">Module contents</a></li> </ul> </li> </ul> <h4>Previous topic</h4> <p class="topless"><a href="pyFTS.models.html" title="previous chapter">pyFTS.models package</a></p> <h4>Next topic</h4> <p class="topless"><a href="pyFTS.models.incremental.html" title="next chapter">pyFTS.models.incremental package</a></p> <div role="note" aria-label="source link"> <h3>This Page</h3> <ul class="this-page-menu"> <li><a href="_sources/pyFTS.models.ensemble.rst.txt" rel="nofollow">Show Source</a></li> </ul> </div> <div id="searchbox" style="display: none" role="search"> <h3 id="searchlabel">Quick search</h3> <div class="searchformwrapper"> <form class="search" action="search.html" method="get"> <input type="text" name="q" aria-labelledby="searchlabel" /> <input type="submit" value="Go" /> </form> </div> </div> <script>$('#searchbox').show(0);</script> </div> </div> <div class="clearer"></div> </div> <div class="related" role="navigation" aria-label="related navigation"> <h3>Navigation</h3> <ul> <li class="right" style="margin-right: 10px"> <a href="genindex.html" title="General Index" >index</a></li> <li class="right" > <a href="py-modindex.html" title="Python Module Index" >modules</a> |</li> <li class="right" > <a href="pyFTS.models.incremental.html" title="pyFTS.models.incremental package" >next</a> |</li> <li class="right" > <a href="pyFTS.models.html" title="pyFTS.models package" >previous</a> |</li> <li class="nav-item nav-item-0"><a href="index.html">pyFTS 1.6 documentation</a> »</li> <li class="nav-item nav-item-1"><a href="modules.html" >pyFTS</a> »</li> <li class="nav-item nav-item-2"><a href="pyFTS.html" >pyFTS package</a> »</li> <li class="nav-item nav-item-3"><a href="pyFTS.models.html" >pyFTS.models package</a> »</li> <li class="nav-item nav-item-this"><a href="">pyFTS.models.ensemble package</a></li> </ul> </div> <div class="footer" role="contentinfo"> © Copyright 2018, Machine Intelligence and Data Science Laboratory - UFMG - Brazil. Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 3.1.2. </div> </body> </html>