pyFTS.models.incremental package¶
Module contents¶
FTS methods with incremental/online learning
Submodules¶
pyFTS.models.incremental.TimeVariant module¶
Meta model that wraps another FTS method and continously retrain it using a data window with the most recent data
-
class
pyFTS.models.incremental.TimeVariant.
Retrainer
(**kwargs)¶ Bases:
pyFTS.common.fts.FTS
Meta model for incremental/online learning
-
forecast
(data, **kwargs)¶ Point forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the forecasted values
-
train
(data, **kwargs)¶ Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-
pyFTS.models.incremental.IncrementalEnsemble module¶
Time Variant/Incremental Ensemble of FTS methods
-
class
pyFTS.models.incremental.IncrementalEnsemble.
IncrementalEnsembleFTS
(**kwargs)¶ Bases:
pyFTS.models.ensemble.ensemble.EnsembleFTS
Time Variant/Incremental Ensemble of FTS methods
-
forecast
(data, **kwargs)¶ Point forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the forecasted values
-
train
(data, **kwargs)¶ Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-