pyFTS.models package¶
Module contents¶
Fuzzy Time Series methods
Subpackages¶
- pyFTS.models.ensemble package
- pyFTS.models.incremental package
- pyFTS.models.multivariate package
- Module contents
- Submodules
- pyFTS.models.multivariate.FLR module
- pyFTS.models.multivariate.common module
- pyFTS.models.multivariate.variable module
- pyFTS.models.multivariate.flrg module
- pyFTS.models.multivariate.partitioner module
- pyFTS.models.multivariate.grid module
- pyFTS.models.multivariate.mvfts module
- pyFTS.models.multivariate.wmvfts module
- pyFTS.models.multivariate.cmvfts module
- pyFTS.models.multivariate.granular module
- pyFTS.models.nonstationary package
- Submodules
- pyFTS.models.nonstationary.common module
- pyFTS.models.nonstationary.cvfts module
- pyFTS.models.nonstationary.flrg module
- pyFTS.models.nonstationary.honsfts module
- pyFTS.models.nonstationary.nsfts module
- pyFTS.models.nonstationary.partitioners module
- pyFTS.models.nonstationary.perturbation module
- pyFTS.models.nonstationary.util module
- Module contents
- pyFTS.models.seasonal package
Submodules¶
pyFTS.models.song module¶
First Order Traditional Fuzzy Time Series method by Song & Chissom (1993)
- Song and B. S. Chissom, “Fuzzy time series and its models,” Fuzzy Sets Syst., vol. 54, no. 3, pp. 269–277, 1993.
-
class
pyFTS.models.song.
ConventionalFTS
(**kwargs)¶ Bases:
pyFTS.common.fts.FTS
Traditional Fuzzy Time Series
-
flr_membership_matrix
(flr)¶
-
forecast
(ndata, **kwargs)¶ Point forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the forecasted values
-
operation_matrix
(flrs)¶
-
train
(data, **kwargs)¶ Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-
pyFTS.models.chen module¶
First Order Conventional Fuzzy Time Series by Chen (1996)
S.-M. Chen, “Forecasting enrollments based on fuzzy time series,” Fuzzy Sets Syst., vol. 81, no. 3, pp. 311–319, 1996.
-
class
pyFTS.models.chen.
ConventionalFLRG
(LHS, **kwargs)¶ Bases:
pyFTS.common.flrg.FLRG
First Order Conventional Fuzzy Logical Relationship Group
-
append_rhs
(c, **kwargs)¶
-
get_key
(sets)¶ Returns a unique identifier for this FLRG
-
-
class
pyFTS.models.chen.
ConventionalFTS
(**kwargs)¶ Bases:
pyFTS.common.fts.FTS
Conventional Fuzzy Time Series
-
forecast
(ndata, **kwargs)¶ Point forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the forecasted values
-
generate_flrg
(flrs)¶
-
train
(data, **kwargs)¶ Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-
pyFTS.models.yu module¶
First Order Weighted Fuzzy Time Series by Yu(2005)
H.-K. Yu, “Weighted fuzzy time series models for TAIEX forecasting,” Phys. A Stat. Mech. its Appl., vol. 349, no. 3, pp. 609–624, 2005.
-
class
pyFTS.models.yu.
WeightedFLRG
(LHS, **kwargs)¶ Bases:
pyFTS.common.flrg.FLRG
First Order Weighted Fuzzy Logical Relationship Group
-
append_rhs
(c, **kwargs)¶
-
weights
(sets)¶
-
-
class
pyFTS.models.yu.
WeightedFTS
(**kwargs)¶ Bases:
pyFTS.common.fts.FTS
First Order Weighted Fuzzy Time Series
-
forecast
(ndata, **kwargs)¶ Point forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the forecasted values
-
generate_FLRG
(flrs)¶
-
train
(ndata, **kwargs)¶ Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-
pyFTS.models.cheng module¶
Trend Weighted Fuzzy Time Series by Cheng, Chen and Wu (2009)
C.-H. Cheng, Y.-S. Chen, and Y.-L. Wu, “Forecasting innovation diffusion of products using trend-weighted fuzzy time-series model,” Expert Syst. Appl., vol. 36, no. 2, pp. 1826–1832, 2009.
-
class
pyFTS.models.cheng.
TrendWeightedFLRG
(LHS, **kwargs)¶ Bases:
pyFTS.models.yu.WeightedFLRG
First Order Trend Weighted Fuzzy Logical Relationship Group
-
weights
(sets)¶
-
-
class
pyFTS.models.cheng.
TrendWeightedFTS
(**kwargs)¶ Bases:
pyFTS.models.yu.WeightedFTS
First Order Trend Weighted Fuzzy Time Series
-
generate_FLRG
(flrs)¶
-
pyFTS.models.hofts module¶
High Order FTS
Severiano, S. A. Jr; Silva, P. C. L.; Sadaei, H. J.; Guimarães, F. G. Very Short-term Solar Forecasting using Fuzzy Time Series. 2017 IEEE International Conference on Fuzzy Systems. DOI10.1109/FUZZ-IEEE.2017.8015732
-
class
pyFTS.models.hofts.
HighOrderFLRG
(order, **kwargs)¶ Bases:
pyFTS.common.flrg.FLRG
Conventional High Order Fuzzy Logical Relationship Group
-
append_lhs
(c)¶
-
append_rhs
(c, **kwargs)¶
-
-
class
pyFTS.models.hofts.
HighOrderFTS
(**kwargs)¶ Bases:
pyFTS.common.fts.FTS
Conventional High Order Fuzzy Time Series
-
configure_lags
(**kwargs)¶
-
forecast
(ndata, **kwargs)¶ Point forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the forecasted values
-
generate_flrg
(data)¶
-
generate_flrg_fuzzyfied
(data)¶
-
generate_lhs_flrg
(sample, explain=False)¶
-
generate_lhs_flrg_fuzzyfied
(sample, explain=False)¶
-
train
(data, **kwargs)¶ Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-
-
class
pyFTS.models.hofts.
WeightedHighOrderFLRG
(order, **kwargs)¶ Bases:
pyFTS.common.flrg.FLRG
Weighted High Order Fuzzy Logical Relationship Group
-
append_lhs
(c)¶
-
append_rhs
(fset, **kwargs)¶
-
get_lower
(sets)¶ Returns the lower bound value for the RHS fuzzy sets
Parameters: sets – fuzzy sets Returns: lower bound value
-
get_midpoint
(sets)¶ Returns the midpoint value for the RHS fuzzy sets
Parameters: sets – fuzzy sets Returns: the midpoint value
-
get_upper
(sets)¶ Returns the upper bound value for the RHS fuzzy sets
Parameters: sets – fuzzy sets Returns: upper bound value
-
weights
()¶
-
-
class
pyFTS.models.hofts.
WeightedHighOrderFTS
(**kwargs)¶ Bases:
pyFTS.models.hofts.HighOrderFTS
Weighted High Order Fuzzy Time Series
-
generate_lhs_flrg_fuzzyfied
(sample, explain=False)¶
-
pyFTS.models.hwang module¶
High Order Fuzzy Time Series by Hwang, Chen and Lee (1998)
Jeng-Ren Hwang, Shyi-Ming Chen, and Chia-Hoang Lee, “Handling forecasting problems using fuzzy time series,” Fuzzy Sets Syst., no. 100, pp. 217–228, 1998.
-
class
pyFTS.models.hwang.
HighOrderFTS
(**kwargs)¶ Bases:
pyFTS.common.fts.FTS
-
configure_lags
(**kwargs)¶
-
forecast
(ndata, **kwargs)¶ Point forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the forecasted values
-
train
(data, **kwargs)¶ Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-
pyFTS.models.ifts module¶
High Order Interval Fuzzy Time Series
SILVA, Petrônio CL; SADAEI, Hossein Javedani; GUIMARÃES, Frederico Gadelha. Interval Forecasting with Fuzzy Time Series. In: Computational Intelligence (SSCI), 2016 IEEE Symposium Series on. IEEE, 2016. p. 1-8.
-
class
pyFTS.models.ifts.
IntervalFTS
(**kwargs)¶ Bases:
pyFTS.models.hofts.HighOrderFTS
High Order Interval Fuzzy Time Series
-
forecast_ahead_interval
(data, steps, **kwargs)¶ Interval forecast n steps ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- steps – the number of steps ahead to forecast
- start_at – in the multi step forecasting, the index of the data where to start forecasting (default: 0)
Returns: a list with the forecasted intervals
-
forecast_interval
(ndata, **kwargs)¶ Interval forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the prediction intervals
-
get_lower
(flrg)¶
-
get_sequence_membership
(data, fuzzySets)¶
-
get_upper
(flrg)¶
-
-
class
pyFTS.models.ifts.
WeightedIntervalFTS
(**kwargs)¶ Bases:
pyFTS.models.hofts.WeightedHighOrderFTS
Weighted High Order Interval Fuzzy Time Series
-
forecast_ahead_interval
(data, steps, **kwargs)¶ Interval forecast n steps ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- steps – the number of steps ahead to forecast
- start_at – in the multi step forecasting, the index of the data where to start forecasting (default: 0)
Returns: a list with the forecasted intervals
-
forecast_interval
(ndata, **kwargs)¶ Interval forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the prediction intervals
-
get_lower
(flrg)¶
-
get_sequence_membership
(data, fuzzySets)¶
-
get_upper
(flrg)¶
-
pyFTS.models.ismailefendi module¶
First Order Improved Weighted Fuzzy Time Series by Efendi, Ismail and Deris (2013)
R. Efendi, Z. Ismail, and M. M. Deris, “Improved weight Fuzzy Time Series as used in the exchange rates forecasting of US Dollar to Ringgit Malaysia,” Int. J. Comput. Intell. Appl., vol. 12, no. 1, p. 1350005, 2013.
-
class
pyFTS.models.ismailefendi.
ImprovedWeightedFLRG
(LHS, **kwargs)¶ Bases:
pyFTS.common.flrg.FLRG
First Order Improved Weighted Fuzzy Logical Relationship Group
-
append_rhs
(c, **kwargs)¶
-
weights
()¶
-
-
class
pyFTS.models.ismailefendi.
ImprovedWeightedFTS
(**kwargs)¶ Bases:
pyFTS.common.fts.FTS
First Order Improved Weighted Fuzzy Time Series
-
forecast
(ndata, **kwargs)¶ Point forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the forecasted values
-
generate_flrg
(flrs)¶
-
train
(ndata, **kwargs)¶ Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-
pyFTS.models.pwfts module¶
-
class
pyFTS.models.pwfts.
ProbabilisticWeightedFLRG
(order)¶ Bases:
pyFTS.models.hofts.HighOrderFLRG
High Order Probabilistic Weighted Fuzzy Logical Relationship Group
-
append_rhs
(c, **kwargs)¶
-
get_lower
(sets)¶ Returns the lower bound value for the RHS fuzzy sets
Parameters: sets – fuzzy sets Returns: lower bound value
-
get_membership
(data, sets)¶ Returns the membership value of the FLRG for the input data
Parameters: - data – input data
- sets – fuzzy sets
Returns: the membership value
-
get_midpoint
(sets)¶ Return the expectation of the PWFLRG, the weighted sum
-
get_upper
(sets)¶ Returns the upper bound value for the RHS fuzzy sets
Parameters: sets – fuzzy sets Returns: upper bound value
-
lhs_conditional_probability
(x, sets, norm, uod, nbins)¶
-
lhs_conditional_probability_fuzzyfied
(lhs_mv, sets, norm, uod, nbins)¶
-
partition_function
(sets, uod, nbins=100)¶
-
rhs_conditional_probability
(x, sets, uod, nbins)¶
-
rhs_unconditional_probability
(c)¶
-
-
class
pyFTS.models.pwfts.
ProbabilisticWeightedFTS
(**kwargs)¶ Bases:
pyFTS.models.ifts.IntervalFTS
High Order Probabilistic Weighted Fuzzy Time Series
-
add_new_PWFLGR
(flrg)¶
-
flrg_lhs_conditional_probability
(x, flrg)¶
-
flrg_lhs_conditional_probability_fuzzyfied
(x, flrg)¶
-
flrg_lhs_unconditional_probability
(flrg)¶
-
flrg_rhs_conditional_probability
(x, flrg)¶
-
forecast
(data, **kwargs)¶ Point forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the forecasted values
-
forecast_ahead
(data, steps, **kwargs)¶ Point forecast n steps ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- steps – the number of steps ahead to forecast (default: 1)
- start_at – in the multi step forecasting, the index of the data where to start forecasting (default: 0)
Returns: a list with the forecasted values
-
forecast_ahead_distribution
(ndata, steps, **kwargs)¶ Probabilistic forecast n steps ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- steps – the number of steps ahead to forecast
- start_at – in the multi step forecasting, the index of the data where to start forecasting (default: 0)
Returns: a list with the forecasted Probability Distributions
-
forecast_ahead_interval
(data, steps, **kwargs)¶ Interval forecast n steps ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- steps – the number of steps ahead to forecast
- start_at – in the multi step forecasting, the index of the data where to start forecasting (default: 0)
Returns: a list with the forecasted intervals
-
forecast_distribution
(ndata, **kwargs)¶ Probabilistic forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions
-
forecast_distribution_from_distribution
(previous_dist, smooth, uod, bins, **kwargs)¶
-
forecast_interval
(ndata, **kwargs)¶ Interval forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the prediction intervals
-
generate_flrg
(data)¶
-
generate_flrg2
(data)¶
-
generate_flrg_fuzzyfied
(data)¶
-
generate_lhs_flrg
(sample, explain=False)¶
-
generate_lhs_flrg_fuzzyfied
(sample, explain=False)¶
-
get_lower
(flrg)¶
-
get_midpoint
(flrg)¶
-
get_sets_from_both_fuzzyfication
(sample)¶
-
get_upper
(flrg)¶
-
interval_heuristic
(sample, **kwargs)¶
-
interval_quantile
(ndata, alpha, **kwargs)¶
-
point_expected_value
(sample, **kwargs)¶
-
point_heuristic
(sample, **kwargs)¶
-
pwflrg_lhs_memberhip_fuzzyfied
(flrg, sample)¶
-
train
(data, **kwargs)¶ Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-
update_model
(data)¶
-
-
pyFTS.models.pwfts.
visualize_distributions
(model, **kwargs)¶
pyFTS.models.sadaei module¶
First Order Exponentialy Weighted Fuzzy Time Series by Sadaei et al. (2013)
H. J. Sadaei, R. Enayatifar, A. H. Abdullah, and A. Gani, “Short-term load forecasting using a hybrid model with a refined exponentially weighted fuzzy time series and an improved harmony search,” Int. J. Electr. Power Energy Syst., vol. 62, no. from 2005, pp. 118–129, 2014.
-
class
pyFTS.models.sadaei.
ExponentialyWeightedFLRG
(LHS, **kwargs)¶ Bases:
pyFTS.common.flrg.FLRG
First Order Exponentialy Weighted Fuzzy Logical Relationship Group
-
append_rhs
(c, **kwargs)¶
-
weights
()¶
-
-
class
pyFTS.models.sadaei.
ExponentialyWeightedFTS
(**kwargs)¶ Bases:
pyFTS.common.fts.FTS
First Order Exponentialy Weighted Fuzzy Time Series
-
forecast
(ndata, **kwargs)¶ Point forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the forecasted values
-
generate_flrg
(flrs, c)¶
-
train
(data, **kwargs)¶ Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-