Refatoração de PIFTS para PFTS; acrescentando as packages data e models

This commit is contained in:
Petrônio Cândido de Lima e Silva 2017-01-05 16:42:45 -02:00
parent 2022c2a032
commit dba1919a18
3 changed files with 137 additions and 13 deletions

0
data/__init__.py Normal file
View File

0
models/__init__.py Normal file
View File

View File

@ -1,7 +1,7 @@
import numpy as np
import pandas as pd
import math
from pyFTS.common import FuzzySet,FLR
from pyFTS.common import FuzzySet, FLR
import hofts, ifts, tree
@ -30,11 +30,11 @@ class ProbabilisticFLRG(hofts.HighOrderFLRG):
return self.strLHS() + " -> " + tmp2
class ProbabilisticIntervalFTS(ifts.IntervalFTS):
class ProbabilisticFTS(ifts.IntervalFTS):
def __init__(self, name):
super(ProbabilisticIntervalFTS, self).__init__("PIFTS")
super(ProbabilisticFTS, self).__init__("PIFTS")
self.shortname = "PIFTS " + name
self.name = "Probabilistic Interval FTS"
self.name = "Probabilistic FTS"
self.detail = "Silva, P.; Guimarães, F.; Sadaei, H."
self.flrgs = {}
self.globalFrequency = 0
@ -65,6 +65,14 @@ class ProbabilisticIntervalFTS(ifts.IntervalFTS):
else:
return 1.0 / self.globalFrequency
def getMidpoints(self, flrg):
if flrg.strLHS() in self.flrgs:
tmp = self.flrgs[flrg.strLHS()]
ret = sum(np.array([tmp.getProbability(s) * self.setsDict[s].midpoint for s in tmp.RHS]))
else:
ret = sum(np.array([0.33 * s.midpoint for s in flrg.LHS]))
return ret
def getUpper(self, flrg):
if flrg.strLHS() in self.flrgs:
tmp = self.flrgs[flrg.strLHS()]
@ -89,6 +97,106 @@ class ProbabilisticIntervalFTS(ifts.IntervalFTS):
ret = []
for k in np.arange(self.order - 1, l):
# print(k)
affected_flrgs = []
affected_flrgs_memberships = []
norms = []
mp = []
# Find the sets which membership > 0 for each lag
count = 0
lags = {}
if self.order > 1:
subset = ndata[k - (self.order - 1): k + 1]
for instance in subset:
mb = FuzzySet.fuzzyInstance(instance, self.sets)
tmp = np.argwhere(mb)
idx = np.ravel(tmp) # flatten the array
if idx.size == 0: # the element is out of the bounds of the Universe of Discourse
if math.ceil(instance) <= self.sets[0].lower:
idx = [0]
elif math.ceil(instance) >= self.sets[-1].upper:
idx = [len(self.sets) - 1]
else:
raise Exception(instance)
lags[count] = idx
count = count + 1
# Build the tree with all possible paths
root = tree.FLRGTreeNode(None)
self.buildTree(root, lags, 0)
# Trace the possible paths and build the PFLRG's
for p in root.paths():
path = list(reversed(list(filter(None.__ne__, p))))
flrg = hofts.HighOrderFLRG(self.order)
for kk in path: flrg.appendLHS(self.sets[kk])
assert len(flrg.LHS) == subset.size, str(subset) + " -> " + str([s.name for s in flrg.LHS])
##
affected_flrgs.append(flrg)
# Find the general membership of FLRG
affected_flrgs_memberships.append(min(self.getSequenceMembership(subset, flrg.LHS)))
else:
mv = FuzzySet.fuzzyInstance(ndata[k], self.sets) # get all membership values
tmp = np.argwhere(mv) # get the indices of values > 0
idx = np.ravel(tmp) # flatten the array
if idx.size == 0: # the element is out of the bounds of the Universe of Discourse
if math.ceil(ndata[k]) <= self.sets[0].lower:
idx = [0]
elif math.ceil(ndata[k]) >= self.sets[-1].upper:
idx = [len(self.sets) - 1]
else:
raise Exception(ndata[k])
for kk in idx:
flrg = hofts.HighOrderFLRG(self.order)
flrg.appendLHS(self.sets[kk])
affected_flrgs.append(flrg)
affected_flrgs_memberships.append(mv[kk])
count = 0
for flrg in affected_flrgs:
# achar o os bounds de cada FLRG, ponderados pela probabilidade e pertinência
norm = self.getProbability(flrg) * affected_flrgs_memberships[count]
if norm == 0:
norm = self.getProbability(flrg) # * 0.001
mp.append(norm * self.getMidpoints(flrg))
norms.append(norm)
count = count + 1
# gerar o intervalo
norm = sum(norms)
if norm == 0:
ret.append([0, 0])
else:
ret.append(sum(mp) / norm)
return ret
def forecastInterval(self, data):
ndata = np.array(data)
l = len(ndata)
ret = []
for k in np.arange(self.order - 1, l):
# print(k)
@ -184,6 +292,20 @@ class ProbabilisticIntervalFTS(ifts.IntervalFTS):
return ret
def forecastAhead(self, data, steps):
ret = [data[k] for k in np.arange(len(data) - self.order, len(data))]
for k in np.arange(self.order - 1, steps):
if ret[-1] <= self.sets[0].lower or ret[-1] >= self.sets[-1].upper:
ret.append(ret[-1])
else:
mp = self.forecast([ret[x] for x in np.arange(k - self.order, k)])
ret.append(mp)
return ret
def forecastAheadInterval(self, data, steps):
ret = [[data[k], data[k]] for k in np.arange(len(data) - self.order, len(data))]
for k in np.arange(self.order - 1, steps):
@ -191,8 +313,8 @@ class ProbabilisticIntervalFTS(ifts.IntervalFTS):
if ret[-1][0] <= self.sets[0].lower and ret[-1][1] >= self.sets[-1].upper:
ret.append(ret[-1])
else:
lower = self.forecast([ret[x][0] for x in np.arange(k - self.order, k)])
upper = self.forecast([ret[x][1] for x in np.arange(k - self.order, k)])
lower = self.forecastInterval([ret[x][0] for x in np.arange(k - self.order, k)])
upper = self.forecastInterval([ret[x][1] for x in np.arange(k - self.order, k)])
ret.append([np.min(lower), np.max(upper)])
@ -258,11 +380,11 @@ class ProbabilisticIntervalFTS(ifts.IntervalFTS):
df = pd.DataFrame(ret, columns=sorted(grid))
return df
def forecastDistributionAhead(self, data, steps, resolution):
def forecastAheadDistribution(self, data, steps, resolution):
ret = []
intervals = self.forecastAhead(data, steps)
intervals = self.forecastAheadInterval(data, steps)
for k in np.arange(self.order, steps):
@ -271,13 +393,15 @@ class ProbabilisticIntervalFTS(ifts.IntervalFTS):
for qt in np.arange(1, 50, 2):
# print(qt)
qtle_lower = self.forecast([intervals[x][0] + qt * (intervals[x][1] - intervals[x][0]) / 100 for x in
qtle_lower = self.forecastInterval(
[intervals[x][0] + qt * (intervals[x][1] - intervals[x][0]) / 100 for x in
np.arange(k - self.order, k)])
grid = self.gridCount(grid, resolution, np.ravel(qtle_lower))
qtle_upper = self.forecast([intervals[x][1] - qt * (intervals[x][1] - intervals[x][0]) / 100 for x in
qtle_upper = self.forecastInterval(
[intervals[x][1] - qt * (intervals[x][1] - intervals[x][0]) / 100 for x in
np.arange(k - self.order, k)])
grid = self.gridCount(grid, resolution, np.ravel(qtle_upper))
qtle_mid = self.forecast(
qtle_mid = self.forecastInterval(
[intervals[x][0] + (intervals[x][1] - intervals[x][0]) / 2 for x in np.arange(k - self.order, k)])
grid = self.gridCount(grid, resolution, np.ravel(qtle_mid))