Improving documentation for the Interval and Probabilistic forecasts
This commit is contained in:
parent
404377acc3
commit
c42dea2aca
BIN
docs/build/doctrees/environment.pickle
vendored
BIN
docs/build/doctrees/environment.pickle
vendored
Binary file not shown.
BIN
docs/build/doctrees/pyFTS.benchmarks.doctree
vendored
BIN
docs/build/doctrees/pyFTS.benchmarks.doctree
vendored
Binary file not shown.
BIN
docs/build/doctrees/pyFTS.common.doctree
vendored
BIN
docs/build/doctrees/pyFTS.common.doctree
vendored
Binary file not shown.
BIN
docs/build/doctrees/pyFTS.probabilistic.doctree
vendored
BIN
docs/build/doctrees/pyFTS.probabilistic.doctree
vendored
Binary file not shown.
@ -81,7 +81,7 @@
|
||||
<span class="kn">import</span> <span class="nn">time</span>
|
||||
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
|
||||
<span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
|
||||
<span class="kn">from</span> <span class="nn">pyFTS.common</span> <span class="k">import</span> <span class="n">FuzzySet</span><span class="p">,</span><span class="n">SortedCollection</span>
|
||||
<span class="kn">from</span> <span class="nn">pyFTS.common</span> <span class="k">import</span> <span class="n">FuzzySet</span><span class="p">,</span> <span class="n">SortedCollection</span>
|
||||
<span class="kn">from</span> <span class="nn">pyFTS.probabilistic</span> <span class="k">import</span> <span class="n">ProbabilityDistribution</span>
|
||||
|
||||
|
||||
@ -97,10 +97,10 @@
|
||||
<span class="n">sigma</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">var</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
|
||||
<span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
|
||||
<span class="n">s</span> <span class="o">=</span> <span class="mi">0</span>
|
||||
<span class="k">for</span> <span class="n">t</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="n">n</span><span class="o">-</span><span class="n">k</span><span class="p">):</span>
|
||||
<span class="n">s</span> <span class="o">+=</span> <span class="p">(</span><span class="n">data</span><span class="p">[</span><span class="n">t</span><span class="p">]</span><span class="o">-</span><span class="n">mu</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="n">data</span><span class="p">[</span><span class="n">t</span><span class="o">+</span><span class="n">k</span><span class="p">]</span> <span class="o">-</span> <span class="n">mu</span><span class="p">)</span>
|
||||
<span class="k">for</span> <span class="n">t</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">n</span> <span class="o">-</span> <span class="n">k</span><span class="p">):</span>
|
||||
<span class="n">s</span> <span class="o">+=</span> <span class="p">(</span><span class="n">data</span><span class="p">[</span><span class="n">t</span><span class="p">]</span> <span class="o">-</span> <span class="n">mu</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="n">data</span><span class="p">[</span><span class="n">t</span> <span class="o">+</span> <span class="n">k</span><span class="p">]</span> <span class="o">-</span> <span class="n">mu</span><span class="p">)</span>
|
||||
|
||||
<span class="k">return</span> <span class="mi">1</span><span class="o">/</span><span class="p">((</span><span class="n">n</span><span class="o">-</span><span class="n">k</span><span class="p">)</span><span class="o">*</span><span class="n">sigma</span><span class="p">)</span><span class="o">*</span><span class="n">s</span></div>
|
||||
<span class="k">return</span> <span class="mi">1</span> <span class="o">/</span> <span class="p">((</span><span class="n">n</span> <span class="o">-</span> <span class="n">k</span><span class="p">)</span> <span class="o">*</span> <span class="n">sigma</span><span class="p">)</span> <span class="o">*</span> <span class="n">s</span></div>
|
||||
|
||||
|
||||
<div class="viewcode-block" id="rmse"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.rmse">[docs]</a><span class="k">def</span> <span class="nf">rmse</span><span class="p">(</span><span class="n">targets</span><span class="p">,</span> <span class="n">forecasts</span><span class="p">):</span>
|
||||
@ -159,9 +159,9 @@
|
||||
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">forecasts</span><span class="p">,</span> <span class="nb">list</span><span class="p">):</span>
|
||||
<span class="n">forecasts</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">forecasts</span><span class="p">)</span>
|
||||
<span class="k">if</span> <span class="nb">type</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
|
||||
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">forecasts</span> <span class="o">-</span> <span class="n">targets</span><span class="p">)</span> <span class="o">/</span> <span class="p">((</span><span class="n">forecasts</span> <span class="o">+</span> <span class="n">targets</span><span class="p">)</span><span class="o">/</span><span class="mi">2</span><span class="p">))</span>
|
||||
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">forecasts</span> <span class="o">-</span> <span class="n">targets</span><span class="p">)</span> <span class="o">/</span> <span class="p">((</span><span class="n">forecasts</span> <span class="o">+</span> <span class="n">targets</span><span class="p">)</span> <span class="o">/</span> <span class="mi">2</span><span class="p">))</span>
|
||||
<span class="k">elif</span> <span class="nb">type</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
|
||||
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">forecasts</span> <span class="o">-</span> <span class="n">targets</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="nb">abs</span><span class="p">(</span><span class="n">forecasts</span><span class="p">)</span> <span class="o">+</span> <span class="nb">abs</span><span class="p">(</span><span class="n">targets</span><span class="p">))</span> <span class="p">)</span><span class="o">*</span><span class="mi">100</span>
|
||||
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">forecasts</span> <span class="o">-</span> <span class="n">targets</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="nb">abs</span><span class="p">(</span><span class="n">forecasts</span><span class="p">)</span> <span class="o">+</span> <span class="nb">abs</span><span class="p">(</span><span class="n">targets</span><span class="p">)))</span> <span class="o">*</span> <span class="mi">100</span>
|
||||
<span class="k">else</span><span class="p">:</span>
|
||||
<span class="k">return</span> <span class="nb">sum</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">forecasts</span> <span class="o">-</span> <span class="n">targets</span><span class="p">))</span> <span class="o">/</span> <span class="nb">sum</span><span class="p">(</span><span class="n">forecasts</span> <span class="o">+</span> <span class="n">targets</span><span class="p">)</span></div>
|
||||
|
||||
@ -187,8 +187,8 @@
|
||||
|
||||
<span class="n">naive</span> <span class="o">=</span> <span class="p">[]</span>
|
||||
<span class="n">y</span> <span class="o">=</span> <span class="p">[]</span>
|
||||
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="n">l</span><span class="o">-</span><span class="mi">1</span><span class="p">):</span>
|
||||
<span class="n">y</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">forecasts</span><span class="p">[</span><span class="n">k</span> <span class="p">]</span> <span class="o">-</span> <span class="n">targets</span><span class="p">[</span><span class="n">k</span><span class="p">])</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
|
||||
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">l</span> <span class="o">-</span> <span class="mi">1</span><span class="p">):</span>
|
||||
<span class="n">y</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">forecasts</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">-</span> <span class="n">targets</span><span class="p">[</span><span class="n">k</span><span class="p">])</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
|
||||
<span class="n">naive</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">targets</span><span class="p">[</span><span class="n">k</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">targets</span><span class="p">[</span><span class="n">k</span><span class="p">])</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
|
||||
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="nb">sum</span><span class="p">(</span><span class="n">y</span><span class="p">)</span> <span class="o">/</span> <span class="nb">sum</span><span class="p">(</span><span class="n">naive</span><span class="p">))</span></div>
|
||||
|
||||
@ -203,11 +203,10 @@
|
||||
<span class="sd"> """</span>
|
||||
<span class="n">res</span> <span class="o">=</span> <span class="n">targets</span> <span class="o">-</span> <span class="n">forecasts</span>
|
||||
<span class="n">t</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">res</span><span class="p">)</span>
|
||||
<span class="n">us</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="nb">sum</span><span class="p">([</span><span class="n">u</span><span class="o">**</span><span class="mi">2</span> <span class="k">for</span> <span class="n">u</span> <span class="ow">in</span> <span class="n">res</span><span class="p">]))</span>
|
||||
<span class="n">ys</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="nb">sum</span><span class="p">([</span><span class="n">y</span><span class="o">**</span><span class="mi">2</span> <span class="k">for</span> <span class="n">y</span> <span class="ow">in</span> <span class="n">targets</span><span class="p">]))</span>
|
||||
<span class="n">fs</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="nb">sum</span><span class="p">([</span><span class="n">f</span><span class="o">**</span><span class="mi">2</span> <span class="k">for</span> <span class="n">f</span> <span class="ow">in</span> <span class="n">forecasts</span><span class="p">]))</span>
|
||||
<span class="k">return</span> <span class="n">us</span> <span class="o">/</span> <span class="p">(</span><span class="n">ys</span> <span class="o">+</span> <span class="n">fs</span><span class="p">)</span></div>
|
||||
|
||||
<span class="n">us</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="nb">sum</span><span class="p">([</span><span class="n">u</span> <span class="o">**</span> <span class="mi">2</span> <span class="k">for</span> <span class="n">u</span> <span class="ow">in</span> <span class="n">res</span><span class="p">]))</span>
|
||||
<span class="n">ys</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="nb">sum</span><span class="p">([</span><span class="n">y</span> <span class="o">**</span> <span class="mi">2</span> <span class="k">for</span> <span class="n">y</span> <span class="ow">in</span> <span class="n">targets</span><span class="p">]))</span>
|
||||
<span class="n">fs</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="nb">sum</span><span class="p">([</span><span class="n">f</span> <span class="o">**</span> <span class="mi">2</span> <span class="k">for</span> <span class="n">f</span> <span class="ow">in</span> <span class="n">forecasts</span><span class="p">]))</span>
|
||||
<span class="k">return</span> <span class="n">us</span> <span class="o">/</span> <span class="p">(</span><span class="n">ys</span> <span class="o">+</span> <span class="n">fs</span><span class="p">)</span></div>
|
||||
|
||||
|
||||
<div class="viewcode-block" id="BoxPierceStatistic"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.BoxPierceStatistic">[docs]</a><span class="k">def</span> <span class="nf">BoxPierceStatistic</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">h</span><span class="p">):</span>
|
||||
@ -220,10 +219,10 @@
|
||||
<span class="sd"> """</span>
|
||||
<span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
|
||||
<span class="n">s</span> <span class="o">=</span> <span class="mi">0</span>
|
||||
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="n">h</span><span class="o">+</span><span class="mi">1</span><span class="p">):</span>
|
||||
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">h</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span>
|
||||
<span class="n">r</span> <span class="o">=</span> <span class="n">acf</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">k</span><span class="p">)</span>
|
||||
<span class="n">s</span> <span class="o">+=</span> <span class="n">r</span><span class="o">**</span><span class="mi">2</span>
|
||||
<span class="k">return</span> <span class="n">n</span><span class="o">*</span><span class="n">s</span></div>
|
||||
<span class="n">s</span> <span class="o">+=</span> <span class="n">r</span> <span class="o">**</span> <span class="mi">2</span>
|
||||
<span class="k">return</span> <span class="n">n</span> <span class="o">*</span> <span class="n">s</span></div>
|
||||
|
||||
|
||||
<div class="viewcode-block" id="BoxLjungStatistic"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.BoxLjungStatistic">[docs]</a><span class="k">def</span> <span class="nf">BoxLjungStatistic</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">h</span><span class="p">):</span>
|
||||
@ -236,10 +235,10 @@
|
||||
<span class="sd"> """</span>
|
||||
<span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
|
||||
<span class="n">s</span> <span class="o">=</span> <span class="mi">0</span>
|
||||
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="n">h</span><span class="o">+</span><span class="mi">1</span><span class="p">):</span>
|
||||
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">h</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span>
|
||||
<span class="n">r</span> <span class="o">=</span> <span class="n">acf</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">k</span><span class="p">)</span>
|
||||
<span class="n">s</span> <span class="o">+=</span> <span class="n">r</span><span class="o">**</span><span class="mi">2</span> <span class="o">/</span> <span class="p">(</span><span class="n">n</span> <span class="o">-</span><span class="n">k</span><span class="p">)</span>
|
||||
<span class="k">return</span> <span class="n">n</span><span class="o">*</span><span class="p">(</span><span class="n">n</span><span class="o">-</span><span class="mi">2</span><span class="p">)</span><span class="o">*</span><span class="n">s</span></div>
|
||||
<span class="n">s</span> <span class="o">+=</span> <span class="n">r</span> <span class="o">**</span> <span class="mi">2</span> <span class="o">/</span> <span class="p">(</span><span class="n">n</span> <span class="o">-</span> <span class="n">k</span><span class="p">)</span>
|
||||
<span class="k">return</span> <span class="n">n</span> <span class="o">*</span> <span class="p">(</span><span class="n">n</span> <span class="o">-</span> <span class="mi">2</span><span class="p">)</span> <span class="o">*</span> <span class="n">s</span></div>
|
||||
|
||||
|
||||
<div class="viewcode-block" id="sharpness"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.sharpness">[docs]</a><span class="k">def</span> <span class="nf">sharpness</span><span class="p">(</span><span class="n">forecasts</span><span class="p">):</span>
|
||||
@ -248,7 +247,6 @@
|
||||
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">tmp</span><span class="p">)</span></div>
|
||||
|
||||
|
||||
|
||||
<div class="viewcode-block" id="resolution"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.resolution">[docs]</a><span class="k">def</span> <span class="nf">resolution</span><span class="p">(</span><span class="n">forecasts</span><span class="p">):</span>
|
||||
<span class="sd">"""Resolution - Standard deviation of the intervals"""</span>
|
||||
<span class="n">shp</span> <span class="o">=</span> <span class="n">sharpness</span><span class="p">(</span><span class="n">forecasts</span><span class="p">)</span>
|
||||
@ -304,9 +302,9 @@
|
||||
<span class="k">if</span> <span class="n">forecast</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o"><</span> <span class="n">target</span> <span class="ow">and</span> <span class="n">target</span> <span class="o"><</span> <span class="n">forecast</span><span class="p">[</span><span class="mi">1</span><span class="p">]:</span>
|
||||
<span class="k">return</span> <span class="n">delta</span>
|
||||
<span class="k">elif</span> <span class="n">forecast</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">></span> <span class="n">target</span><span class="p">:</span>
|
||||
<span class="k">return</span> <span class="n">delta</span> <span class="o">+</span> <span class="mi">2</span><span class="o">*</span><span class="p">(</span><span class="n">forecast</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">-</span> <span class="n">target</span><span class="p">)</span><span class="o">/</span><span class="n">tau</span>
|
||||
<span class="k">return</span> <span class="n">delta</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">*</span> <span class="p">(</span><span class="n">forecast</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">-</span> <span class="n">target</span><span class="p">)</span> <span class="o">/</span> <span class="n">tau</span>
|
||||
<span class="k">elif</span> <span class="n">forecast</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o"><</span> <span class="n">target</span><span class="p">:</span>
|
||||
<span class="k">return</span> <span class="n">delta</span> <span class="o">+</span> <span class="mi">2</span><span class="o">*</span><span class="p">(</span><span class="n">target</span> <span class="o">-</span> <span class="n">forecast</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span><span class="o">/</span><span class="n">tau</span></div>
|
||||
<span class="k">return</span> <span class="n">delta</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">*</span> <span class="p">(</span><span class="n">target</span> <span class="o">-</span> <span class="n">forecast</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span> <span class="o">/</span> <span class="n">tau</span></div>
|
||||
|
||||
|
||||
<div class="viewcode-block" id="winkler_mean"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.winkler_mean">[docs]</a><span class="k">def</span> <span class="nf">winkler_mean</span><span class="p">(</span><span class="n">tau</span><span class="p">,</span> <span class="n">targets</span><span class="p">,</span> <span class="n">forecasts</span><span class="p">):</span>
|
||||
@ -335,7 +333,7 @@
|
||||
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">score</span><span class="p">)</span>
|
||||
<span class="k">except</span> <span class="ne">ValueError</span> <span class="k">as</span> <span class="n">ex</span><span class="p">:</span>
|
||||
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">sum</span><span class="p">([</span><span class="n">d</span><span class="o">.</span><span class="n">distribution</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">**</span> <span class="mi">2</span> <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">d</span><span class="o">.</span><span class="n">bins</span><span class="p">]))</span>
|
||||
<span class="k">return</span> <span class="nb">sum</span><span class="p">(</span><span class="n">ret</span><span class="p">)</span><span class="o">/</span><span class="nb">len</span><span class="p">(</span><span class="n">ret</span><span class="p">)</span></div>
|
||||
<span class="k">return</span> <span class="nb">sum</span><span class="p">(</span><span class="n">ret</span><span class="p">)</span> <span class="o">/</span> <span class="nb">len</span><span class="p">(</span><span class="n">ret</span><span class="p">)</span></div>
|
||||
|
||||
|
||||
<div class="viewcode-block" id="pmf_to_cdf"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.pmf_to_cdf">[docs]</a><span class="k">def</span> <span class="nf">pmf_to_cdf</span><span class="p">(</span><span class="n">density</span><span class="p">):</span>
|
||||
@ -345,7 +343,7 @@
|
||||
<span class="n">prev</span> <span class="o">=</span> <span class="mi">0</span>
|
||||
<span class="k">for</span> <span class="n">col</span> <span class="ow">in</span> <span class="n">density</span><span class="o">.</span><span class="n">columns</span><span class="p">:</span>
|
||||
<span class="n">prev</span> <span class="o">+=</span> <span class="n">density</span><span class="p">[</span><span class="n">col</span><span class="p">][</span><span class="n">row</span><span class="p">]</span> <span class="k">if</span> <span class="ow">not</span> <span class="n">np</span><span class="o">.</span><span class="n">isnan</span><span class="p">(</span><span class="n">density</span><span class="p">[</span><span class="n">col</span><span class="p">][</span><span class="n">row</span><span class="p">])</span> <span class="k">else</span> <span class="mi">0</span>
|
||||
<span class="n">tmp</span><span class="o">.</span><span class="n">append</span><span class="p">(</span> <span class="n">prev</span> <span class="p">)</span>
|
||||
<span class="n">tmp</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">prev</span><span class="p">)</span>
|
||||
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">tmp</span><span class="p">)</span>
|
||||
<span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">ret</span><span class="p">,</span> <span class="n">columns</span><span class="o">=</span><span class="n">density</span><span class="o">.</span><span class="n">columns</span><span class="p">)</span>
|
||||
<span class="k">return</span> <span class="n">df</span></div>
|
||||
@ -354,6 +352,7 @@
|
||||
<div class="viewcode-block" id="heavyside"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.heavyside">[docs]</a><span class="k">def</span> <span class="nf">heavyside</span><span class="p">(</span><span class="nb">bin</span><span class="p">,</span> <span class="n">target</span><span class="p">):</span>
|
||||
<span class="k">return</span> <span class="mi">1</span> <span class="k">if</span> <span class="nb">bin</span> <span class="o">>=</span> <span class="n">target</span> <span class="k">else</span> <span class="mi">0</span></div>
|
||||
|
||||
|
||||
<div class="viewcode-block" id="heavyside_cdf"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.heavyside_cdf">[docs]</a><span class="k">def</span> <span class="nf">heavyside_cdf</span><span class="p">(</span><span class="n">bins</span><span class="p">,</span> <span class="n">targets</span><span class="p">):</span>
|
||||
<span class="n">ret</span> <span class="o">=</span> <span class="p">[]</span>
|
||||
<span class="k">for</span> <span class="n">t</span> <span class="ow">in</span> <span class="n">targets</span><span class="p">:</span>
|
||||
@ -378,7 +377,7 @@
|
||||
<span class="n">l</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">densities</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">bins</span><span class="p">)</span>
|
||||
<span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">densities</span><span class="p">)</span>
|
||||
<span class="k">for</span> <span class="n">ct</span><span class="p">,</span> <span class="n">df</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">densities</span><span class="p">):</span>
|
||||
<span class="n">_crps</span> <span class="o">+=</span> <span class="nb">sum</span><span class="p">([(</span><span class="n">df</span><span class="o">.</span><span class="n">cummulative</span><span class="p">(</span><span class="nb">bin</span><span class="p">)</span> <span class="o">-</span> <span class="p">(</span><span class="mi">1</span> <span class="k">if</span> <span class="nb">bin</span> <span class="o">>=</span> <span class="n">targets</span><span class="p">[</span><span class="n">ct</span><span class="p">]</span> <span class="k">else</span> <span class="mi">0</span><span class="p">))</span> <span class="o">**</span> <span class="mi">2</span> <span class="k">for</span> <span class="nb">bin</span> <span class="ow">in</span> <span class="n">df</span><span class="o">.</span><span class="n">bins</span><span class="p">])</span>
|
||||
<span class="n">_crps</span> <span class="o">+=</span> <span class="nb">sum</span><span class="p">([(</span><span class="n">df</span><span class="o">.</span><span class="n">cumulative</span><span class="p">(</span><span class="nb">bin</span><span class="p">)</span> <span class="o">-</span> <span class="p">(</span><span class="mi">1</span> <span class="k">if</span> <span class="nb">bin</span> <span class="o">>=</span> <span class="n">targets</span><span class="p">[</span><span class="n">ct</span><span class="p">]</span> <span class="k">else</span> <span class="mi">0</span><span class="p">))</span> <span class="o">**</span> <span class="mi">2</span> <span class="k">for</span> <span class="nb">bin</span> <span class="ow">in</span> <span class="n">df</span><span class="o">.</span><span class="n">bins</span><span class="p">])</span>
|
||||
|
||||
<span class="k">return</span> <span class="n">_crps</span> <span class="o">/</span> <span class="nb">float</span><span class="p">(</span><span class="n">l</span> <span class="o">*</span> <span class="n">n</span><span class="p">)</span></div>
|
||||
|
||||
@ -393,7 +392,7 @@
|
||||
<span class="sd"> :return: a list with the RMSE, SMAPE and U Statistic</span>
|
||||
<span class="sd"> '''</span>
|
||||
|
||||
<span class="n">steps_ahead</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'steps_ahead'</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span>
|
||||
<span class="n">steps_ahead</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'steps_ahead'</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
|
||||
<span class="n">kwargs</span><span class="p">[</span><span class="s1">'type'</span><span class="p">]</span> <span class="o">=</span> <span class="s1">'point'</span>
|
||||
|
||||
<span class="n">indexer</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'indexer'</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
|
||||
@ -428,12 +427,12 @@
|
||||
<span class="k">else</span><span class="p">:</span>
|
||||
<span class="n">steps_ahead_sampler</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'steps_ahead_sampler'</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
|
||||
<span class="n">nforecasts</span> <span class="o">=</span> <span class="p">[]</span>
|
||||
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">order</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">ndata</span><span class="p">)</span><span class="o">-</span><span class="n">steps_ahead</span><span class="p">,</span><span class="n">steps_ahead_sampler</span><span class="p">):</span>
|
||||
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">order</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">ndata</span><span class="p">)</span> <span class="o">-</span> <span class="n">steps_ahead</span><span class="p">,</span> <span class="n">steps_ahead_sampler</span><span class="p">):</span>
|
||||
<span class="n">sample</span> <span class="o">=</span> <span class="n">ndata</span><span class="p">[</span><span class="n">k</span> <span class="o">-</span> <span class="n">model</span><span class="o">.</span><span class="n">order</span><span class="p">:</span> <span class="n">k</span><span class="p">]</span>
|
||||
<span class="n">tmp</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">sample</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
|
||||
<span class="n">nforecasts</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">tmp</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span>
|
||||
|
||||
<span class="n">start</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">max_lag</span> <span class="o">+</span> <span class="n">steps_ahead</span> <span class="o">-</span><span class="mi">1</span>
|
||||
<span class="n">start</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">max_lag</span> <span class="o">+</span> <span class="n">steps_ahead</span> <span class="o">-</span> <span class="mi">1</span>
|
||||
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">rmse</span><span class="p">(</span><span class="n">ndata</span><span class="p">[</span><span class="n">start</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">:</span><span class="n">steps_ahead_sampler</span><span class="p">],</span> <span class="n">nforecasts</span><span class="p">),</span> <span class="mi">2</span><span class="p">))</span>
|
||||
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">mape</span><span class="p">(</span><span class="n">ndata</span><span class="p">[</span><span class="n">start</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">:</span><span class="n">steps_ahead_sampler</span><span class="p">],</span> <span class="n">nforecasts</span><span class="p">),</span> <span class="mi">2</span><span class="p">))</span>
|
||||
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">UStatistic</span><span class="p">(</span><span class="n">ndata</span><span class="p">[</span><span class="n">start</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">:</span><span class="n">steps_ahead_sampler</span><span class="p">],</span> <span class="n">nforecasts</span><span class="p">),</span> <span class="mi">2</span><span class="p">))</span>
|
||||
@ -442,7 +441,7 @@
|
||||
|
||||
|
||||
<div class="viewcode-block" id="get_interval_statistics"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.get_interval_statistics">[docs]</a><span class="k">def</span> <span class="nf">get_interval_statistics</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">model</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
||||
<span class="sd">'''</span>
|
||||
<span class="sd">"""</span>
|
||||
<span class="sd"> Condensate all measures for point interval forecasters</span>
|
||||
|
||||
<span class="sd"> :param data: test data</span>
|
||||
@ -450,7 +449,7 @@
|
||||
<span class="sd"> :param kwargs:</span>
|
||||
<span class="sd"> :return: a list with the sharpness, resolution, coverage, .05 pinball mean,</span>
|
||||
<span class="sd"> .25 pinball mean, .75 pinball mean and .95 pinball mean.</span>
|
||||
<span class="sd"> '''</span>
|
||||
<span class="sd"> """</span>
|
||||
|
||||
<span class="n">steps_ahead</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'steps_ahead'</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
|
||||
<span class="n">kwargs</span><span class="p">[</span><span class="s1">'type'</span><span class="p">]</span> <span class="o">=</span> <span class="s1">'interval'</span>
|
||||
@ -475,7 +474,7 @@
|
||||
<span class="n">tmp</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">sample</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
|
||||
<span class="n">forecasts</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">tmp</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span>
|
||||
|
||||
<span class="n">start</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">max_lag</span> <span class="o">+</span> <span class="n">steps_ahead</span> <span class="o">-</span><span class="mi">1</span>
|
||||
<span class="n">start</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">max_lag</span> <span class="o">+</span> <span class="n">steps_ahead</span> <span class="o">-</span> <span class="mi">1</span>
|
||||
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">sharpness</span><span class="p">(</span><span class="n">forecasts</span><span class="p">),</span> <span class="mi">2</span><span class="p">))</span>
|
||||
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">resolution</span><span class="p">(</span><span class="n">forecasts</span><span class="p">),</span> <span class="mi">2</span><span class="p">))</span>
|
||||
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">coverage</span><span class="p">(</span><span class="n">data</span><span class="p">[</span><span class="n">model</span><span class="o">.</span><span class="n">max_lag</span><span class="p">:],</span> <span class="n">forecasts</span><span class="p">),</span> <span class="mi">2</span><span class="p">))</span>
|
||||
@ -489,14 +488,14 @@
|
||||
|
||||
|
||||
<div class="viewcode-block" id="get_distribution_statistics"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.get_distribution_statistics">[docs]</a><span class="k">def</span> <span class="nf">get_distribution_statistics</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">model</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
||||
<span class="sd">'''</span>
|
||||
<span class="sd">"""</span>
|
||||
<span class="sd"> Get CRPS statistic and time for a forecasting model</span>
|
||||
|
||||
<span class="sd"> :param data: test data</span>
|
||||
<span class="sd"> :param model: FTS model with probabilistic forecasting capability</span>
|
||||
<span class="sd"> :param kwargs:</span>
|
||||
<span class="sd"> :return: a list with the CRPS and execution time</span>
|
||||
<span class="sd"> '''</span>
|
||||
<span class="sd"> """</span>
|
||||
<span class="n">steps_ahead</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'steps_ahead'</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
|
||||
<span class="n">kwargs</span><span class="p">[</span><span class="s1">'type'</span><span class="p">]</span> <span class="o">=</span> <span class="s1">'distribution'</span>
|
||||
|
||||
@ -524,8 +523,6 @@
|
||||
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">_e1</span> <span class="o">-</span> <span class="n">_s1</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span>
|
||||
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">brier_score</span><span class="p">(</span><span class="n">data</span><span class="p">[</span><span class="n">start</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">:</span><span class="n">skip</span><span class="p">],</span> <span class="n">forecasts</span><span class="p">),</span> <span class="mi">3</span><span class="p">))</span>
|
||||
<span class="k">return</span> <span class="n">ret</span></div>
|
||||
|
||||
|
||||
</pre></div>
|
||||
|
||||
</div>
|
||||
|
@ -146,17 +146,23 @@
|
||||
<span class="sd"> :param ordered_sets: a list with the fuzzy sets names ordered by their centroids.</span>
|
||||
<span class="sd"> :return: A list with the best fuzzy sets that may contain x</span>
|
||||
<span class="sd"> """</span>
|
||||
<span class="n">max_len</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">fuzzy_sets</span><span class="p">)</span>
|
||||
<span class="n">max_len</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">fuzzy_sets</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span>
|
||||
<span class="n">first</span> <span class="o">=</span> <span class="mi">0</span>
|
||||
<span class="n">last</span> <span class="o">=</span> <span class="n">max_len</span>
|
||||
|
||||
<span class="k">while</span> <span class="n">first</span> <span class="o"><=</span> <span class="n">last</span><span class="p">:</span>
|
||||
<span class="n">midpoint</span> <span class="o">=</span> <span class="p">(</span><span class="n">first</span> <span class="o">+</span> <span class="n">last</span><span class="p">)</span> <span class="o">//</span> <span class="mi">2</span>
|
||||
|
||||
<span class="n">fs</span> <span class="o">=</span> <span class="n">ordered_sets</span><span class="p">[</span><span class="n">midpoint</span><span class="p">]</span>
|
||||
<span class="n">fs1</span> <span class="o">=</span> <span class="n">ordered_sets</span><span class="p">[</span><span class="n">midpoint</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]</span> <span class="k">if</span> <span class="n">midpoint</span> <span class="o">></span> <span class="mi">0</span> <span class="k">else</span> <span class="n">ordered_sets</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
|
||||
<span class="n">fs2</span> <span class="o">=</span> <span class="n">ordered_sets</span><span class="p">[</span><span class="n">midpoint</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span> <span class="k">if</span> <span class="n">midpoint</span> <span class="o"><</span> <span class="n">max_len</span> <span class="k">else</span> <span class="n">ordered_sets</span><span class="p">[</span><span class="n">max_len</span><span class="p">]</span>
|
||||
|
||||
<span class="k">if</span> <span class="n">fuzzy_sets</span><span class="p">[</span><span class="n">fs1</span><span class="p">]</span><span class="o">.</span><span class="n">centroid</span> <span class="o"><=</span> <span class="n">x</span> <span class="o"><=</span> <span class="n">fuzzy_sets</span><span class="p">[</span><span class="n">fs2</span><span class="p">]</span><span class="o">.</span><span class="n">centroid</span><span class="p">:</span>
|
||||
<span class="k">return</span> <span class="p">(</span><span class="n">midpoint</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">midpoint</span><span class="p">,</span> <span class="n">midpoint</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span>
|
||||
<span class="k">elif</span> <span class="n">midpoint</span> <span class="o"><=</span> <span class="mi">1</span><span class="p">:</span>
|
||||
<span class="k">return</span> <span class="p">[</span><span class="mi">0</span><span class="p">]</span>
|
||||
<span class="k">elif</span> <span class="n">midpoint</span> <span class="o">>=</span> <span class="n">max_len</span><span class="p">:</span>
|
||||
<span class="k">return</span> <span class="p">[</span><span class="n">max_len</span><span class="p">]</span>
|
||||
<span class="k">else</span><span class="p">:</span>
|
||||
<span class="k">if</span> <span class="n">x</span> <span class="o"><</span> <span class="n">fuzzy_sets</span><span class="p">[</span><span class="n">fs</span><span class="p">]</span><span class="o">.</span><span class="n">centroid</span><span class="p">:</span>
|
||||
<span class="n">last</span> <span class="o">=</span> <span class="n">midpoint</span> <span class="o">-</span> <span class="mi">1</span>
|
||||
@ -164,6 +170,7 @@
|
||||
<span class="n">first</span> <span class="o">=</span> <span class="n">midpoint</span> <span class="o">+</span> <span class="mi">1</span>
|
||||
|
||||
|
||||
|
||||
<div class="viewcode-block" id="fuzzyfy"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.FuzzySet.fuzzyfy">[docs]</a><span class="k">def</span> <span class="nf">fuzzyfy</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">partitioner</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
||||
<span class="sd">"""</span>
|
||||
<span class="sd"> A general method for fuzzyfication.</span>
|
||||
|
@ -240,7 +240,7 @@
|
||||
|
||||
<span class="sd"> :param data: time series data with the minimal length equal to the max_lag of the model</span>
|
||||
<span class="sd"> :param kwargs: model specific parameters</span>
|
||||
<span class="sd"> :return: a list with the forecasted intervals</span>
|
||||
<span class="sd"> :return: a list with the prediction intervals</span>
|
||||
<span class="sd"> """</span>
|
||||
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">(</span><span class="s1">'This model do not perform one step ahead interval forecasts!'</span><span class="p">)</span></div>
|
||||
|
||||
@ -250,7 +250,7 @@
|
||||
|
||||
<span class="sd"> :param data: time series data with the minimal length equal to the max_lag of the model</span>
|
||||
<span class="sd"> :param kwargs: model specific parameters</span>
|
||||
<span class="sd"> :return: a list with the forecasted Probability Distributions</span>
|
||||
<span class="sd"> :return: a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions</span>
|
||||
<span class="sd"> """</span>
|
||||
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">(</span><span class="s1">'This model do not perform one step ahead distribution forecasts!'</span><span class="p">)</span></div>
|
||||
|
||||
|
@ -124,7 +124,7 @@
|
||||
|
||||
<div class="viewcode-block" id="ConventionalFTS.train"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.chen.ConventionalFTS.train">[docs]</a> <span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
||||
|
||||
<span class="n">tmpdata</span> <span class="o">=</span> <span class="n">FuzzySet</span><span class="o">.</span><span class="n">fuzzyfy_series</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">,</span> <span class="n">method</span><span class="o">=</span><span class="s1">'maximum'</span><span class="p">)</span>
|
||||
<span class="n">tmpdata</span> <span class="o">=</span> <span class="n">FuzzySet</span><span class="o">.</span><span class="n">fuzzyfy</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">partitioner</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span><span class="p">,</span> <span class="n">method</span><span class="o">=</span><span class="s1">'maximum'</span><span class="p">,</span> <span class="n">mode</span><span class="o">=</span><span class="s1">'sets'</span><span class="p">)</span>
|
||||
<span class="n">flrs</span> <span class="o">=</span> <span class="n">FLR</span><span class="o">.</span><span class="n">generate_non_recurrent_flrs</span><span class="p">(</span><span class="n">tmpdata</span><span class="p">)</span>
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">generate_flrg</span><span class="p">(</span><span class="n">flrs</span><span class="p">)</span></div>
|
||||
|
||||
|
@ -136,7 +136,7 @@
|
||||
|
||||
<div class="viewcode-block" id="ImprovedWeightedFTS.train"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.ismailefendi.ImprovedWeightedFTS.train">[docs]</a> <span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ndata</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
||||
|
||||
<span class="n">tmpdata</span> <span class="o">=</span> <span class="n">FuzzySet</span><span class="o">.</span><span class="n">fuzzyfy_series</span><span class="p">(</span><span class="n">ndata</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">,</span> <span class="n">method</span><span class="o">=</span><span class="s1">'maximum'</span><span class="p">)</span>
|
||||
<span class="n">tmpdata</span> <span class="o">=</span> <span class="n">FuzzySet</span><span class="o">.</span><span class="n">fuzzyfy</span><span class="p">(</span><span class="n">ndata</span><span class="p">,</span> <span class="n">partitioner</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span><span class="p">,</span> <span class="n">method</span><span class="o">=</span><span class="s1">'maximum'</span><span class="p">,</span> <span class="n">mode</span><span class="o">=</span><span class="s1">'sets'</span><span class="p">)</span>
|
||||
<span class="n">flrs</span> <span class="o">=</span> <span class="n">FLR</span><span class="o">.</span><span class="n">generate_recurrent_flrs</span><span class="p">(</span><span class="n">tmpdata</span><span class="p">)</span>
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">generate_flrg</span><span class="p">(</span><span class="n">flrs</span><span class="p">)</span></div>
|
||||
|
||||
|
@ -140,7 +140,7 @@
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">flr</span><span class="o">.</span><span class="n">LHS</span><span class="p">]</span><span class="o">.</span><span class="n">append_rhs</span><span class="p">(</span><span class="n">flr</span><span class="o">.</span><span class="n">RHS</span><span class="p">)</span></div>
|
||||
|
||||
<div class="viewcode-block" id="ExponentialyWeightedFTS.train"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.sadaei.ExponentialyWeightedFTS.train">[docs]</a> <span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
||||
<span class="n">tmpdata</span> <span class="o">=</span> <span class="n">FuzzySet</span><span class="o">.</span><span class="n">fuzzyfy_series</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">,</span> <span class="n">method</span><span class="o">=</span><span class="s1">'maximum'</span><span class="p">)</span>
|
||||
<span class="n">tmpdata</span> <span class="o">=</span> <span class="n">FuzzySet</span><span class="o">.</span><span class="n">fuzzyfy</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">partitioner</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span><span class="p">,</span> <span class="n">method</span><span class="o">=</span><span class="s1">'maximum'</span><span class="p">,</span> <span class="n">mode</span><span class="o">=</span><span class="s1">'sets'</span><span class="p">)</span>
|
||||
<span class="n">flrs</span> <span class="o">=</span> <span class="n">FLR</span><span class="o">.</span><span class="n">generate_recurrent_flrs</span><span class="p">(</span><span class="n">tmpdata</span><span class="p">)</span>
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">generate_flrg</span><span class="p">(</span><span class="n">flrs</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">c</span><span class="p">)</span></div>
|
||||
|
||||
|
@ -124,7 +124,7 @@
|
||||
|
||||
<div class="viewcode-block" id="ConventionalFTS.train"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.song.ConventionalFTS.train">[docs]</a> <span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
||||
|
||||
<span class="n">tmpdata</span> <span class="o">=</span> <span class="n">FuzzySet</span><span class="o">.</span><span class="n">fuzzyfy_series</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">,</span> <span class="n">method</span><span class="o">=</span><span class="s1">'maximum'</span><span class="p">)</span>
|
||||
<span class="n">tmpdata</span> <span class="o">=</span> <span class="n">FuzzySet</span><span class="o">.</span><span class="n">fuzzyfy</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">partitioner</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span><span class="p">,</span> <span class="n">method</span><span class="o">=</span><span class="s1">'maximum'</span><span class="p">,</span> <span class="n">mode</span><span class="o">=</span><span class="s1">'sets'</span><span class="p">)</span>
|
||||
<span class="n">flrs</span> <span class="o">=</span> <span class="n">FLR</span><span class="o">.</span><span class="n">generate_non_recurrent_flrs</span><span class="p">(</span><span class="n">tmpdata</span><span class="p">)</span>
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">operation_matrix</span><span class="p">(</span><span class="n">flrs</span><span class="p">)</span></div>
|
||||
|
||||
|
@ -132,7 +132,7 @@
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">flr</span><span class="o">.</span><span class="n">LHS</span><span class="p">]</span><span class="o">.</span><span class="n">append_rhs</span><span class="p">(</span><span class="n">flr</span><span class="o">.</span><span class="n">RHS</span><span class="p">)</span></div>
|
||||
|
||||
<div class="viewcode-block" id="WeightedFTS.train"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.yu.WeightedFTS.train">[docs]</a> <span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ndata</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
||||
<span class="n">tmpdata</span> <span class="o">=</span> <span class="n">FuzzySet</span><span class="o">.</span><span class="n">fuzzyfy_series</span><span class="p">(</span><span class="n">ndata</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">,</span> <span class="n">method</span><span class="o">=</span><span class="s1">'maximum'</span><span class="p">)</span>
|
||||
<span class="n">tmpdata</span> <span class="o">=</span> <span class="n">FuzzySet</span><span class="o">.</span><span class="n">fuzzyfy</span><span class="p">(</span><span class="n">ndata</span><span class="p">,</span> <span class="n">partitioner</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span><span class="p">,</span> <span class="n">method</span><span class="o">=</span><span class="s1">'maximum'</span><span class="p">,</span> <span class="n">mode</span><span class="o">=</span><span class="s1">'sets'</span><span class="p">)</span>
|
||||
<span class="n">flrs</span> <span class="o">=</span> <span class="n">FLR</span><span class="o">.</span><span class="n">generate_recurrent_flrs</span><span class="p">(</span><span class="n">tmpdata</span><span class="p">)</span>
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">generate_FLRG</span><span class="p">(</span><span class="n">flrs</span><span class="p">)</span></div>
|
||||
|
||||
|
@ -135,10 +135,21 @@
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">name</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">"name"</span><span class="p">,</span> <span class="s2">""</span><span class="p">)</span>
|
||||
|
||||
<div class="viewcode-block" id="ProbabilityDistribution.set"><a class="viewcode-back" href="../../../pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.set">[docs]</a> <span class="k">def</span> <span class="nf">set</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">,</span> <span class="n">density</span><span class="p">):</span>
|
||||
<span class="sd">"""</span>
|
||||
<span class="sd"> Assert a probability 'density' for a certain value 'value', such that P(value) = density</span>
|
||||
|
||||
<span class="sd"> :param value: A value in the universe of discourse from the distribution</span>
|
||||
<span class="sd"> :param density: The probability density to assign to the value</span>
|
||||
<span class="sd"> """</span>
|
||||
<span class="n">k</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">bin_index</span><span class="o">.</span><span class="n">find_ge</span><span class="p">(</span><span class="n">value</span><span class="p">)</span>
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">distribution</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">=</span> <span class="n">density</span></div>
|
||||
|
||||
<div class="viewcode-block" id="ProbabilityDistribution.append"><a class="viewcode-back" href="../../../pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.append">[docs]</a> <span class="k">def</span> <span class="nf">append</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">values</span><span class="p">):</span>
|
||||
<span class="sd">"""</span>
|
||||
<span class="sd"> Increment the frequency count for the values</span>
|
||||
|
||||
<span class="sd"> :param values: A list of values to account the frequency</span>
|
||||
<span class="sd"> """</span>
|
||||
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">type</span> <span class="o">==</span> <span class="s2">"histogram"</span><span class="p">:</span>
|
||||
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">values</span><span class="p">:</span>
|
||||
<span class="n">v</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">bin_index</span><span class="o">.</span><span class="n">find_ge</span><span class="p">(</span><span class="n">k</span><span class="p">)</span>
|
||||
@ -152,6 +163,11 @@
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">distribution</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">bins</span><span class="p">[</span><span class="n">v</span><span class="p">]]</span> <span class="o">=</span> <span class="n">d</span></div>
|
||||
|
||||
<div class="viewcode-block" id="ProbabilityDistribution.append_interval"><a class="viewcode-back" href="../../../pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.append_interval">[docs]</a> <span class="k">def</span> <span class="nf">append_interval</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">intervals</span><span class="p">):</span>
|
||||
<span class="sd">"""</span>
|
||||
<span class="sd"> Increment the frequency count for all values inside an interval</span>
|
||||
|
||||
<span class="sd"> :param intervals: A list of intervals do increment the frequency</span>
|
||||
<span class="sd"> """</span>
|
||||
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">type</span> <span class="o">==</span> <span class="s2">"histogram"</span><span class="p">:</span>
|
||||
<span class="k">for</span> <span class="n">interval</span> <span class="ow">in</span> <span class="n">intervals</span><span class="p">:</span>
|
||||
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">bin_index</span><span class="o">.</span><span class="n">inside</span><span class="p">(</span><span class="n">interval</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">interval</span><span class="p">[</span><span class="mi">1</span><span class="p">]):</span>
|
||||
@ -159,6 +175,12 @@
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span></div>
|
||||
|
||||
<div class="viewcode-block" id="ProbabilityDistribution.density"><a class="viewcode-back" href="../../../pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.density">[docs]</a> <span class="k">def</span> <span class="nf">density</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">values</span><span class="p">):</span>
|
||||
<span class="sd">"""</span>
|
||||
<span class="sd"> Return the probability densities for the input values</span>
|
||||
|
||||
<span class="sd"> :param values: List of values to return the densities</span>
|
||||
<span class="sd"> :return: List of probability densities for the input values</span>
|
||||
<span class="sd"> """</span>
|
||||
<span class="n">ret</span> <span class="o">=</span> <span class="p">[]</span>
|
||||
<span class="n">scalar</span> <span class="o">=</span> <span class="kc">False</span>
|
||||
|
||||
@ -183,6 +205,12 @@
|
||||
<span class="k">return</span> <span class="n">ret</span></div>
|
||||
|
||||
<div class="viewcode-block" id="ProbabilityDistribution.differential_offset"><a class="viewcode-back" href="../../../pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.differential_offset">[docs]</a> <span class="k">def</span> <span class="nf">differential_offset</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">):</span>
|
||||
<span class="sd">"""</span>
|
||||
<span class="sd"> Auxiliary function for probability distributions of differentiated data</span>
|
||||
|
||||
<span class="sd"> :param value:</span>
|
||||
<span class="sd"> :return:</span>
|
||||
<span class="sd"> """</span>
|
||||
<span class="n">nbins</span> <span class="o">=</span> <span class="p">[]</span>
|
||||
<span class="n">dist</span> <span class="o">=</span> <span class="p">{}</span>
|
||||
|
||||
@ -201,6 +229,11 @@
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">qtl</span> <span class="o">=</span> <span class="kc">None</span></div>
|
||||
|
||||
<div class="viewcode-block" id="ProbabilityDistribution.expected_value"><a class="viewcode-back" href="../../../pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.expected_value">[docs]</a> <span class="k">def</span> <span class="nf">expected_value</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
||||
<span class="sd">"""</span>
|
||||
<span class="sd"> Return the expected value of the distribution, as E[X] = ∑ x * P(x)</span>
|
||||
|
||||
<span class="sd"> :return: The expected value of the distribution</span>
|
||||
<span class="sd"> """</span>
|
||||
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">nansum</span><span class="p">([</span><span class="n">v</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">distribution</span><span class="p">[</span><span class="n">v</span><span class="p">]</span> <span class="k">for</span> <span class="n">v</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">bins</span><span class="p">])</span></div>
|
||||
|
||||
<div class="viewcode-block" id="ProbabilityDistribution.build_cdf_qtl"><a class="viewcode-back" href="../../../pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.build_cdf_qtl">[docs]</a> <span class="k">def</span> <span class="nf">build_cdf_qtl</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
||||
@ -221,7 +254,13 @@
|
||||
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">quantile_index</span> <span class="o">=</span> <span class="n">SortedCollection</span><span class="o">.</span><span class="n">SortedCollection</span><span class="p">(</span><span class="n">iterable</span><span class="o">=</span><span class="n">_keys</span><span class="p">)</span></div>
|
||||
|
||||
<div class="viewcode-block" id="ProbabilityDistribution.cummulative"><a class="viewcode-back" href="../../../pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.cummulative">[docs]</a> <span class="k">def</span> <span class="nf">cummulative</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">values</span><span class="p">):</span>
|
||||
<div class="viewcode-block" id="ProbabilityDistribution.cumulative"><a class="viewcode-back" href="../../../pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.cumulative">[docs]</a> <span class="k">def</span> <span class="nf">cumulative</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">values</span><span class="p">):</span>
|
||||
<span class="sd">"""</span>
|
||||
<span class="sd"> Return the cumulative probability densities for the input values</span>
|
||||
|
||||
<span class="sd"> :param values: A list of input values</span>
|
||||
<span class="sd"> :return: The cumulative probability densities for the input values</span>
|
||||
<span class="sd"> """</span>
|
||||
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">cdf</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">build_cdf_qtl</span><span class="p">()</span>
|
||||
|
||||
@ -235,6 +274,12 @@
|
||||
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">cdf</span><span class="p">[</span><span class="n">values</span><span class="p">]</span></div>
|
||||
|
||||
<div class="viewcode-block" id="ProbabilityDistribution.quantile"><a class="viewcode-back" href="../../../pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.quantile">[docs]</a> <span class="k">def</span> <span class="nf">quantile</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">values</span><span class="p">):</span>
|
||||
<span class="sd">"""</span>
|
||||
<span class="sd"> Return the quantile values for the input values</span>
|
||||
|
||||
<span class="sd"> :param values: input values</span>
|
||||
<span class="sd"> :return: The list of the quantile values for the input values</span>
|
||||
<span class="sd"> """</span>
|
||||
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">qtl</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">build_cdf_qtl</span><span class="p">()</span>
|
||||
|
||||
@ -250,21 +295,43 @@
|
||||
<span class="k">return</span> <span class="n">ret</span></div>
|
||||
|
||||
<div class="viewcode-block" id="ProbabilityDistribution.entropy"><a class="viewcode-back" href="../../../pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.entropy">[docs]</a> <span class="k">def</span> <span class="nf">entropy</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
||||
<span class="sd">"""</span>
|
||||
<span class="sd"> Return the entropy of the probability distribution, H[X] =</span>
|
||||
|
||||
<span class="sd"> :return:the entropy of the probability distribution</span>
|
||||
<span class="sd"> """</span>
|
||||
<span class="n">h</span> <span class="o">=</span> <span class="o">-</span><span class="nb">sum</span><span class="p">([</span><span class="bp">self</span><span class="o">.</span><span class="n">distribution</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">distribution</span><span class="p">[</span><span class="n">k</span><span class="p">])</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">distribution</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">></span> <span class="mi">0</span> <span class="k">else</span> <span class="mi">0</span>
|
||||
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">bins</span><span class="p">])</span>
|
||||
<span class="k">return</span> <span class="n">h</span></div>
|
||||
|
||||
<div class="viewcode-block" id="ProbabilityDistribution.crossentropy"><a class="viewcode-back" href="../../../pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.crossentropy">[docs]</a> <span class="k">def</span> <span class="nf">crossentropy</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span><span class="n">q</span><span class="p">):</span>
|
||||
<span class="sd">"""</span>
|
||||
<span class="sd"> Cross entropy between the actual probability distribution and the informed one.</span>
|
||||
|
||||
<span class="sd"> :param q: a probabilistic.ProbabilityDistribution object</span>
|
||||
<span class="sd"> :return: Cross entropy between this probability distribution and the given distribution</span>
|
||||
<span class="sd"> """</span>
|
||||
<span class="n">h</span> <span class="o">=</span> <span class="o">-</span><span class="nb">sum</span><span class="p">([</span><span class="bp">self</span><span class="o">.</span><span class="n">distribution</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="n">q</span><span class="o">.</span><span class="n">distribution</span><span class="p">[</span><span class="n">k</span><span class="p">])</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">distribution</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">></span> <span class="mi">0</span> <span class="k">else</span> <span class="mi">0</span>
|
||||
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">bins</span><span class="p">])</span>
|
||||
<span class="k">return</span> <span class="n">h</span></div>
|
||||
|
||||
<div class="viewcode-block" id="ProbabilityDistribution.kullbackleiblerdivergence"><a class="viewcode-back" href="../../../pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.kullbackleiblerdivergence">[docs]</a> <span class="k">def</span> <span class="nf">kullbackleiblerdivergence</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span><span class="n">q</span><span class="p">):</span>
|
||||
<span class="sd">"""</span>
|
||||
<span class="sd"> Kullback-Leibler divergence between the actual probability distribution and the informed one.</span>
|
||||
|
||||
<span class="sd"> :param q: a probabilistic.ProbabilityDistribution object</span>
|
||||
<span class="sd"> :return: Kullback-Leibler divergence</span>
|
||||
<span class="sd"> """</span>
|
||||
<span class="n">h</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">([</span><span class="bp">self</span><span class="o">.</span><span class="n">distribution</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">distribution</span><span class="p">[</span><span class="n">k</span><span class="p">]</span><span class="o">/</span><span class="n">q</span><span class="o">.</span><span class="n">distribution</span><span class="p">[</span><span class="n">k</span><span class="p">])</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">distribution</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">></span> <span class="mi">0</span> <span class="k">else</span> <span class="mi">0</span>
|
||||
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">bins</span><span class="p">])</span>
|
||||
<span class="k">return</span> <span class="n">h</span></div>
|
||||
|
||||
<div class="viewcode-block" id="ProbabilityDistribution.empiricalloglikelihood"><a class="viewcode-back" href="../../../pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.empiricalloglikelihood">[docs]</a> <span class="k">def</span> <span class="nf">empiricalloglikelihood</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
||||
<span class="sd">"""</span>
|
||||
<span class="sd"> Empirical Log Likelihood of the probability distribution</span>
|
||||
|
||||
<span class="sd"> :return:</span>
|
||||
<span class="sd"> """</span>
|
||||
<span class="n">_s</span> <span class="o">=</span> <span class="mi">0</span>
|
||||
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">bins</span><span class="p">:</span>
|
||||
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">distribution</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">></span> <span class="mi">0</span><span class="p">:</span>
|
||||
@ -272,6 +339,12 @@
|
||||
<span class="k">return</span> <span class="n">_s</span></div>
|
||||
|
||||
<div class="viewcode-block" id="ProbabilityDistribution.pseudologlikelihood"><a class="viewcode-back" href="../../../pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.pseudologlikelihood">[docs]</a> <span class="k">def</span> <span class="nf">pseudologlikelihood</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">):</span>
|
||||
<span class="sd">"""</span>
|
||||
<span class="sd"> Pseudo log likelihood of the probability distribution with respect to data</span>
|
||||
|
||||
<span class="sd"> :param data:</span>
|
||||
<span class="sd"> :return:</span>
|
||||
<span class="sd"> """</span>
|
||||
|
||||
<span class="n">densities</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">density</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
|
||||
|
||||
@ -282,6 +355,12 @@
|
||||
<span class="k">return</span> <span class="n">_s</span></div>
|
||||
|
||||
<div class="viewcode-block" id="ProbabilityDistribution.averageloglikelihood"><a class="viewcode-back" href="../../../pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.averageloglikelihood">[docs]</a> <span class="k">def</span> <span class="nf">averageloglikelihood</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">):</span>
|
||||
<span class="sd">"""</span>
|
||||
<span class="sd"> Average log likelihood of the probability distribution with respect to data</span>
|
||||
|
||||
<span class="sd"> :param data:</span>
|
||||
<span class="sd"> :return:</span>
|
||||
<span class="sd"> """</span>
|
||||
|
||||
<span class="n">densities</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">density</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
|
||||
|
||||
|
@ -92,6 +92,12 @@
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">transf</span> <span class="o">=</span> <span class="n">Transformations</span><span class="o">.</span><span class="n">Scale</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span><span class="nb">max</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
|
||||
|
||||
<div class="viewcode-block" id="KernelSmoothing.kernel_function"><a class="viewcode-back" href="../../../pyFTS.probabilistic.html#pyFTS.probabilistic.kde.KernelSmoothing.kernel_function">[docs]</a> <span class="k">def</span> <span class="nf">kernel_function</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">u</span><span class="p">):</span>
|
||||
<span class="sd">"""</span>
|
||||
<span class="sd"> Apply the kernel</span>
|
||||
|
||||
<span class="sd"> :param u:</span>
|
||||
<span class="sd"> :return:</span>
|
||||
<span class="sd"> """</span>
|
||||
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">kernel</span> <span class="o">==</span> <span class="s2">"epanechnikov"</span><span class="p">:</span>
|
||||
<span class="n">tmp</span> <span class="o">=</span> <span class="p">(</span><span class="mi">3</span><span class="o">/</span><span class="mi">4</span><span class="p">)</span><span class="o">*</span><span class="p">(</span><span class="mf">1.0</span> <span class="o">-</span> <span class="n">u</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span>
|
||||
<span class="k">return</span> <span class="n">tmp</span> <span class="k">if</span> <span class="n">tmp</span> <span class="o">></span> <span class="mi">0</span> <span class="k">else</span> <span class="mi">0</span>
|
||||
|
2
docs/build/html/genindex.html
vendored
2
docs/build/html/genindex.html
vendored
@ -362,7 +362,7 @@
|
||||
</li>
|
||||
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.crps">crps() (in module pyFTS.benchmarks.Measures)</a>
|
||||
</li>
|
||||
<li><a href="pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.cummulative">cummulative() (pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution method)</a>
|
||||
<li><a href="pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.cumulative">cumulative() (pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution method)</a>
|
||||
</li>
|
||||
<li><a href="pyFTS.common.html#pyFTS.common.Util.current_milli_time">current_milli_time() (in module pyFTS.common.Util)</a>
|
||||
</li>
|
||||
|
BIN
docs/build/html/objects.inv
vendored
BIN
docs/build/html/objects.inv
vendored
Binary file not shown.
10
docs/build/html/pyFTS.benchmarks.html
vendored
10
docs/build/html/pyFTS.benchmarks.html
vendored
@ -1430,7 +1430,7 @@ Value: the measure value</p>
|
||||
</ul>
|
||||
</td>
|
||||
</tr>
|
||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the forecasted Probability Distributions</p>
|
||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions</p>
|
||||
</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
@ -1451,7 +1451,7 @@ Value: the measure value</p>
|
||||
</ul>
|
||||
</td>
|
||||
</tr>
|
||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the forecasted intervals</p>
|
||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the prediction intervals</p>
|
||||
</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
@ -1505,7 +1505,7 @@ Value: the measure value</p>
|
||||
</ul>
|
||||
</td>
|
||||
</tr>
|
||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the forecasted Probability Distributions</p>
|
||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions</p>
|
||||
</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
@ -1655,7 +1655,7 @@ Value: the measure value</p>
|
||||
</ul>
|
||||
</td>
|
||||
</tr>
|
||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the forecasted Probability Distributions</p>
|
||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions</p>
|
||||
</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
@ -1676,7 +1676,7 @@ Value: the measure value</p>
|
||||
</ul>
|
||||
</td>
|
||||
</tr>
|
||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the forecasted intervals</p>
|
||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the prediction intervals</p>
|
||||
</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
|
4
docs/build/html/pyFTS.common.html
vendored
4
docs/build/html/pyFTS.common.html
vendored
@ -1648,7 +1648,7 @@ when the LHS pattern is identified on time t.</p>
|
||||
</ul>
|
||||
</td>
|
||||
</tr>
|
||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the forecasted Probability Distributions</p>
|
||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions</p>
|
||||
</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
@ -1669,7 +1669,7 @@ when the LHS pattern is identified on time t.</p>
|
||||
</ul>
|
||||
</td>
|
||||
</tr>
|
||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the forecasted intervals</p>
|
||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the prediction intervals</p>
|
||||
</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
|
184
docs/build/html/pyFTS.probabilistic.html
vendored
184
docs/build/html/pyFTS.probabilistic.html
vendored
@ -118,17 +118,46 @@ If type is KDE the PDF is continuous</p>
|
||||
<dl class="method">
|
||||
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.append">
|
||||
<code class="descname">append</code><span class="sig-paren">(</span><em>values</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.append"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.append" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<dd><p>Increment the frequency count for the values</p>
|
||||
<table class="docutils field-list" frame="void" rules="none">
|
||||
<col class="field-name" />
|
||||
<col class="field-body" />
|
||||
<tbody valign="top">
|
||||
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>values</strong> – A list of values to account the frequency</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="method">
|
||||
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.append_interval">
|
||||
<code class="descname">append_interval</code><span class="sig-paren">(</span><em>intervals</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.append_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.append_interval" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<dd><p>Increment the frequency count for all values inside an interval</p>
|
||||
<table class="docutils field-list" frame="void" rules="none">
|
||||
<col class="field-name" />
|
||||
<col class="field-body" />
|
||||
<tbody valign="top">
|
||||
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>intervals</strong> – A list of intervals do increment the frequency</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="method">
|
||||
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.averageloglikelihood">
|
||||
<code class="descname">averageloglikelihood</code><span class="sig-paren">(</span><em>data</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.averageloglikelihood"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.averageloglikelihood" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<dd><p>Average log likelihood of the probability distribution with respect to data</p>
|
||||
<table class="docutils field-list" frame="void" rules="none">
|
||||
<col class="field-name" />
|
||||
<col class="field-body" />
|
||||
<tbody valign="top">
|
||||
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>data</strong> – </td>
|
||||
</tr>
|
||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"></td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="attribute">
|
||||
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.bins">
|
||||
@ -144,42 +173,117 @@ If type is KDE the PDF is continuous</p>
|
||||
<dl class="method">
|
||||
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.crossentropy">
|
||||
<code class="descname">crossentropy</code><span class="sig-paren">(</span><em>q</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.crossentropy"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.crossentropy" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<dd><p>Cross entropy between the actual probability distribution and the informed one.</p>
|
||||
<table class="docutils field-list" frame="void" rules="none">
|
||||
<col class="field-name" />
|
||||
<col class="field-body" />
|
||||
<tbody valign="top">
|
||||
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>q</strong> – a probabilistic.ProbabilityDistribution object</td>
|
||||
</tr>
|
||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">Cross entropy between this probability distribution and the given distribution</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="method">
|
||||
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.cummulative">
|
||||
<code class="descname">cummulative</code><span class="sig-paren">(</span><em>values</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.cummulative"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.cummulative" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.cumulative">
|
||||
<code class="descname">cumulative</code><span class="sig-paren">(</span><em>values</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.cumulative"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.cumulative" title="Permalink to this definition">¶</a></dt>
|
||||
<dd><p>Return the cumulative probability densities for the input values</p>
|
||||
<table class="docutils field-list" frame="void" rules="none">
|
||||
<col class="field-name" />
|
||||
<col class="field-body" />
|
||||
<tbody valign="top">
|
||||
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>values</strong> – A list of input values</td>
|
||||
</tr>
|
||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">The cumulative probability densities for the input values</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="method">
|
||||
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.density">
|
||||
<code class="descname">density</code><span class="sig-paren">(</span><em>values</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.density"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.density" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<dd><p>Return the probability densities for the input values</p>
|
||||
<table class="docutils field-list" frame="void" rules="none">
|
||||
<col class="field-name" />
|
||||
<col class="field-body" />
|
||||
<tbody valign="top">
|
||||
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>values</strong> – List of values to return the densities</td>
|
||||
</tr>
|
||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">List of probability densities for the input values</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="method">
|
||||
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.differential_offset">
|
||||
<code class="descname">differential_offset</code><span class="sig-paren">(</span><em>value</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.differential_offset"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.differential_offset" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<dd><p>Auxiliary function for probability distributions of differentiated data</p>
|
||||
<table class="docutils field-list" frame="void" rules="none">
|
||||
<col class="field-name" />
|
||||
<col class="field-body" />
|
||||
<tbody valign="top">
|
||||
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>value</strong> – </td>
|
||||
</tr>
|
||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"></td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="method">
|
||||
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.empiricalloglikelihood">
|
||||
<code class="descname">empiricalloglikelihood</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.empiricalloglikelihood"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.empiricalloglikelihood" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<dd><p>Empirical Log Likelihood of the probability distribution</p>
|
||||
<table class="docutils field-list" frame="void" rules="none">
|
||||
<col class="field-name" />
|
||||
<col class="field-body" />
|
||||
<tbody valign="top">
|
||||
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body"></td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="method">
|
||||
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.entropy">
|
||||
<code class="descname">entropy</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.entropy"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.entropy" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<dd><p>Return the entropy of the probability distribution, H[X] =</p>
|
||||
<p>:return:the entropy of the probability distribution</p>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="method">
|
||||
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.expected_value">
|
||||
<code class="descname">expected_value</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.expected_value"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.expected_value" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<dd><p>Return the expected value of the distribution, as E[X] = ∑ x * P(x)</p>
|
||||
<table class="docutils field-list" frame="void" rules="none">
|
||||
<col class="field-name" />
|
||||
<col class="field-body" />
|
||||
<tbody valign="top">
|
||||
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">The expected value of the distribution</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="method">
|
||||
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.kullbackleiblerdivergence">
|
||||
<code class="descname">kullbackleiblerdivergence</code><span class="sig-paren">(</span><em>q</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.kullbackleiblerdivergence"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.kullbackleiblerdivergence" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<dd><p>Kullback-Leibler divergence between the actual probability distribution and the informed one.</p>
|
||||
<table class="docutils field-list" frame="void" rules="none">
|
||||
<col class="field-name" />
|
||||
<col class="field-body" />
|
||||
<tbody valign="top">
|
||||
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>q</strong> – a probabilistic.ProbabilityDistribution object</td>
|
||||
</tr>
|
||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">Kullback-Leibler divergence</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="attribute">
|
||||
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.labels">
|
||||
@ -195,17 +299,52 @@ If type is KDE the PDF is continuous</p>
|
||||
<dl class="method">
|
||||
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.pseudologlikelihood">
|
||||
<code class="descname">pseudologlikelihood</code><span class="sig-paren">(</span><em>data</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.pseudologlikelihood"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.pseudologlikelihood" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<dd><p>Pseudo log likelihood of the probability distribution with respect to data</p>
|
||||
<table class="docutils field-list" frame="void" rules="none">
|
||||
<col class="field-name" />
|
||||
<col class="field-body" />
|
||||
<tbody valign="top">
|
||||
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>data</strong> – </td>
|
||||
</tr>
|
||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"></td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="method">
|
||||
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.quantile">
|
||||
<code class="descname">quantile</code><span class="sig-paren">(</span><em>values</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.quantile"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.quantile" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<dd><p>Return the quantile values for the input values</p>
|
||||
<table class="docutils field-list" frame="void" rules="none">
|
||||
<col class="field-name" />
|
||||
<col class="field-body" />
|
||||
<tbody valign="top">
|
||||
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>values</strong> – input values</td>
|
||||
</tr>
|
||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">The list of the quantile values for the input values</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="method">
|
||||
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.set">
|
||||
<code class="descname">set</code><span class="sig-paren">(</span><em>value</em>, <em>density</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/ProbabilityDistribution.html#ProbabilityDistribution.set"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.set" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<dd><p>Assert a probability ‘density’ for a certain value ‘value’, such that P(value) = density</p>
|
||||
<table class="docutils field-list" frame="void" rules="none">
|
||||
<col class="field-name" />
|
||||
<col class="field-body" />
|
||||
<tbody valign="top">
|
||||
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
|
||||
<li><strong>value</strong> – A value in the universe of discourse from the distribution</li>
|
||||
<li><strong>density</strong> – The probability density to assign to the value</li>
|
||||
</ul>
|
||||
</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="attribute">
|
||||
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.type">
|
||||
@ -246,7 +385,18 @@ If type is KDE the PDF is continuous</p>
|
||||
<dl class="method">
|
||||
<dt id="pyFTS.probabilistic.kde.KernelSmoothing.kernel_function">
|
||||
<code class="descname">kernel_function</code><span class="sig-paren">(</span><em>u</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/probabilistic/kde.html#KernelSmoothing.kernel_function"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.probabilistic.kde.KernelSmoothing.kernel_function" title="Permalink to this definition">¶</a></dt>
|
||||
<dd></dd></dl>
|
||||
<dd><p>Apply the kernel</p>
|
||||
<table class="docutils field-list" frame="void" rules="none">
|
||||
<col class="field-name" />
|
||||
<col class="field-body" />
|
||||
<tbody valign="top">
|
||||
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>u</strong> – </td>
|
||||
</tr>
|
||||
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"></td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</dd></dl>
|
||||
|
||||
<dl class="method">
|
||||
<dt id="pyFTS.probabilistic.kde.KernelSmoothing.probability">
|
||||
|
2
docs/build/html/searchindex.js
vendored
2
docs/build/html/searchindex.js
vendored
File diff suppressed because one or more lines are too long
@ -7,7 +7,7 @@ pyFTS module for common benchmark metrics
|
||||
import time
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from pyFTS.common import FuzzySet,SortedCollection
|
||||
from pyFTS.common import FuzzySet, SortedCollection
|
||||
from pyFTS.probabilistic import ProbabilityDistribution
|
||||
|
||||
|
||||
@ -23,10 +23,10 @@ def acf(data, k):
|
||||
sigma = np.var(data)
|
||||
n = len(data)
|
||||
s = 0
|
||||
for t in np.arange(0,n-k):
|
||||
s += (data[t]-mu) * (data[t+k] - mu)
|
||||
for t in np.arange(0, n - k):
|
||||
s += (data[t] - mu) * (data[t + k] - mu)
|
||||
|
||||
return 1/((n-k)*sigma)*s
|
||||
return 1 / ((n - k) * sigma) * s
|
||||
|
||||
|
||||
def rmse(targets, forecasts):
|
||||
@ -85,9 +85,9 @@ def smape(targets, forecasts, type=2):
|
||||
if isinstance(forecasts, list):
|
||||
forecasts = np.array(forecasts)
|
||||
if type == 1:
|
||||
return np.mean(np.abs(forecasts - targets) / ((forecasts + targets)/2))
|
||||
return np.mean(np.abs(forecasts - targets) / ((forecasts + targets) / 2))
|
||||
elif type == 2:
|
||||
return np.mean(np.abs(forecasts - targets) / (abs(forecasts) + abs(targets)) )*100
|
||||
return np.mean(np.abs(forecasts - targets) / (abs(forecasts) + abs(targets))) * 100
|
||||
else:
|
||||
return sum(np.abs(forecasts - targets)) / sum(forecasts + targets)
|
||||
|
||||
@ -113,8 +113,8 @@ def UStatistic(targets, forecasts):
|
||||
|
||||
naive = []
|
||||
y = []
|
||||
for k in np.arange(0,l-1):
|
||||
y.append((forecasts[k ] - targets[k]) ** 2)
|
||||
for k in np.arange(0, l - 1):
|
||||
y.append((forecasts[k] - targets[k]) ** 2)
|
||||
naive.append((targets[k + 1] - targets[k]) ** 2)
|
||||
return np.sqrt(sum(y) / sum(naive))
|
||||
|
||||
@ -129,11 +129,10 @@ def TheilsInequality(targets, forecasts):
|
||||
"""
|
||||
res = targets - forecasts
|
||||
t = len(res)
|
||||
us = np.sqrt(sum([u**2 for u in res]))
|
||||
ys = np.sqrt(sum([y**2 for y in targets]))
|
||||
fs = np.sqrt(sum([f**2 for f in forecasts]))
|
||||
return us / (ys + fs)
|
||||
|
||||
us = np.sqrt(sum([u ** 2 for u in res]))
|
||||
ys = np.sqrt(sum([y ** 2 for y in targets]))
|
||||
fs = np.sqrt(sum([f ** 2 for f in forecasts]))
|
||||
return us / (ys + fs)
|
||||
|
||||
|
||||
def BoxPierceStatistic(data, h):
|
||||
@ -146,10 +145,10 @@ def BoxPierceStatistic(data, h):
|
||||
"""
|
||||
n = len(data)
|
||||
s = 0
|
||||
for k in np.arange(1,h+1):
|
||||
for k in np.arange(1, h + 1):
|
||||
r = acf(data, k)
|
||||
s += r**2
|
||||
return n*s
|
||||
s += r ** 2
|
||||
return n * s
|
||||
|
||||
|
||||
def BoxLjungStatistic(data, h):
|
||||
@ -162,10 +161,10 @@ def BoxLjungStatistic(data, h):
|
||||
"""
|
||||
n = len(data)
|
||||
s = 0
|
||||
for k in np.arange(1,h+1):
|
||||
for k in np.arange(1, h + 1):
|
||||
r = acf(data, k)
|
||||
s += r**2 / (n -k)
|
||||
return n*(n-2)*s
|
||||
s += r ** 2 / (n - k)
|
||||
return n * (n - 2) * s
|
||||
|
||||
|
||||
def sharpness(forecasts):
|
||||
@ -174,7 +173,6 @@ def sharpness(forecasts):
|
||||
return np.mean(tmp)
|
||||
|
||||
|
||||
|
||||
def resolution(forecasts):
|
||||
"""Resolution - Standard deviation of the intervals"""
|
||||
shp = sharpness(forecasts)
|
||||
@ -230,9 +228,9 @@ def winkler_score(tau, target, forecast):
|
||||
if forecast[0] < target and target < forecast[1]:
|
||||
return delta
|
||||
elif forecast[0] > target:
|
||||
return delta + 2*(forecast[0] - target)/tau
|
||||
return delta + 2 * (forecast[0] - target) / tau
|
||||
elif forecast[1] < target:
|
||||
return delta + 2*(target - forecast[1])/tau
|
||||
return delta + 2 * (target - forecast[1]) / tau
|
||||
|
||||
|
||||
def winkler_mean(tau, targets, forecasts):
|
||||
@ -261,7 +259,7 @@ def brier_score(targets, densities):
|
||||
ret.append(score)
|
||||
except ValueError as ex:
|
||||
ret.append(sum([d.distribution[k] ** 2 for k in d.bins]))
|
||||
return sum(ret)/len(ret)
|
||||
return sum(ret) / len(ret)
|
||||
|
||||
|
||||
def pmf_to_cdf(density):
|
||||
@ -271,7 +269,7 @@ def pmf_to_cdf(density):
|
||||
prev = 0
|
||||
for col in density.columns:
|
||||
prev += density[col][row] if not np.isnan(density[col][row]) else 0
|
||||
tmp.append( prev )
|
||||
tmp.append(prev)
|
||||
ret.append(tmp)
|
||||
df = pd.DataFrame(ret, columns=density.columns)
|
||||
return df
|
||||
@ -280,6 +278,7 @@ def pmf_to_cdf(density):
|
||||
def heavyside(bin, target):
|
||||
return 1 if bin >= target else 0
|
||||
|
||||
|
||||
def heavyside_cdf(bins, targets):
|
||||
ret = []
|
||||
for t in targets:
|
||||
@ -304,7 +303,7 @@ def crps(targets, densities):
|
||||
l = len(densities[0].bins)
|
||||
n = len(densities)
|
||||
for ct, df in enumerate(densities):
|
||||
_crps += sum([(df.cummulative(bin) - (1 if bin >= targets[ct] else 0)) ** 2 for bin in df.bins])
|
||||
_crps += sum([(df.cumulative(bin) - (1 if bin >= targets[ct] else 0)) ** 2 for bin in df.bins])
|
||||
|
||||
return _crps / float(l * n)
|
||||
|
||||
@ -319,7 +318,7 @@ def get_point_statistics(data, model, **kwargs):
|
||||
:return: a list with the RMSE, SMAPE and U Statistic
|
||||
'''
|
||||
|
||||
steps_ahead = kwargs.get('steps_ahead',1)
|
||||
steps_ahead = kwargs.get('steps_ahead', 1)
|
||||
kwargs['type'] = 'point'
|
||||
|
||||
indexer = kwargs.get('indexer', None)
|
||||
@ -354,12 +353,12 @@ def get_point_statistics(data, model, **kwargs):
|
||||
else:
|
||||
steps_ahead_sampler = kwargs.get('steps_ahead_sampler', 1)
|
||||
nforecasts = []
|
||||
for k in np.arange(model.order, len(ndata)-steps_ahead,steps_ahead_sampler):
|
||||
for k in np.arange(model.order, len(ndata) - steps_ahead, steps_ahead_sampler):
|
||||
sample = ndata[k - model.order: k]
|
||||
tmp = model.predict(sample, **kwargs)
|
||||
nforecasts.append(tmp[-1])
|
||||
|
||||
start = model.max_lag + steps_ahead -1
|
||||
start = model.max_lag + steps_ahead - 1
|
||||
ret.append(np.round(rmse(ndata[start:-1:steps_ahead_sampler], nforecasts), 2))
|
||||
ret.append(np.round(mape(ndata[start:-1:steps_ahead_sampler], nforecasts), 2))
|
||||
ret.append(np.round(UStatistic(ndata[start:-1:steps_ahead_sampler], nforecasts), 2))
|
||||
@ -368,7 +367,7 @@ def get_point_statistics(data, model, **kwargs):
|
||||
|
||||
|
||||
def get_interval_statistics(data, model, **kwargs):
|
||||
'''
|
||||
"""
|
||||
Condensate all measures for point interval forecasters
|
||||
|
||||
:param data: test data
|
||||
@ -376,7 +375,7 @@ def get_interval_statistics(data, model, **kwargs):
|
||||
:param kwargs:
|
||||
:return: a list with the sharpness, resolution, coverage, .05 pinball mean,
|
||||
.25 pinball mean, .75 pinball mean and .95 pinball mean.
|
||||
'''
|
||||
"""
|
||||
|
||||
steps_ahead = kwargs.get('steps_ahead', 1)
|
||||
kwargs['type'] = 'interval'
|
||||
@ -401,7 +400,7 @@ def get_interval_statistics(data, model, **kwargs):
|
||||
tmp = model.predict(sample, **kwargs)
|
||||
forecasts.append(tmp[-1])
|
||||
|
||||
start = model.max_lag + steps_ahead -1
|
||||
start = model.max_lag + steps_ahead - 1
|
||||
ret.append(round(sharpness(forecasts), 2))
|
||||
ret.append(round(resolution(forecasts), 2))
|
||||
ret.append(round(coverage(data[model.max_lag:], forecasts), 2))
|
||||
@ -415,14 +414,14 @@ def get_interval_statistics(data, model, **kwargs):
|
||||
|
||||
|
||||
def get_distribution_statistics(data, model, **kwargs):
|
||||
'''
|
||||
"""
|
||||
Get CRPS statistic and time for a forecasting model
|
||||
|
||||
:param data: test data
|
||||
:param model: FTS model with probabilistic forecasting capability
|
||||
:param kwargs:
|
||||
:return: a list with the CRPS and execution time
|
||||
'''
|
||||
"""
|
||||
steps_ahead = kwargs.get('steps_ahead', 1)
|
||||
kwargs['type'] = 'distribution'
|
||||
|
||||
@ -450,5 +449,3 @@ def get_distribution_statistics(data, model, **kwargs):
|
||||
ret.append(round(_e1 - _s1, 3))
|
||||
ret.append(round(brier_score(data[start:-1:skip], forecasts), 3))
|
||||
return ret
|
||||
|
||||
|
||||
|
@ -166,7 +166,7 @@ class FTS(object):
|
||||
|
||||
:param data: time series data with the minimal length equal to the max_lag of the model
|
||||
:param kwargs: model specific parameters
|
||||
:return: a list with the forecasted intervals
|
||||
:return: a list with the prediction intervals
|
||||
"""
|
||||
raise NotImplementedError('This model do not perform one step ahead interval forecasts!')
|
||||
|
||||
@ -176,7 +176,7 @@ class FTS(object):
|
||||
|
||||
:param data: time series data with the minimal length equal to the max_lag of the model
|
||||
:param kwargs: model specific parameters
|
||||
:return: a list with the forecasted Probability Distributions
|
||||
:return: a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions
|
||||
"""
|
||||
raise NotImplementedError('This model do not perform one step ahead distribution forecasts!')
|
||||
|
||||
|
@ -61,10 +61,21 @@ class ProbabilityDistribution(object):
|
||||
self.name = kwargs.get("name", "")
|
||||
|
||||
def set(self, value, density):
|
||||
"""
|
||||
Assert a probability 'density' for a certain value 'value', such that P(value) = density
|
||||
|
||||
:param value: A value in the universe of discourse from the distribution
|
||||
:param density: The probability density to assign to the value
|
||||
"""
|
||||
k = self.bin_index.find_ge(value)
|
||||
self.distribution[k] = density
|
||||
|
||||
def append(self, values):
|
||||
"""
|
||||
Increment the frequency count for the values
|
||||
|
||||
:param values: A list of values to account the frequency
|
||||
"""
|
||||
if self.type == "histogram":
|
||||
for k in values:
|
||||
v = self.bin_index.find_ge(k)
|
||||
@ -78,6 +89,11 @@ class ProbabilityDistribution(object):
|
||||
self.distribution[self.bins[v]] = d
|
||||
|
||||
def append_interval(self, intervals):
|
||||
"""
|
||||
Increment the frequency count for all values inside an interval
|
||||
|
||||
:param intervals: A list of intervals do increment the frequency
|
||||
"""
|
||||
if self.type == "histogram":
|
||||
for interval in intervals:
|
||||
for k in self.bin_index.inside(interval[0], interval[1]):
|
||||
@ -85,6 +101,12 @@ class ProbabilityDistribution(object):
|
||||
self.count += 1
|
||||
|
||||
def density(self, values):
|
||||
"""
|
||||
Return the probability densities for the input values
|
||||
|
||||
:param values: List of values to return the densities
|
||||
:return: List of probability densities for the input values
|
||||
"""
|
||||
ret = []
|
||||
scalar = False
|
||||
|
||||
@ -109,6 +131,12 @@ class ProbabilityDistribution(object):
|
||||
return ret
|
||||
|
||||
def differential_offset(self, value):
|
||||
"""
|
||||
Auxiliary function for probability distributions of differentiated data
|
||||
|
||||
:param value:
|
||||
:return:
|
||||
"""
|
||||
nbins = []
|
||||
dist = {}
|
||||
|
||||
@ -127,6 +155,11 @@ class ProbabilityDistribution(object):
|
||||
self.qtl = None
|
||||
|
||||
def expected_value(self):
|
||||
"""
|
||||
Return the expected value of the distribution, as E[X] = ∑ x * P(x)
|
||||
|
||||
:return: The expected value of the distribution
|
||||
"""
|
||||
return np.nansum([v * self.distribution[v] for v in self.bins])
|
||||
|
||||
def build_cdf_qtl(self):
|
||||
@ -147,7 +180,13 @@ class ProbabilityDistribution(object):
|
||||
|
||||
self.quantile_index = SortedCollection.SortedCollection(iterable=_keys)
|
||||
|
||||
def cummulative(self, values):
|
||||
def cumulative(self, values):
|
||||
"""
|
||||
Return the cumulative probability densities for the input values
|
||||
|
||||
:param values: A list of input values
|
||||
:return: The cumulative probability densities for the input values
|
||||
"""
|
||||
if self.cdf is None:
|
||||
self.build_cdf_qtl()
|
||||
|
||||
@ -161,6 +200,12 @@ class ProbabilityDistribution(object):
|
||||
return self.cdf[values]
|
||||
|
||||
def quantile(self, values):
|
||||
"""
|
||||
Return the quantile values for the input values
|
||||
|
||||
:param values: input values
|
||||
:return: The list of the quantile values for the input values
|
||||
"""
|
||||
if self.qtl is None:
|
||||
self.build_cdf_qtl()
|
||||
|
||||
@ -176,21 +221,43 @@ class ProbabilityDistribution(object):
|
||||
return ret
|
||||
|
||||
def entropy(self):
|
||||
"""
|
||||
Return the entropy of the probability distribution, H[X] =
|
||||
|
||||
:return:the entropy of the probability distribution
|
||||
"""
|
||||
h = -sum([self.distribution[k] * np.log(self.distribution[k]) if self.distribution[k] > 0 else 0
|
||||
for k in self.bins])
|
||||
return h
|
||||
|
||||
def crossentropy(self,q):
|
||||
"""
|
||||
Cross entropy between the actual probability distribution and the informed one.
|
||||
|
||||
:param q: a probabilistic.ProbabilityDistribution object
|
||||
:return: Cross entropy between this probability distribution and the given distribution
|
||||
"""
|
||||
h = -sum([self.distribution[k] * np.log(q.distribution[k]) if self.distribution[k] > 0 else 0
|
||||
for k in self.bins])
|
||||
return h
|
||||
|
||||
def kullbackleiblerdivergence(self,q):
|
||||
"""
|
||||
Kullback-Leibler divergence between the actual probability distribution and the informed one.
|
||||
|
||||
:param q: a probabilistic.ProbabilityDistribution object
|
||||
:return: Kullback-Leibler divergence
|
||||
"""
|
||||
h = sum([self.distribution[k] * np.log(self.distribution[k]/q.distribution[k]) if self.distribution[k] > 0 else 0
|
||||
for k in self.bins])
|
||||
return h
|
||||
|
||||
def empiricalloglikelihood(self):
|
||||
"""
|
||||
Empirical Log Likelihood of the probability distribution
|
||||
|
||||
:return:
|
||||
"""
|
||||
_s = 0
|
||||
for k in self.bins:
|
||||
if self.distribution[k] > 0:
|
||||
@ -198,6 +265,12 @@ class ProbabilityDistribution(object):
|
||||
return _s
|
||||
|
||||
def pseudologlikelihood(self, data):
|
||||
"""
|
||||
Pseudo log likelihood of the probability distribution with respect to data
|
||||
|
||||
:param data:
|
||||
:return:
|
||||
"""
|
||||
|
||||
densities = self.density(data)
|
||||
|
||||
@ -208,6 +281,12 @@ class ProbabilityDistribution(object):
|
||||
return _s
|
||||
|
||||
def averageloglikelihood(self, data):
|
||||
"""
|
||||
Average log likelihood of the probability distribution with respect to data
|
||||
|
||||
:param data:
|
||||
:return:
|
||||
"""
|
||||
|
||||
densities = self.density(data)
|
||||
|
||||
|
@ -18,6 +18,12 @@ class KernelSmoothing(object):
|
||||
self.transf = Transformations.Scale(min=0,max=1)
|
||||
|
||||
def kernel_function(self, u):
|
||||
"""
|
||||
Apply the kernel
|
||||
|
||||
:param u:
|
||||
:return:
|
||||
"""
|
||||
if self.kernel == "epanechnikov":
|
||||
tmp = (3/4)*(1.0 - u**2)
|
||||
return tmp if tmp > 0 else 0
|
||||
|
Loading…
Reference in New Issue
Block a user