diff --git a/docs/build/doctrees/environment.pickle b/docs/build/doctrees/environment.pickle index 4f44043..b127453 100644 Binary files a/docs/build/doctrees/environment.pickle and b/docs/build/doctrees/environment.pickle differ diff --git a/docs/build/doctrees/pyFTS.benchmarks.doctree b/docs/build/doctrees/pyFTS.benchmarks.doctree index a2dc180..0251184 100644 Binary files a/docs/build/doctrees/pyFTS.benchmarks.doctree and b/docs/build/doctrees/pyFTS.benchmarks.doctree differ diff --git a/docs/build/doctrees/pyFTS.common.doctree b/docs/build/doctrees/pyFTS.common.doctree index 6aaf1d1..12205ff 100644 Binary files a/docs/build/doctrees/pyFTS.common.doctree and b/docs/build/doctrees/pyFTS.common.doctree differ diff --git a/docs/build/doctrees/pyFTS.probabilistic.doctree b/docs/build/doctrees/pyFTS.probabilistic.doctree index 7b1035d..a264c17 100644 Binary files a/docs/build/doctrees/pyFTS.probabilistic.doctree and b/docs/build/doctrees/pyFTS.probabilistic.doctree differ diff --git a/docs/build/html/_modules/pyFTS/benchmarks/Measures.html b/docs/build/html/_modules/pyFTS/benchmarks/Measures.html index 01187bf..d646a8a 100644 --- a/docs/build/html/_modules/pyFTS/benchmarks/Measures.html +++ b/docs/build/html/_modules/pyFTS/benchmarks/Measures.html @@ -81,7 +81,7 @@ import time import numpy as np import pandas as pd -from pyFTS.common import FuzzySet,SortedCollection +from pyFTS.common import FuzzySet, SortedCollection from pyFTS.probabilistic import ProbabilityDistribution @@ -97,10 +97,10 @@ sigma = np.var(data) n = len(data) s = 0 - for t in np.arange(0,n-k): - s += (data[t]-mu) * (data[t+k] - mu) + for t in np.arange(0, n - k): + s += (data[t] - mu) * (data[t + k] - mu) - return 1/((n-k)*sigma)*s + return 1 / ((n - k) * sigma) * s
[docs]def rmse(targets, forecasts): @@ -159,9 +159,9 @@ if isinstance(forecasts, list): forecasts = np.array(forecasts) if type == 1: - return np.mean(np.abs(forecasts - targets) / ((forecasts + targets)/2)) + return np.mean(np.abs(forecasts - targets) / ((forecasts + targets) / 2)) elif type == 2: - return np.mean(np.abs(forecasts - targets) / (abs(forecasts) + abs(targets)) )*100 + return np.mean(np.abs(forecasts - targets) / (abs(forecasts) + abs(targets))) * 100 else: return sum(np.abs(forecasts - targets)) / sum(forecasts + targets)
@@ -187,8 +187,8 @@ naive = [] y = [] - for k in np.arange(0,l-1): - y.append((forecasts[k ] - targets[k]) ** 2) + for k in np.arange(0, l - 1): + y.append((forecasts[k] - targets[k]) ** 2) naive.append((targets[k + 1] - targets[k]) ** 2) return np.sqrt(sum(y) / sum(naive)) @@ -203,11 +203,10 @@ """ res = targets - forecasts t = len(res) - us = np.sqrt(sum([u**2 for u in res])) - ys = np.sqrt(sum([y**2 for y in targets])) - fs = np.sqrt(sum([f**2 for f in forecasts])) - return us / (ys + fs) - + us = np.sqrt(sum([u ** 2 for u in res])) + ys = np.sqrt(sum([y ** 2 for y in targets])) + fs = np.sqrt(sum([f ** 2 for f in forecasts])) + return us / (ys + fs)
[docs]def BoxPierceStatistic(data, h): @@ -220,10 +219,10 @@ """ n = len(data) s = 0 - for k in np.arange(1,h+1): + for k in np.arange(1, h + 1): r = acf(data, k) - s += r**2 - return n*s
+ s += r ** 2 + return n * s
[docs]def BoxLjungStatistic(data, h): @@ -236,10 +235,10 @@ """ n = len(data) s = 0 - for k in np.arange(1,h+1): + for k in np.arange(1, h + 1): r = acf(data, k) - s += r**2 / (n -k) - return n*(n-2)*s
+ s += r ** 2 / (n - k) + return n * (n - 2) * s
[docs]def sharpness(forecasts): @@ -248,7 +247,6 @@ return np.mean(tmp)
-
[docs]def resolution(forecasts): """Resolution - Standard deviation of the intervals""" shp = sharpness(forecasts) @@ -304,9 +302,9 @@ if forecast[0] < target and target < forecast[1]: return delta elif forecast[0] > target: - return delta + 2*(forecast[0] - target)/tau + return delta + 2 * (forecast[0] - target) / tau elif forecast[1] < target: - return delta + 2*(target - forecast[1])/tau
+ return delta + 2 * (target - forecast[1]) / tau
[docs]def winkler_mean(tau, targets, forecasts): @@ -335,7 +333,7 @@ ret.append(score) except ValueError as ex: ret.append(sum([d.distribution[k] ** 2 for k in d.bins])) - return sum(ret)/len(ret)
+ return sum(ret) / len(ret)
[docs]def pmf_to_cdf(density): @@ -345,7 +343,7 @@ prev = 0 for col in density.columns: prev += density[col][row] if not np.isnan(density[col][row]) else 0 - tmp.append( prev ) + tmp.append(prev) ret.append(tmp) df = pd.DataFrame(ret, columns=density.columns) return df
@@ -354,6 +352,7 @@
[docs]def heavyside(bin, target): return 1 if bin >= target else 0
+
[docs]def heavyside_cdf(bins, targets): ret = [] for t in targets: @@ -378,7 +377,7 @@ l = len(densities[0].bins) n = len(densities) for ct, df in enumerate(densities): - _crps += sum([(df.cummulative(bin) - (1 if bin >= targets[ct] else 0)) ** 2 for bin in df.bins]) + _crps += sum([(df.cumulative(bin) - (1 if bin >= targets[ct] else 0)) ** 2 for bin in df.bins]) return _crps / float(l * n)
@@ -393,7 +392,7 @@ :return: a list with the RMSE, SMAPE and U Statistic ''' - steps_ahead = kwargs.get('steps_ahead',1) + steps_ahead = kwargs.get('steps_ahead', 1) kwargs['type'] = 'point' indexer = kwargs.get('indexer', None) @@ -411,7 +410,7 @@ if steps_ahead == 1: forecasts = model.predict(ndata, **kwargs) - + if model.is_multivariate and model.has_seasonality: ndata = model.indexer.get_data(ndata) elif model.is_multivariate: @@ -428,12 +427,12 @@ else: steps_ahead_sampler = kwargs.get('steps_ahead_sampler', 1) nforecasts = [] - for k in np.arange(model.order, len(ndata)-steps_ahead,steps_ahead_sampler): + for k in np.arange(model.order, len(ndata) - steps_ahead, steps_ahead_sampler): sample = ndata[k - model.order: k] tmp = model.predict(sample, **kwargs) nforecasts.append(tmp[-1]) - start = model.max_lag + steps_ahead -1 + start = model.max_lag + steps_ahead - 1 ret.append(np.round(rmse(ndata[start:-1:steps_ahead_sampler], nforecasts), 2)) ret.append(np.round(mape(ndata[start:-1:steps_ahead_sampler], nforecasts), 2)) ret.append(np.round(UStatistic(ndata[start:-1:steps_ahead_sampler], nforecasts), 2)) @@ -442,7 +441,7 @@
[docs]def get_interval_statistics(data, model, **kwargs): - ''' + """ Condensate all measures for point interval forecasters :param data: test data @@ -450,7 +449,7 @@ :param kwargs: :return: a list with the sharpness, resolution, coverage, .05 pinball mean, .25 pinball mean, .75 pinball mean and .95 pinball mean. - ''' + """ steps_ahead = kwargs.get('steps_ahead', 1) kwargs['type'] = 'interval' @@ -475,7 +474,7 @@ tmp = model.predict(sample, **kwargs) forecasts.append(tmp[-1]) - start = model.max_lag + steps_ahead -1 + start = model.max_lag + steps_ahead - 1 ret.append(round(sharpness(forecasts), 2)) ret.append(round(resolution(forecasts), 2)) ret.append(round(coverage(data[model.max_lag:], forecasts), 2)) @@ -489,14 +488,14 @@
[docs]def get_distribution_statistics(data, model, **kwargs): - ''' + """ Get CRPS statistic and time for a forecasting model :param data: test data :param model: FTS model with probabilistic forecasting capability :param kwargs: :return: a list with the CRPS and execution time - ''' + """ steps_ahead = kwargs.get('steps_ahead', 1) kwargs['type'] = 'distribution' @@ -524,8 +523,6 @@ ret.append(round(_e1 - _s1, 3)) ret.append(round(brier_score(data[start:-1:skip], forecasts), 3)) return ret
- -
diff --git a/docs/build/html/_modules/pyFTS/common/FuzzySet.html b/docs/build/html/_modules/pyFTS/common/FuzzySet.html index 2ea3b36..18ab7b9 100644 --- a/docs/build/html/_modules/pyFTS/common/FuzzySet.html +++ b/docs/build/html/_modules/pyFTS/common/FuzzySet.html @@ -146,17 +146,23 @@ :param ordered_sets: a list with the fuzzy sets names ordered by their centroids. :return: A list with the best fuzzy sets that may contain x """ - max_len = len(fuzzy_sets) + max_len = len(fuzzy_sets) - 1 first = 0 last = max_len while first <= last: midpoint = (first + last) // 2 + fs = ordered_sets[midpoint] fs1 = ordered_sets[midpoint - 1] if midpoint > 0 else ordered_sets[0] fs2 = ordered_sets[midpoint + 1] if midpoint < max_len else ordered_sets[max_len] + if fuzzy_sets[fs1].centroid <= x <= fuzzy_sets[fs2].centroid: return (midpoint-1, midpoint, midpoint+1) + elif midpoint <= 1: + return [0] + elif midpoint >= max_len: + return [max_len] else: if x < fuzzy_sets[fs].centroid: last = midpoint - 1 @@ -164,6 +170,7 @@ first = midpoint + 1 +
[docs]def fuzzyfy(data, partitioner, **kwargs): """ A general method for fuzzyfication. diff --git a/docs/build/html/_modules/pyFTS/common/fts.html b/docs/build/html/_modules/pyFTS/common/fts.html index 0b2b63e..ae66fd4 100644 --- a/docs/build/html/_modules/pyFTS/common/fts.html +++ b/docs/build/html/_modules/pyFTS/common/fts.html @@ -240,7 +240,7 @@ :param data: time series data with the minimal length equal to the max_lag of the model :param kwargs: model specific parameters - :return: a list with the forecasted intervals + :return: a list with the prediction intervals """ raise NotImplementedError('This model do not perform one step ahead interval forecasts!')
@@ -250,7 +250,7 @@ :param data: time series data with the minimal length equal to the max_lag of the model :param kwargs: model specific parameters - :return: a list with the forecasted Probability Distributions + :return: a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions """ raise NotImplementedError('This model do not perform one step ahead distribution forecasts!') diff --git a/docs/build/html/_modules/pyFTS/models/chen.html b/docs/build/html/_modules/pyFTS/models/chen.html index 485d328..4623c94 100644 --- a/docs/build/html/_modules/pyFTS/models/chen.html +++ b/docs/build/html/_modules/pyFTS/models/chen.html @@ -124,7 +124,7 @@
[docs] def train(self, data, **kwargs): - tmpdata = FuzzySet.fuzzyfy_series(data, self.sets, method='maximum') + tmpdata = FuzzySet.fuzzyfy(data, partitioner=self.partitioner, method='maximum', mode='sets') flrs = FLR.generate_non_recurrent_flrs(tmpdata) self.generate_flrg(flrs)
diff --git a/docs/build/html/_modules/pyFTS/models/ismailefendi.html b/docs/build/html/_modules/pyFTS/models/ismailefendi.html index 2b85b82..007804a 100644 --- a/docs/build/html/_modules/pyFTS/models/ismailefendi.html +++ b/docs/build/html/_modules/pyFTS/models/ismailefendi.html @@ -136,7 +136,7 @@
[docs] def train(self, ndata, **kwargs): - tmpdata = FuzzySet.fuzzyfy_series(ndata, self.sets, method='maximum') + tmpdata = FuzzySet.fuzzyfy(ndata, partitioner=self.partitioner, method='maximum', mode='sets') flrs = FLR.generate_recurrent_flrs(tmpdata) self.generate_flrg(flrs)
diff --git a/docs/build/html/_modules/pyFTS/models/sadaei.html b/docs/build/html/_modules/pyFTS/models/sadaei.html index 80da7d0..de65e0a 100644 --- a/docs/build/html/_modules/pyFTS/models/sadaei.html +++ b/docs/build/html/_modules/pyFTS/models/sadaei.html @@ -140,7 +140,7 @@ self.flrgs[flr.LHS].append_rhs(flr.RHS)
[docs] def train(self, data, **kwargs): - tmpdata = FuzzySet.fuzzyfy_series(data, self.sets, method='maximum') + tmpdata = FuzzySet.fuzzyfy(data, partitioner=self.partitioner, method='maximum', mode='sets') flrs = FLR.generate_recurrent_flrs(tmpdata) self.generate_flrg(flrs, self.c)
diff --git a/docs/build/html/_modules/pyFTS/models/song.html b/docs/build/html/_modules/pyFTS/models/song.html index 91b1d9d..084cc08 100644 --- a/docs/build/html/_modules/pyFTS/models/song.html +++ b/docs/build/html/_modules/pyFTS/models/song.html @@ -124,7 +124,7 @@
[docs] def train(self, data, **kwargs): - tmpdata = FuzzySet.fuzzyfy_series(data, self.sets, method='maximum') + tmpdata = FuzzySet.fuzzyfy(data, partitioner=self.partitioner, method='maximum', mode='sets') flrs = FLR.generate_non_recurrent_flrs(tmpdata) self.operation_matrix(flrs)
diff --git a/docs/build/html/_modules/pyFTS/models/yu.html b/docs/build/html/_modules/pyFTS/models/yu.html index 7fea056..bd54588 100644 --- a/docs/build/html/_modules/pyFTS/models/yu.html +++ b/docs/build/html/_modules/pyFTS/models/yu.html @@ -132,7 +132,7 @@ self.flrgs[flr.LHS].append_rhs(flr.RHS)
[docs] def train(self, ndata, **kwargs): - tmpdata = FuzzySet.fuzzyfy_series(ndata, self.sets, method='maximum') + tmpdata = FuzzySet.fuzzyfy(ndata, partitioner=self.partitioner, method='maximum', mode='sets') flrs = FLR.generate_recurrent_flrs(tmpdata) self.generate_FLRG(flrs)
diff --git a/docs/build/html/_modules/pyFTS/probabilistic/ProbabilityDistribution.html b/docs/build/html/_modules/pyFTS/probabilistic/ProbabilityDistribution.html index dd830e1..cbe2d27 100644 --- a/docs/build/html/_modules/pyFTS/probabilistic/ProbabilityDistribution.html +++ b/docs/build/html/_modules/pyFTS/probabilistic/ProbabilityDistribution.html @@ -135,10 +135,21 @@ self.name = kwargs.get("name", "")
[docs] def set(self, value, density): + """ + Assert a probability 'density' for a certain value 'value', such that P(value) = density + + :param value: A value in the universe of discourse from the distribution + :param density: The probability density to assign to the value + """ k = self.bin_index.find_ge(value) self.distribution[k] = density
[docs] def append(self, values): + """ + Increment the frequency count for the values + + :param values: A list of values to account the frequency + """ if self.type == "histogram": for k in values: v = self.bin_index.find_ge(k) @@ -152,6 +163,11 @@ self.distribution[self.bins[v]] = d
[docs] def append_interval(self, intervals): + """ + Increment the frequency count for all values inside an interval + + :param intervals: A list of intervals do increment the frequency + """ if self.type == "histogram": for interval in intervals: for k in self.bin_index.inside(interval[0], interval[1]): @@ -159,6 +175,12 @@ self.count += 1
[docs] def density(self, values): + """ + Return the probability densities for the input values + + :param values: List of values to return the densities + :return: List of probability densities for the input values + """ ret = [] scalar = False @@ -183,6 +205,12 @@ return ret
[docs] def differential_offset(self, value): + """ + Auxiliary function for probability distributions of differentiated data + + :param value: + :return: + """ nbins = [] dist = {} @@ -201,6 +229,11 @@ self.qtl = None
[docs] def expected_value(self): + """ + Return the expected value of the distribution, as E[X] = ∑ x * P(x) + + :return: The expected value of the distribution + """ return np.nansum([v * self.distribution[v] for v in self.bins])
[docs] def build_cdf_qtl(self): @@ -221,7 +254,13 @@ self.quantile_index = SortedCollection.SortedCollection(iterable=_keys)
-
[docs] def cummulative(self, values): +
[docs] def cumulative(self, values): + """ + Return the cumulative probability densities for the input values + + :param values: A list of input values + :return: The cumulative probability densities for the input values + """ if self.cdf is None: self.build_cdf_qtl() @@ -235,6 +274,12 @@ return self.cdf[values]
[docs] def quantile(self, values): + """ + Return the quantile values for the input values + + :param values: input values + :return: The list of the quantile values for the input values + """ if self.qtl is None: self.build_cdf_qtl() @@ -250,21 +295,43 @@ return ret
[docs] def entropy(self): + """ + Return the entropy of the probability distribution, H[X] = + + :return:the entropy of the probability distribution + """ h = -sum([self.distribution[k] * np.log(self.distribution[k]) if self.distribution[k] > 0 else 0 for k in self.bins]) return h
[docs] def crossentropy(self,q): + """ + Cross entropy between the actual probability distribution and the informed one. + + :param q: a probabilistic.ProbabilityDistribution object + :return: Cross entropy between this probability distribution and the given distribution + """ h = -sum([self.distribution[k] * np.log(q.distribution[k]) if self.distribution[k] > 0 else 0 for k in self.bins]) return h
[docs] def kullbackleiblerdivergence(self,q): + """ + Kullback-Leibler divergence between the actual probability distribution and the informed one. + + :param q: a probabilistic.ProbabilityDistribution object + :return: Kullback-Leibler divergence + """ h = sum([self.distribution[k] * np.log(self.distribution[k]/q.distribution[k]) if self.distribution[k] > 0 else 0 for k in self.bins]) return h
[docs] def empiricalloglikelihood(self): + """ + Empirical Log Likelihood of the probability distribution + + :return: + """ _s = 0 for k in self.bins: if self.distribution[k] > 0: @@ -272,6 +339,12 @@ return _s
[docs] def pseudologlikelihood(self, data): + """ + Pseudo log likelihood of the probability distribution with respect to data + + :param data: + :return: + """ densities = self.density(data) @@ -282,6 +355,12 @@ return _s
[docs] def averageloglikelihood(self, data): + """ + Average log likelihood of the probability distribution with respect to data + + :param data: + :return: + """ densities = self.density(data) diff --git a/docs/build/html/_modules/pyFTS/probabilistic/kde.html b/docs/build/html/_modules/pyFTS/probabilistic/kde.html index 370fe66..1b2dc6b 100644 --- a/docs/build/html/_modules/pyFTS/probabilistic/kde.html +++ b/docs/build/html/_modules/pyFTS/probabilistic/kde.html @@ -92,6 +92,12 @@ self.transf = Transformations.Scale(min=0,max=1)
[docs] def kernel_function(self, u): + """ + Apply the kernel + + :param u: + :return: + """ if self.kernel == "epanechnikov": tmp = (3/4)*(1.0 - u**2) return tmp if tmp > 0 else 0 diff --git a/docs/build/html/genindex.html b/docs/build/html/genindex.html index d3e38f4..cf59e77 100644 --- a/docs/build/html/genindex.html +++ b/docs/build/html/genindex.html @@ -362,7 +362,7 @@
  • crps() (in module pyFTS.benchmarks.Measures)
  • -
  • cummulative() (pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution method) +
  • cumulative() (pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution method)
  • current_milli_time() (in module pyFTS.common.Util)
  • diff --git a/docs/build/html/objects.inv b/docs/build/html/objects.inv index d5cb636..0bbabca 100644 Binary files a/docs/build/html/objects.inv and b/docs/build/html/objects.inv differ diff --git a/docs/build/html/pyFTS.benchmarks.html b/docs/build/html/pyFTS.benchmarks.html index fb3a96d..2666697 100644 --- a/docs/build/html/pyFTS.benchmarks.html +++ b/docs/build/html/pyFTS.benchmarks.html @@ -1430,7 +1430,7 @@ Value: the measure value

    -Returns:

    a list with the forecasted Probability Distributions

    +Returns:

    a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions

    @@ -1451,7 +1451,7 @@ Value: the measure value

    -Returns:

    a list with the forecasted intervals

    +Returns:

    a list with the prediction intervals

    @@ -1505,7 +1505,7 @@ Value: the measure value

    -Returns:

    a list with the forecasted Probability Distributions

    +Returns:

    a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions

    @@ -1655,7 +1655,7 @@ Value: the measure value

    -Returns:

    a list with the forecasted Probability Distributions

    +Returns:

    a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions

    @@ -1676,7 +1676,7 @@ Value: the measure value

    -Returns:

    a list with the forecasted intervals

    +Returns:

    a list with the prediction intervals

    diff --git a/docs/build/html/pyFTS.common.html b/docs/build/html/pyFTS.common.html index 479e27f..613ee7e 100644 --- a/docs/build/html/pyFTS.common.html +++ b/docs/build/html/pyFTS.common.html @@ -1648,7 +1648,7 @@ when the LHS pattern is identified on time t.

    -Returns:

    a list with the forecasted Probability Distributions

    +Returns:

    a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions

    @@ -1669,7 +1669,7 @@ when the LHS pattern is identified on time t.

    -Returns:

    a list with the forecasted intervals

    +Returns:

    a list with the prediction intervals

    diff --git a/docs/build/html/pyFTS.probabilistic.html b/docs/build/html/pyFTS.probabilistic.html index a240e8c..9954767 100644 --- a/docs/build/html/pyFTS.probabilistic.html +++ b/docs/build/html/pyFTS.probabilistic.html @@ -118,17 +118,46 @@ If type is KDE the PDF is continuous

    append(values)[source]
    -
    +

    Increment the frequency count for the values

    + +++ + + + +
    Parameters:values – A list of values to account the frequency
    +
    append_interval(intervals)[source]
    -
    +

    Increment the frequency count for all values inside an interval

    + +++ + + + +
    Parameters:intervals – A list of intervals do increment the frequency
    +
    averageloglikelihood(data)[source]
    -
    +

    Average log likelihood of the probability distribution with respect to data

    + +++ + + + + + +
    Parameters:data
    Returns:
    +
    @@ -144,42 +173,117 @@ If type is KDE the PDF is continuous

    crossentropy(q)[source]
    -
    +

    Cross entropy between the actual probability distribution and the informed one.

    + +++ + + + + + +
    Parameters:q – a probabilistic.ProbabilityDistribution object
    Returns:Cross entropy between this probability distribution and the given distribution
    +
    -
    -cummulative(values)[source]
    -
    +
    +cumulative(values)[source]
    +

    Return the cumulative probability densities for the input values

    + +++ + + + + + +
    Parameters:values – A list of input values
    Returns:The cumulative probability densities for the input values
    +
    density(values)[source]
    -
    +

    Return the probability densities for the input values

    + +++ + + + + + +
    Parameters:values – List of values to return the densities
    Returns:List of probability densities for the input values
    +
    differential_offset(value)[source]
    -
    +

    Auxiliary function for probability distributions of differentiated data

    + +++ + + + + + +
    Parameters:value
    Returns:
    +
    empiricalloglikelihood()[source]
    -
    +

    Empirical Log Likelihood of the probability distribution

    + +++ + + + +
    Returns:
    +
    entropy()[source]
    -
    +

    Return the entropy of the probability distribution, H[X] =

    +

    :return:the entropy of the probability distribution

    +
    expected_value()[source]
    -
    +

    Return the expected value of the distribution, as E[X] = ∑ x * P(x)

    + +++ + + + +
    Returns:The expected value of the distribution
    +
    kullbackleiblerdivergence(q)[source]
    -
    +

    Kullback-Leibler divergence between the actual probability distribution and the informed one.

    + +++ + + + + + +
    Parameters:q – a probabilistic.ProbabilityDistribution object
    Returns:Kullback-Leibler divergence
    +
    @@ -195,17 +299,52 @@ If type is KDE the PDF is continuous

    pseudologlikelihood(data)[source]
    -
    +

    Pseudo log likelihood of the probability distribution with respect to data

    + +++ + + + + + +
    Parameters:data
    Returns:
    +
    quantile(values)[source]
    -
    +

    Return the quantile values for the input values

    + +++ + + + + + +
    Parameters:values – input values
    Returns:The list of the quantile values for the input values
    +
    set(value, density)[source]
    -
    +

    Assert a probability ‘density’ for a certain value ‘value’, such that P(value) = density

    + +++ + + + +
    Parameters:
      +
    • value – A value in the universe of discourse from the distribution
    • +
    • density – The probability density to assign to the value
    • +
    +
    +
    @@ -246,7 +385,18 @@ If type is KDE the PDF is continuous

    kernel_function(u)[source]
    -
    +

    Apply the kernel

    + +++ + + + + + +
    Parameters:u
    Returns:
    +
    diff --git a/docs/build/html/searchindex.js b/docs/build/html/searchindex.js index 1e04a06..aeb5a16 100644 --- a/docs/build/html/searchindex.js +++ b/docs/build/html/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["index","modules","pyFTS","pyFTS.benchmarks","pyFTS.common","pyFTS.data","pyFTS.models","pyFTS.models.ensemble","pyFTS.models.multivariate","pyFTS.models.nonstationary","pyFTS.models.seasonal","pyFTS.partitioners","pyFTS.probabilistic","quickstart"],envversion:53,filenames:["index.rst","modules.rst","pyFTS.rst","pyFTS.benchmarks.rst","pyFTS.common.rst","pyFTS.data.rst","pyFTS.models.rst","pyFTS.models.ensemble.rst","pyFTS.models.multivariate.rst","pyFTS.models.nonstationary.rst","pyFTS.models.seasonal.rst","pyFTS.partitioners.rst","pyFTS.probabilistic.rst","quickstart.rst"],objects:{"":{pyFTS:[2,0,0,"-"]},"pyFTS.benchmarks":{Measures:[3,0,0,"-"],ResidualAnalysis:[3,0,0,"-"],Util:[3,0,0,"-"],arima:[3,0,0,"-"],benchmarks:[3,0,0,"-"],knn:[3,0,0,"-"],naive:[3,0,0,"-"],quantreg:[3,0,0,"-"]},"pyFTS.benchmarks.Measures":{BoxLjungStatistic:[3,1,1,""],BoxPierceStatistic:[3,1,1,""],TheilsInequality:[3,1,1,""],UStatistic:[3,1,1,""],acf:[3,1,1,""],brier_score:[3,1,1,""],coverage:[3,1,1,""],crps:[3,1,1,""],get_distribution_statistics:[3,1,1,""],get_interval_statistics:[3,1,1,""],get_point_statistics:[3,1,1,""],heavyside:[3,1,1,""],heavyside_cdf:[3,1,1,""],mape:[3,1,1,""],mape_interval:[3,1,1,""],pinball:[3,1,1,""],pinball_mean:[3,1,1,""],pmf_to_cdf:[3,1,1,""],resolution:[3,1,1,""],rmse:[3,1,1,""],rmse_interval:[3,1,1,""],sharpness:[3,1,1,""],smape:[3,1,1,""],winkler_mean:[3,1,1,""],winkler_score:[3,1,1,""]},"pyFTS.benchmarks.ResidualAnalysis":{chi_squared:[3,1,1,""],compare_residuals:[3,1,1,""],plotResiduals:[3,1,1,""],plot_residuals:[3,1,1,""],residuals:[3,1,1,""],single_plot_residuals:[3,1,1,""]},"pyFTS.benchmarks.Util":{analytic_tabular_dataframe:[3,1,1,""],analytical_data_columns:[3,1,1,""],base_dataframe_columns:[3,1,1,""],cast_dataframe_to_synthetic:[3,1,1,""],cast_dataframe_to_synthetic_interval:[3,1,1,""],cast_dataframe_to_synthetic_point:[3,1,1,""],cast_dataframe_to_synthetic_probabilistic:[3,1,1,""],check_ignore_list:[3,1,1,""],check_replace_list:[3,1,1,""],create_benchmark_tables:[3,1,1,""],extract_measure:[3,1,1,""],find_best:[3,1,1,""],get_dataframe_from_bd:[3,1,1,""],insert_benchmark:[3,1,1,""],interval_dataframe_analytic_columns:[3,1,1,""],interval_dataframe_synthetic_columns:[3,1,1,""],open_benchmark_db:[3,1,1,""],plot_dataframe_interval:[3,1,1,""],plot_dataframe_interval_pinball:[3,1,1,""],plot_dataframe_point:[3,1,1,""],plot_dataframe_probabilistic:[3,1,1,""],point_dataframe_analytic_columns:[3,1,1,""],point_dataframe_synthetic_columns:[3,1,1,""],probabilistic_dataframe_analytic_columns:[3,1,1,""],probabilistic_dataframe_synthetic_columns:[3,1,1,""],process_common_data:[3,1,1,""],save_dataframe_interval:[3,1,1,""],save_dataframe_point:[3,1,1,""],save_dataframe_probabilistic:[3,1,1,""],scale:[3,1,1,""],scale_params:[3,1,1,""],stats:[3,1,1,""],tabular_dataframe_columns:[3,1,1,""],unified_scaled_interval:[3,1,1,""],unified_scaled_interval_pinball:[3,1,1,""],unified_scaled_point:[3,1,1,""],unified_scaled_probabilistic:[3,1,1,""]},"pyFTS.benchmarks.arima":{ARIMA:[3,2,1,""]},"pyFTS.benchmarks.arima.ARIMA":{ar:[3,3,1,""],forecast:[3,3,1,""],forecast_ahead_distribution:[3,3,1,""],forecast_ahead_interval:[3,3,1,""],forecast_distribution:[3,3,1,""],forecast_interval:[3,3,1,""],ma:[3,3,1,""],train:[3,3,1,""]},"pyFTS.benchmarks.benchmarks":{SelecaoSimples_MenorRMSE:[3,1,1,""],compareModelsPlot:[3,1,1,""],compareModelsTable:[3,1,1,""],get_benchmark_interval_methods:[3,1,1,""],get_benchmark_point_methods:[3,1,1,""],get_benchmark_probabilistic_methods:[3,1,1,""],get_interval_methods:[3,1,1,""],get_point_methods:[3,1,1,""],get_probabilistic_methods:[3,1,1,""],pftsExploreOrderAndPartitions:[3,1,1,""],plotCompared:[3,1,1,""],plot_compared_intervals_ahead:[3,1,1,""],plot_compared_series:[3,1,1,""],plot_density_rectange:[3,1,1,""],plot_distribution:[3,1,1,""],plot_interval:[3,1,1,""],plot_point:[3,1,1,""],plot_probability_distributions:[3,1,1,""],print_distribution_statistics:[3,1,1,""],print_interval_statistics:[3,1,1,""],print_point_statistics:[3,1,1,""],process_interval_jobs:[3,1,1,""],process_point_jobs:[3,1,1,""],process_probabilistic_jobs:[3,1,1,""],run_interval:[3,1,1,""],run_point:[3,1,1,""],run_probabilistic:[3,1,1,""],simpleSearch_RMSE:[3,1,1,""],sliding_window_benchmarks:[3,1,1,""]},"pyFTS.benchmarks.knn":{KNearestNeighbors:[3,2,1,""]},"pyFTS.benchmarks.knn.KNearestNeighbors":{forecast_distribution:[3,3,1,""],knn:[3,3,1,""],train:[3,3,1,""]},"pyFTS.benchmarks.naive":{Naive:[3,2,1,""]},"pyFTS.benchmarks.naive.Naive":{forecast:[3,3,1,""]},"pyFTS.benchmarks.quantreg":{QuantileRegression:[3,2,1,""]},"pyFTS.benchmarks.quantreg.QuantileRegression":{forecast:[3,3,1,""],forecast_ahead_distribution:[3,3,1,""],forecast_ahead_interval:[3,3,1,""],forecast_distribution:[3,3,1,""],forecast_interval:[3,3,1,""],interval_to_interval:[3,3,1,""],linearmodel:[3,3,1,""],point_to_interval:[3,3,1,""],train:[3,3,1,""]},"pyFTS.common":{Composite:[4,0,0,"-"],FLR:[4,0,0,"-"],FuzzySet:[4,0,0,"-"],Membership:[4,0,0,"-"],SortedCollection:[4,0,0,"-"],Transformations:[4,0,0,"-"],Util:[4,0,0,"-"],flrg:[4,0,0,"-"],fts:[4,0,0,"-"],tree:[4,0,0,"-"]},"pyFTS.common.Composite":{FuzzySet:[4,2,1,""]},"pyFTS.common.Composite.FuzzySet":{append:[4,3,1,""],append_set:[4,3,1,""],membership:[4,3,1,""]},"pyFTS.common.FLR":{FLR:[4,2,1,""],IndexedFLR:[4,2,1,""],generate_high_order_recurrent_flr:[4,1,1,""],generate_indexed_flrs:[4,1,1,""],generate_non_recurrent_flrs:[4,1,1,""],generate_recurrent_flrs:[4,1,1,""]},"pyFTS.common.FLR.FLR":{LHS:[4,4,1,""],RHS:[4,4,1,""]},"pyFTS.common.FLR.IndexedFLR":{index:[4,4,1,""]},"pyFTS.common.FuzzySet":{FuzzySet:[4,2,1,""],check_bounds:[4,1,1,""],check_bounds_index:[4,1,1,""],fuzzyfy:[4,1,1,""],fuzzyfy_instance:[4,1,1,""],fuzzyfy_instances:[4,1,1,""],fuzzyfy_series:[4,1,1,""],fuzzyfy_series_old:[4,1,1,""],get_fuzzysets:[4,1,1,""],get_maximum_membership_fuzzyset:[4,1,1,""],get_maximum_membership_fuzzyset_index:[4,1,1,""],grant_bounds:[4,1,1,""],set_ordered:[4,1,1,""]},"pyFTS.common.FuzzySet.FuzzySet":{Z:[4,4,1,""],alpha:[4,4,1,""],centroid:[4,4,1,""],membership:[4,3,1,""],mf:[4,4,1,""],name:[4,4,1,""],parameters:[4,4,1,""],partition_function:[4,3,1,""],type:[4,4,1,""],variable:[4,4,1,""]},"pyFTS.common.Membership":{bellmf:[4,1,1,""],gaussmf:[4,1,1,""],sigmf:[4,1,1,""],singleton:[4,1,1,""],trapmf:[4,1,1,""],trimf:[4,1,1,""]},"pyFTS.common.SortedCollection":{SortedCollection:[4,2,1,""]},"pyFTS.common.SortedCollection.SortedCollection":{around:[4,3,1,""],between:[4,3,1,""],clear:[4,3,1,""],copy:[4,3,1,""],count:[4,3,1,""],find:[4,3,1,""],find_ge:[4,3,1,""],find_gt:[4,3,1,""],find_le:[4,3,1,""],find_lt:[4,3,1,""],index:[4,3,1,""],insert:[4,3,1,""],insert_right:[4,3,1,""],inside:[4,3,1,""],key:[4,4,1,""],remove:[4,3,1,""]},"pyFTS.common.Transformations":{AdaptiveExpectation:[4,2,1,""],BoxCox:[4,2,1,""],Differential:[4,2,1,""],Scale:[4,2,1,""],Transformation:[4,2,1,""],Z:[4,1,1,""],aggregate:[4,1,1,""],roi:[4,1,1,""],smoothing:[4,1,1,""]},"pyFTS.common.Transformations.AdaptiveExpectation":{apply:[4,3,1,""],inverse:[4,3,1,""],parameters:[4,4,1,""]},"pyFTS.common.Transformations.BoxCox":{apply:[4,3,1,""],inverse:[4,3,1,""],parameters:[4,4,1,""]},"pyFTS.common.Transformations.Differential":{apply:[4,3,1,""],inverse:[4,3,1,""],parameters:[4,4,1,""]},"pyFTS.common.Transformations.Scale":{apply:[4,3,1,""],inverse:[4,3,1,""],parameters:[4,4,1,""]},"pyFTS.common.Transformations.Transformation":{apply:[4,3,1,""],inverse:[4,3,1,""]},"pyFTS.common.Util":{current_milli_time:[4,1,1,""],distributed_predict:[4,1,1,""],distributed_train:[4,1,1,""],draw_sets_on_axis:[4,1,1,""],enumerate2:[4,1,1,""],load_env:[4,1,1,""],load_obj:[4,1,1,""],persist_env:[4,1,1,""],persist_obj:[4,1,1,""],plot_rules:[4,1,1,""],show_and_save_image:[4,1,1,""],simple_model_predict:[4,1,1,""],simple_model_train:[4,1,1,""],sliding_window:[4,1,1,""],start_dispy_cluster:[4,1,1,""],stop_dispy_cluster:[4,1,1,""],uniquefilename:[4,1,1,""]},"pyFTS.common.flrg":{FLRG:[4,2,1,""]},"pyFTS.common.flrg.FLRG":{LHS:[4,4,1,""],RHS:[4,4,1,""],append_rhs:[4,3,1,""],get_key:[4,3,1,""],get_lower:[4,3,1,""],get_membership:[4,3,1,""],get_midpoint:[4,3,1,""],get_midpoints:[4,3,1,""],get_upper:[4,3,1,""],order:[4,4,1,""]},"pyFTS.common.fts":{FTS:[4,2,1,""]},"pyFTS.common.fts.FTS":{alpha_cut:[4,4,1,""],append_transformation:[4,3,1,""],apply_inverse_transformations:[4,3,1,""],apply_transformations:[4,3,1,""],auto_update:[4,4,1,""],benchmark_only:[4,4,1,""],clone_parameters:[4,3,1,""],detail:[4,4,1,""],fit:[4,3,1,""],flrgs:[4,4,1,""],forecast:[4,3,1,""],forecast_ahead:[4,3,1,""],forecast_ahead_distribution:[4,3,1,""],forecast_ahead_interval:[4,3,1,""],forecast_distribution:[4,3,1,""],forecast_interval:[4,3,1,""],fuzzy:[4,3,1,""],get_UoD:[4,3,1,""],has_interval_forecasting:[4,4,1,""],has_point_forecasting:[4,4,1,""],has_probability_forecasting:[4,4,1,""],has_seasonality:[4,4,1,""],indexer:[4,4,1,""],is_high_order:[4,4,1,""],is_multivariate:[4,4,1,""],len_total:[4,3,1,""],max_lag:[4,4,1,""],merge:[4,3,1,""],min_order:[4,4,1,""],name:[4,4,1,""],order:[4,4,1,""],original_max:[4,4,1,""],original_min:[4,4,1,""],partitioner:[4,4,1,""],predict:[4,3,1,""],sets:[4,4,1,""],shortname:[4,4,1,""],train:[4,3,1,""],transformations:[4,4,1,""],transformations_param:[4,4,1,""],uod_clip:[4,4,1,""]},"pyFTS.common.tree":{FLRGTree:[4,2,1,""],FLRGTreeNode:[4,2,1,""],build_tree_without_order:[4,1,1,""],flat:[4,1,1,""]},"pyFTS.common.tree.FLRGTreeNode":{appendChild:[4,3,1,""],getChildren:[4,3,1,""],getStr:[4,3,1,""],paths:[4,3,1,""]},"pyFTS.data":{AirPassengers:[5,0,0,"-"],Bitcoin:[5,0,0,"-"],DowJones:[5,0,0,"-"],EURGBP:[5,0,0,"-"],EURUSD:[5,0,0,"-"],Enrollments:[5,0,0,"-"],Ethereum:[5,0,0,"-"],GBPUSD:[5,0,0,"-"],INMET:[5,0,0,"-"],NASDAQ:[5,0,0,"-"],SONDA:[5,0,0,"-"],SP500:[5,0,0,"-"],TAIEX:[5,0,0,"-"],artificial:[5,0,0,"-"],common:[5,0,0,"-"],henon:[5,0,0,"-"],logistic_map:[5,0,0,"-"],lorentz:[5,0,0,"-"],mackey_glass:[5,0,0,"-"],rossler:[5,0,0,"-"],sunspots:[5,0,0,"-"]},"pyFTS.data.AirPassengers":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.Bitcoin":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.DowJones":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.EURGBP":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.EURUSD":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.Enrollments":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.Ethereum":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.GBPUSD":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.INMET":{get_dataframe:[5,1,1,""]},"pyFTS.data.NASDAQ":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.SONDA":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.SP500":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.TAIEX":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.artificial":{generate_gaussian_linear:[5,1,1,""],generate_uniform_linear:[5,1,1,""],random_walk:[5,1,1,""],white_noise:[5,1,1,""]},"pyFTS.data.common":{get_dataframe:[5,1,1,""]},"pyFTS.data.henon":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.logistic_map":{get_data:[5,1,1,""]},"pyFTS.data.lorentz":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.mackey_glass":{get_data:[5,1,1,""]},"pyFTS.data.rossler":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.sunspots":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.models":{chen:[6,0,0,"-"],cheng:[6,0,0,"-"],ensemble:[7,0,0,"-"],hofts:[6,0,0,"-"],hwang:[6,0,0,"-"],ifts:[6,0,0,"-"],ismailefendi:[6,0,0,"-"],multivariate:[8,0,0,"-"],nonstationary:[9,0,0,"-"],pwfts:[6,0,0,"-"],sadaei:[6,0,0,"-"],seasonal:[10,0,0,"-"],song:[6,0,0,"-"],yu:[6,0,0,"-"]},"pyFTS.models.chen":{ConventionalFLRG:[6,2,1,""],ConventionalFTS:[6,2,1,""]},"pyFTS.models.chen.ConventionalFLRG":{append_rhs:[6,3,1,""],get_key:[6,3,1,""]},"pyFTS.models.chen.ConventionalFTS":{forecast:[6,3,1,""],generate_flrg:[6,3,1,""],train:[6,3,1,""]},"pyFTS.models.cheng":{TrendWeightedFLRG:[6,2,1,""],TrendWeightedFTS:[6,2,1,""]},"pyFTS.models.cheng.TrendWeightedFLRG":{weights:[6,3,1,""]},"pyFTS.models.cheng.TrendWeightedFTS":{generate_FLRG:[6,3,1,""]},"pyFTS.models.ensemble":{ensemble:[7,0,0,"-"],multiseasonal:[7,0,0,"-"]},"pyFTS.models.ensemble.ensemble":{AllMethodEnsembleFTS:[7,2,1,""],EnsembleFTS:[7,2,1,""],sampler:[7,1,1,""]},"pyFTS.models.ensemble.ensemble.AllMethodEnsembleFTS":{set_transformations:[7,3,1,""],train:[7,3,1,""]},"pyFTS.models.ensemble.ensemble.EnsembleFTS":{append_model:[7,3,1,""],forecast:[7,3,1,""],forecast_ahead_distribution:[7,3,1,""],forecast_ahead_interval:[7,3,1,""],forecast_distribution:[7,3,1,""],forecast_interval:[7,3,1,""],get_distribution_interquantile:[7,3,1,""],get_interval:[7,3,1,""],get_models_forecasts:[7,3,1,""],get_point:[7,3,1,""],models:[7,4,1,""],parameters:[7,4,1,""],train:[7,3,1,""]},"pyFTS.models.ensemble.multiseasonal":{SeasonalEnsembleFTS:[7,2,1,""],train_individual_model:[7,1,1,""]},"pyFTS.models.ensemble.multiseasonal.SeasonalEnsembleFTS":{forecast_distribution:[7,3,1,""],train:[7,3,1,""],update_uod:[7,3,1,""]},"pyFTS.models.hofts":{HighOrderFLRG:[6,2,1,""],HighOrderFTS:[6,2,1,""]},"pyFTS.models.hofts.HighOrderFLRG":{append_lhs:[6,3,1,""],append_rhs:[6,3,1,""]},"pyFTS.models.hofts.HighOrderFTS":{configure_lags:[6,3,1,""],forecast:[6,3,1,""],generate_flrg:[6,3,1,""],generate_lhs_flrg:[6,3,1,""],train:[6,3,1,""]},"pyFTS.models.hwang":{HighOrderFTS:[6,2,1,""]},"pyFTS.models.hwang.HighOrderFTS":{configure_lags:[6,3,1,""],forecast:[6,3,1,""],train:[6,3,1,""]},"pyFTS.models.ifts":{IntervalFTS:[6,2,1,""]},"pyFTS.models.ifts.IntervalFTS":{forecast_interval:[6,3,1,""],get_lower:[6,3,1,""],get_sequence_membership:[6,3,1,""],get_upper:[6,3,1,""]},"pyFTS.models.ismailefendi":{ImprovedWeightedFLRG:[6,2,1,""],ImprovedWeightedFTS:[6,2,1,""]},"pyFTS.models.ismailefendi.ImprovedWeightedFLRG":{append_rhs:[6,3,1,""],weights:[6,3,1,""]},"pyFTS.models.ismailefendi.ImprovedWeightedFTS":{forecast:[6,3,1,""],generate_flrg:[6,3,1,""],train:[6,3,1,""]},"pyFTS.models.multivariate":{FLR:[8,0,0,"-"],common:[8,0,0,"-"],flrg:[8,0,0,"-"],mvfts:[8,0,0,"-"],variable:[8,0,0,"-"]},"pyFTS.models.multivariate.FLR":{FLR:[8,2,1,""]},"pyFTS.models.multivariate.FLR.FLR":{set_lhs:[8,3,1,""],set_rhs:[8,3,1,""]},"pyFTS.models.multivariate.common":{fuzzyfy_instance:[8,1,1,""]},"pyFTS.models.multivariate.flrg":{FLRG:[8,2,1,""]},"pyFTS.models.multivariate.flrg.FLRG":{append_rhs:[8,3,1,""],get_membership:[8,3,1,""],set_lhs:[8,3,1,""]},"pyFTS.models.multivariate.mvfts":{MVFTS:[8,2,1,""]},"pyFTS.models.multivariate.mvfts.MVFTS":{append_variable:[8,3,1,""],apply_transformations:[8,3,1,""],clone_parameters:[8,3,1,""],forecast:[8,3,1,""],format_data:[8,3,1,""],generate_flrg:[8,3,1,""],generate_flrs:[8,3,1,""],generate_lhs_flrs:[8,3,1,""],train:[8,3,1,""]},"pyFTS.models.multivariate.variable":{Variable:[8,2,1,""]},"pyFTS.models.multivariate.variable.Variable":{alias:[8,4,1,""],apply_inverse_transformations:[8,3,1,""],apply_transformations:[8,3,1,""],build:[8,3,1,""],data_label:[8,4,1,""],name:[8,4,1,""]},"pyFTS.models.nonstationary":{common:[9,0,0,"-"],cvfts:[9,0,0,"-"],flrg:[9,0,0,"-"],honsfts:[9,0,0,"-"],nsfts:[9,0,0,"-"],partitioners:[9,0,0,"-"],perturbation:[9,0,0,"-"],util:[9,0,0,"-"]},"pyFTS.models.nonstationary.common":{FuzzySet:[9,2,1,""],check_bounds:[9,1,1,""],check_bounds_index:[9,1,1,""],fuzzify:[9,1,1,""],fuzzySeries:[9,1,1,""],window_index:[9,1,1,""]},"pyFTS.models.nonstationary.common.FuzzySet":{get_lower:[9,3,1,""],get_midpoint:[9,3,1,""],get_upper:[9,3,1,""],location:[9,4,1,""],location_params:[9,4,1,""],membership:[9,3,1,""],noise:[9,4,1,""],noise_params:[9,4,1,""],perform_location:[9,3,1,""],perform_width:[9,3,1,""],perturbate_parameters:[9,3,1,""],width:[9,4,1,""],width_params:[9,4,1,""]},"pyFTS.models.nonstationary.cvfts":{ConditionalVarianceFTS:[9,2,1,""],HighOrderNonstationaryFLRG:[9,2,1,""]},"pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS":{forecast:[9,3,1,""],forecast_interval:[9,3,1,""],generate_flrg:[9,3,1,""],perturbation_factors:[9,3,1,""],perturbation_factors__old:[9,3,1,""],train:[9,3,1,""]},"pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG":{append_lhs:[9,3,1,""],append_rhs:[9,3,1,""]},"pyFTS.models.nonstationary.flrg":{NonStationaryFLRG:[9,2,1,""]},"pyFTS.models.nonstationary.flrg.NonStationaryFLRG":{get_key:[9,3,1,""],get_lower:[9,3,1,""],get_membership:[9,3,1,""],get_midpoint:[9,3,1,""],get_upper:[9,3,1,""],unpack_args:[9,3,1,""]},"pyFTS.models.nonstationary.honsfts":{HighOrderNonStationaryFLRG:[9,2,1,""],HighOrderNonStationaryFTS:[9,2,1,""]},"pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG":{append_lhs:[9,3,1,""],append_rhs:[9,3,1,""]},"pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS":{forecast:[9,3,1,""],forecast_interval:[9,3,1,""],generate_flrg:[9,3,1,""],train:[9,3,1,""]},"pyFTS.models.nonstationary.nsfts":{ConventionalNonStationaryFLRG:[9,2,1,""],NonStationaryFTS:[9,2,1,""]},"pyFTS.models.nonstationary.nsfts.ConventionalNonStationaryFLRG":{append_rhs:[9,3,1,""],get_key:[9,3,1,""]},"pyFTS.models.nonstationary.nsfts.NonStationaryFTS":{conditional_perturbation_factors:[9,3,1,""],forecast:[9,3,1,""],forecast_interval:[9,3,1,""],generate_flrg:[9,3,1,""],train:[9,3,1,""]},"pyFTS.models.nonstationary.partitioners":{PolynomialNonStationaryPartitioner:[9,2,1,""],SimpleNonStationaryPartitioner:[9,2,1,""],simplenonstationary_gridpartitioner_builder:[9,1,1,""]},"pyFTS.models.nonstationary.partitioners.PolynomialNonStationaryPartitioner":{build:[9,3,1,""],get_polynomial_perturbations:[9,3,1,""],poly_width:[9,3,1,""],scale_down:[9,3,1,""],scale_up:[9,3,1,""]},"pyFTS.models.nonstationary.partitioners.SimpleNonStationaryPartitioner":{build:[9,3,1,""]},"pyFTS.models.nonstationary.perturbation":{exponential:[9,1,1,""],linear:[9,1,1,""],periodic:[9,1,1,""],polynomial:[9,1,1,""]},"pyFTS.models.nonstationary.util":{plot_sets:[9,1,1,""],plot_sets_conditional:[9,1,1,""]},"pyFTS.models.pwfts":{ProbabilisticWeightedFLRG:[6,2,1,""],ProbabilisticWeightedFTS:[6,2,1,""],visualize_distributions:[6,1,1,""]},"pyFTS.models.pwfts.ProbabilisticWeightedFLRG":{append_rhs:[6,3,1,""],get_lower:[6,3,1,""],get_membership:[6,3,1,""],get_midpoint:[6,3,1,""],get_upper:[6,3,1,""],lhs_conditional_probability:[6,3,1,""],partition_function:[6,3,1,""],rhs_conditional_probability:[6,3,1,""],rhs_unconditional_probability:[6,3,1,""]},"pyFTS.models.pwfts.ProbabilisticWeightedFTS":{add_new_PWFLGR:[6,3,1,""],flrg_lhs_conditional_probability:[6,3,1,""],flrg_lhs_unconditional_probability:[6,3,1,""],flrg_rhs_conditional_probability:[6,3,1,""],forecast:[6,3,1,""],forecast_ahead:[6,3,1,""],forecast_ahead_distribution:[6,3,1,""],forecast_ahead_interval:[6,3,1,""],forecast_distribution:[6,3,1,""],forecast_interval:[6,3,1,""],generate_flrg:[6,3,1,""],generate_lhs_flrg:[6,3,1,""],get_lower:[6,3,1,""],get_midpoint:[6,3,1,""],get_upper:[6,3,1,""],interval_heuristic:[6,3,1,""],interval_quantile:[6,3,1,""],point_expected_value:[6,3,1,""],point_heuristic:[6,3,1,""],train:[6,3,1,""],update_model:[6,3,1,""]},"pyFTS.models.sadaei":{ExponentialyWeightedFLRG:[6,2,1,""],ExponentialyWeightedFTS:[6,2,1,""]},"pyFTS.models.sadaei.ExponentialyWeightedFLRG":{append_rhs:[6,3,1,""],weights:[6,3,1,""]},"pyFTS.models.sadaei.ExponentialyWeightedFTS":{forecast:[6,3,1,""],generate_flrg:[6,3,1,""],train:[6,3,1,""]},"pyFTS.models.seasonal":{SeasonalIndexer:[10,0,0,"-"],cmsfts:[10,0,0,"-"],common:[10,0,0,"-"],msfts:[10,0,0,"-"],partitioner:[10,0,0,"-"],sfts:[10,0,0,"-"]},"pyFTS.models.seasonal.SeasonalIndexer":{DataFrameSeasonalIndexer:[10,2,1,""],DateTimeSeasonalIndexer:[10,2,1,""],LinearSeasonalIndexer:[10,2,1,""],SeasonalIndexer:[10,2,1,""]},"pyFTS.models.seasonal.SeasonalIndexer.DataFrameSeasonalIndexer":{get_data:[10,3,1,""],get_data_by_season:[10,3,1,""],get_index_by_season:[10,3,1,""],get_season_by_index:[10,3,1,""],get_season_of_data:[10,3,1,""],set_data:[10,3,1,""]},"pyFTS.models.seasonal.SeasonalIndexer.DateTimeSeasonalIndexer":{get_data:[10,3,1,""],get_data_by_season:[10,3,1,""],get_index:[10,3,1,""],get_index_by_season:[10,3,1,""],get_season_by_index:[10,3,1,""],get_season_of_data:[10,3,1,""],set_data:[10,3,1,""]},"pyFTS.models.seasonal.SeasonalIndexer.LinearSeasonalIndexer":{get_data:[10,3,1,""],get_index_by_season:[10,3,1,""],get_season_by_index:[10,3,1,""],get_season_of_data:[10,3,1,""]},"pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer":{get_data:[10,3,1,""],get_data_by_season:[10,3,1,""],get_index:[10,3,1,""],get_index_by_season:[10,3,1,""],get_season_by_index:[10,3,1,""],get_season_of_data:[10,3,1,""]},"pyFTS.models.seasonal.cmsfts":{ContextualMultiSeasonalFTS:[10,2,1,""],ContextualSeasonalFLRG:[10,2,1,""]},"pyFTS.models.seasonal.cmsfts.ContextualMultiSeasonalFTS":{forecast:[10,3,1,""],forecast_ahead:[10,3,1,""],generate_flrg:[10,3,1,""],get_midpoints:[10,3,1,""],train:[10,3,1,""]},"pyFTS.models.seasonal.cmsfts.ContextualSeasonalFLRG":{append_rhs:[10,3,1,""]},"pyFTS.models.seasonal.common":{DateTime:[10,2,1,""],FuzzySet:[10,2,1,""],strip_datepart:[10,1,1,""]},"pyFTS.models.seasonal.common.DateTime":{day_of_month:[10,4,1,""],day_of_week:[10,4,1,""],day_of_year:[10,4,1,""],hour:[10,4,1,""],hour_of_day:[10,4,1,""],hour_of_month:[10,4,1,""],hour_of_week:[10,4,1,""],hour_of_year:[10,4,1,""],minute_of_day:[10,4,1,""],minute_of_hour:[10,4,1,""],minute_of_month:[10,4,1,""],minute_of_week:[10,4,1,""],minute_of_year:[10,4,1,""],month:[10,4,1,""],second:[10,4,1,""],second_of_day:[10,4,1,""],second_of_hour:[10,4,1,""],second_of_minute:[10,4,1,""],year:[10,4,1,""]},"pyFTS.models.seasonal.common.FuzzySet":{membership:[10,3,1,""]},"pyFTS.models.seasonal.msfts":{MultiSeasonalFTS:[10,2,1,""]},"pyFTS.models.seasonal.msfts.MultiSeasonalFTS":{forecast:[10,3,1,""],forecast_ahead:[10,3,1,""],generate_flrg:[10,3,1,""],train:[10,3,1,""]},"pyFTS.models.seasonal.partitioner":{TimeGridPartitioner:[10,2,1,""]},"pyFTS.models.seasonal.partitioner.TimeGridPartitioner":{build:[10,3,1,""],plot:[10,3,1,""]},"pyFTS.models.seasonal.sfts":{SeasonalFLRG:[10,2,1,""],SeasonalFTS:[10,2,1,""]},"pyFTS.models.seasonal.sfts.SeasonalFLRG":{append_rhs:[10,3,1,""],get_key:[10,3,1,""]},"pyFTS.models.seasonal.sfts.SeasonalFTS":{forecast:[10,3,1,""],generate_flrg:[10,3,1,""],get_midpoints:[10,3,1,""],train:[10,3,1,""]},"pyFTS.models.song":{ConventionalFTS:[6,2,1,""]},"pyFTS.models.song.ConventionalFTS":{flr_membership_matrix:[6,3,1,""],forecast:[6,3,1,""],operation_matrix:[6,3,1,""],train:[6,3,1,""]},"pyFTS.models.yu":{WeightedFLRG:[6,2,1,""],WeightedFTS:[6,2,1,""]},"pyFTS.models.yu.WeightedFLRG":{append_rhs:[6,3,1,""],weights:[6,3,1,""]},"pyFTS.models.yu.WeightedFTS":{forecast:[6,3,1,""],generate_FLRG:[6,3,1,""],train:[6,3,1,""]},"pyFTS.partitioners":{CMeans:[11,0,0,"-"],Entropy:[11,0,0,"-"],FCM:[11,0,0,"-"],Grid:[11,0,0,"-"],Huarng:[11,0,0,"-"],Singleton:[11,0,0,"-"],Util:[11,0,0,"-"],parallel_util:[11,0,0,"-"],partitioner:[11,0,0,"-"]},"pyFTS.partitioners.CMeans":{CMeansPartitioner:[11,2,1,""],c_means:[11,1,1,""],distance:[11,1,1,""]},"pyFTS.partitioners.CMeans.CMeansPartitioner":{build:[11,3,1,""]},"pyFTS.partitioners.Entropy":{EntropyPartitioner:[11,2,1,""],PMF:[11,1,1,""],bestSplit:[11,1,1,""],entropy:[11,1,1,""],informationGain:[11,1,1,""],splitAbove:[11,1,1,""],splitBelow:[11,1,1,""]},"pyFTS.partitioners.Entropy.EntropyPartitioner":{build:[11,3,1,""]},"pyFTS.partitioners.FCM":{FCMPartitioner:[11,2,1,""],fuzzy_cmeans:[11,1,1,""],fuzzy_distance:[11,1,1,""],membership:[11,1,1,""]},"pyFTS.partitioners.FCM.FCMPartitioner":{build:[11,3,1,""]},"pyFTS.partitioners.Grid":{GridPartitioner:[11,2,1,""]},"pyFTS.partitioners.Grid.GridPartitioner":{build:[11,3,1,""]},"pyFTS.partitioners.Huarng":{HuarngPartitioner:[11,2,1,""]},"pyFTS.partitioners.Huarng.HuarngPartitioner":{build:[11,3,1,""]},"pyFTS.partitioners.Singleton":{SingletonPartitioner:[11,2,1,""]},"pyFTS.partitioners.Singleton.SingletonPartitioner":{build:[11,3,1,""]},"pyFTS.partitioners.Util":{explore_partitioners:[11,1,1,""],plot_partitioners:[11,1,1,""],plot_sets:[11,1,1,""]},"pyFTS.partitioners.parallel_util":{explore_partitioners:[11,1,1,""]},"pyFTS.partitioners.partitioner":{Partitioner:[11,2,1,""]},"pyFTS.partitioners.partitioner.Partitioner":{build:[11,3,1,""],get_name:[11,3,1,""],lower_set:[11,3,1,""],membership_function:[11,4,1,""],name:[11,4,1,""],partitions:[11,4,1,""],plot:[11,3,1,""],plot_set:[11,3,1,""],prefix:[11,4,1,""],setnames:[11,4,1,""],transformation:[11,4,1,""],upper_set:[11,3,1,""]},"pyFTS.probabilistic":{ProbabilityDistribution:[12,0,0,"-"],kde:[12,0,0,"-"]},"pyFTS.probabilistic.ProbabilityDistribution":{ProbabilityDistribution:[12,2,1,""]},"pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution":{append:[12,3,1,""],append_interval:[12,3,1,""],averageloglikelihood:[12,3,1,""],bins:[12,4,1,""],build_cdf_qtl:[12,3,1,""],crossentropy:[12,3,1,""],cummulative:[12,3,1,""],density:[12,3,1,""],differential_offset:[12,3,1,""],empiricalloglikelihood:[12,3,1,""],entropy:[12,3,1,""],expected_value:[12,3,1,""],kullbackleiblerdivergence:[12,3,1,""],labels:[12,4,1,""],plot:[12,3,1,""],pseudologlikelihood:[12,3,1,""],quantile:[12,3,1,""],set:[12,3,1,""],type:[12,4,1,""],uod:[12,4,1,""]},"pyFTS.probabilistic.kde":{KernelSmoothing:[12,2,1,""]},"pyFTS.probabilistic.kde.KernelSmoothing":{h:[12,4,1,""],kernel:[12,4,1,""],kernel_function:[12,3,1,""],probability:[12,3,1,""]},pyFTS:{benchmarks:[3,0,0,"-"],common:[4,0,0,"-"],conf:[2,0,0,"-"],data:[5,0,0,"-"],models:[6,0,0,"-"],partitioners:[11,0,0,"-"],probabilistic:[12,0,0,"-"]}},objnames:{"0":["py","module","Python module"],"1":["py","function","Python function"],"2":["py","class","Python class"],"3":["py","method","Python method"],"4":["py","attribute","Python attribute"]},objtypes:{"0":"py:module","1":"py:function","2":"py:class","3":"py:method","4":"py:attribute"},terms:{"261459a0":5,"57a":5,"5egspc":5,"boolean":[3,4,11],"case":4,"class":[3,4,6,7,8,9,10,11,12,13],"default":[3,4,5],"enum":10,"fa\u00e7ad":[3,4],"final":4,"float":[3,4,5],"function":[3,4,9,11,12,13],"guimar\u00e3":[0,6],"h\u00e9non":5,"import":[4,8,13],"int":[6,13],"na\u00efv":3,"new":[4,7,8],"organiza\u00e7\u00e3o":5,"petr\u00f4nio":6,"r\u00f6ssler":5,"return":[3,4,5,6,7,8,9,10,11,12],"short":[4,6,13],"true":[3,4],"var":[5,8],"while":4,And:3,FTS:[0,3,4,6,7,8,9,10],For:3,LHS:[4,6,9],RHS:[4,6,9],The:[3,4,5,11,13],Then:[3,13],There:13,These:[0,13],Use:10,abdullah:[6,13],acc:4,accuraci:3,acf:3,adapt:4,adaptiveexpect:4,add:[3,4,9],add_new_pwflgr:6,added:4,address:[3,4],affect:9,after:5,age:4,aged:4,aggreg:[4,7],ahead:[3,4,6,7,8,9,10,13],ahed:13,airlin:5,airpasseng:[1,2],alabama:5,alia:[3,4,8],all:[3,4,13],allmethodensembleft:7,almost:13,alpha:[4,6,7,10],alpha_cut:4,alreadi:5,also:[0,4,13],ambientai:5,analysi:3,analytic_tabular_datafram:3,analytical_data_column:3,angela:4,api:[0,4],append:[4,7,8,12],append_interv:12,append_lh:[6,9],append_model:7,append_rh:[4,6,8,9,10],append_set:4,append_transform:4,append_vari:8,appendchild:4,appl:[6,11,13],appli:[3,4,8,11],apply_inverse_transform:[4,8],apply_transform:[4,8],approach:[3,11,13],arg:9,argument:[3,4],arima:[1,2],arima_model:3,around:4,arrai:[4,5,9,10],artifici:[1,2],ascend:3,aspx:5,assign:4,assoc:3,associ:5,ata:3,atmospher:5,atribut:3,attibut:4,attractor:5,auto:11,auto_upd:4,autocorrel:3,autom:5,automat:4,auxiliar:3,averag:[3,5],averageloglikelihood:12,avg:5,axes:9,axi:[3,4,11,12],azim:3,bar:3,base:[3,4,6,7,8,9,10,11,12,13],base_dataframe_column:3,batch:4,batch_sav:4,befor:13,being:3,bell:4,bellmf:4,belo:[0,5],belog:4,below:13,benchmark:[1,2,4],benchmark_method:3,benchmark_methods_paramet:3,benchmark_model:3,benchmark_onli:4,bestsplit:11,better:13,between:[3,4],bill:4,bin:[3,12],bisect:4,bitcoin:[1,2],bivari:5,black:12,blue:3,bound:[4,5,6,9],box:[3,4,13],boxcox:4,boxljungstatist:3,boxpiercestatist:3,brasil:5,brasilia:5,brazil:0,brazilian:0,brier:3,brier_scor:3,btc:5,build:[8,9,10,11],build_cdf_qtl:12,build_method:3,build_tree_without_ord:4,built:11,buseco:5,busi:5,c_mean:11,calcul:[4,9,10],call:4,camwa:11,can:[3,4,13],capabl:3,capit:5,cast_dataframe_to_synthet:3,cast_dataframe_to_synthetic_interv:3,cast_dataframe_to_synthetic_point:3,cast_dataframe_to_synthetic_probabilist:3,ccst:5,center:4,centroid:[4,10],chang:[5,11,13],chao:5,chaotic:[1,2],characterist:13,cheap:0,check:[4,5,13],check_bound:[4,9],check_bounds_index:[4,9],check_ignore_list:3,check_replace_list:3,chen:[1,2,8,10,13],cheng:[1,2,11,13],chi:3,chi_squar:3,chia:6,child:4,chissom:[6,13],clear:4,clip:4,clone:13,clone_paramet:[4,8],cluster:[3,4],cmap:3,cmean:[1,2],cmeanspartition:[11,13],cmsft:[2,6],code:13,coeffici:[3,5],colab:13,colabor:0,color:[3,9,12],column:[4,8],com:[5,13],common:[1,2,3,6,7,11,13],commun:5,compar:3,compare_residu:3,comparemodelsplot:3,comparemodelst:3,complet:5,complic:5,compon:7,composit:[1,2,5],compress:5,comput:[6,11,13],computation:0,condens:3,condit:3,conditional_perturbation_factor:9,conditionalvarianceft:9,conf:[0,1],confer:6,configure_lag:6,conn:3,connect:3,consid:4,const_t:9,constant:5,contain:[3,4,8,13],content:[0,1],contextu:10,contextualmultiseasonalft:10,contextualseasonalflrg:10,contin:12,continu:[3,5,12],control:5,convent:[6,9,10],conventionalflrg:6,conventionalft:[6,8],conventionalnonstationaryflrg:9,copi:4,cost:[11,13],count:4,counter:11,covavg:3,coverag:3,covstd:3,cox:[4,13],creat:[3,4,11,13],create_benchmark_t:3,criteria:3,cross:4,crossentropi:12,crp:3,crps1avg:3,crps1std:3,crps2avg:3,crps2std:3,crps_distr:3,crps_interv:3,crpsavg:3,crpsstd:3,csv:5,cummul:12,current:3,current_milli_tim:4,cut:4,cvft:[2,6],dado:[4,5,11],dai:5,daili:5,data:[0,1,2,3,4,6,7,8,9,10,11,12,13],data_column:3,data_field:10,data_label:8,data_point:8,databas:3,datafram:[3,4,5,8,10],dataframeseasonalindex:10,dataset:[1,2,3,4],date:[3,10],date_field:10,date_part:10,datepart:10,datetim:10,datetimeseasonalindex:10,david:4,day_of_month:10,day_of_week:10,day_of_year:10,dealer:5,dec:11,decemb:5,decis:3,decompress:5,defin:3,defuzzyf:13,deg:9,delet:4,deltadist:11,demo:13,densiti:[3,12],departa:0,depend:[3,4,13],dependeci:4,deri:[6,13],design:[3,4],detail:4,determin:3,determinist:[5,11],develop:[0,13],deviat:3,dict:[3,4],dictionari:[3,4],differenti:[4,5,13],differential_offset:12,diffus:[6,13],dill:4,dimension:5,directli:[4,13],discours:[3,4,9,10,11,12,13],discret:12,disk:[4,11],dispi:[3,4],displac:9,displai:3,distanc:[3,11],distribut:[3,4,5,6,7,12],distributed_predict:4,distributed_train:4,dji:5,dnf:5,document:0,doi10:6,doi:[0,3,5,11],dollar:[6,13],don:5,dow:5,dowjon:[1,2],download:5,draw_sets_on_axi:4,dure:[3,4],dynam:5,each:[3,4,5,7,8,13],easi:[0,4],easier:4,edu:5,edward:5,efendi:[6,13],effect:[11,13],effici:4,electr:[0,6,13],elev:3,empir:11,empiricalloglikelihood:12,enayatifar:[6,13],end:9,endogen:8,energi:[6,13],engin:0,enrol:[1,2,6,10,13],ensembl:[2,4,6],ensembleft:7,entir:4,entropi:[1,2,12,13],entropypartition:[11,13],enumer:10,enumerate2:4,environ:4,epanechnikov:12,equal:[3,4,6,7,8,9,10,13],equat:5,error:3,espaciai:5,esrl:5,estim:[3,12],etc:[4,13],eth:5,ethereum:[1,2],eur:[1,2],eurgbp:5,eurusd:5,even:[10,11],exact:4,exampl:0,exchang:[5,6,13],execut:3,exist:5,expect:[4,6],expected_valu:12,experi:3,expert:[0,6,13],exploit:0,explore_partition:11,exponenti:[6,9,13],exponentiali:6,exponentialyweightedflrg:6,exponentialyweightedft:6,express:3,extens:8,extern:[3,4],externalforecast:3,externalmodel:3,extract:[3,5],extract_measur:3,facil:[3,4,5,11],fall:3,fals:[3,4,8,9,11],fcm:[1,2],fcmpartition:[11,13],feder:0,fetch:4,field:[5,10],fig:[3,4],figur:4,file:[3,4,5,9,11],file_analyt:3,file_path:4,file_synthet:3,filenam:[3,4,5],filenem:3,filesystem:4,fill:3,filter:3,financ:5,find:[4,10],find_best:3,find_g:4,find_gt:4,find_l:4,find_lt:4,first:[3,4,6,9,10],fit:[3,4,6,7,8,9,10],five:4,flag:4,flashquot:5,flat:4,flow:5,flr:[1,2,6,9,10],flr_membership_matrix:6,flrg:[1,2,6,10],flrg_lhs_conditional_prob:6,flrg_lhs_unconditional_prob:6,flrg_rhs_conditional_prob:6,flrgtree:4,flrgtreenod:4,foreast:3,forecast:[3,4,6,7,8,9,10,11,13],forecast_ahead:[4,6,10],forecast_ahead_distribut:[3,4,6,7],forecast_ahead_interv:[3,4,6,7],forecast_distribut:[3,4,6,7],forecast_interv:[3,4,6,7,9],forex:5,fork:0,format:3,format_data:8,forward:4,found:[4,13],frederico:[0,6],from:[0,3,4,5,6,8,13],fset:8,fts:[1,2,3,6,7,8,9,10],fts_method:4,fuzz:6,fuzzi:[2,4,6,8,9,10,11],fuzzif:[11,13],fuzzifi:[4,9],fuzzy_cmean:11,fuzzy_dist:11,fuzzy_set:4,fuzzydata:4,fuzzyf:[4,13],fuzzyfi:4,fuzzyfy_inst:[4,8],fuzzyfy_seri:4,fuzzyfy_series_old:4,fuzzyseri:9,fuzzyset:[1,2,6,9,10],gadelha:[0,6],gani:[6,13],garibaldi:9,gaussian:[4,5],gaussmf:4,gbp:[1,2],gbpusd:5,gcos_wgsp:5,gener:[4,5,11,13],generate_flr:8,generate_flrg:[6,8,9,10],generate_gaussian_linear:5,generate_high_order_recurrent_flr:4,generate_indexed_flr:4,generate_lhs_flr:8,generate_lhs_flrg:6,generate_non_recurrent_flr:4,generate_recurrent_flr:4,generate_uniform_linear:5,gerai:0,get:[3,4,5],get_benchmark_interval_method:3,get_benchmark_point_method:3,get_benchmark_probabilistic_method:3,get_data:[5,10],get_data_by_season:10,get_datafram:5,get_dataframe_from_bd:3,get_distribution_interquantil:7,get_distribution_statist:3,get_fuzzyset:4,get_index:10,get_index_by_season:10,get_interv:7,get_interval_method:3,get_interval_statist:3,get_kei:[4,6,9,10],get_low:[4,6,9],get_maximum_membership_fuzzyset:4,get_maximum_membership_fuzzyset_index:4,get_membership:[4,6,8,9],get_midpoint:[4,6,9,10],get_models_forecast:7,get_nam:11,get_point:7,get_point_method:3,get_point_statist:3,get_polynomial_perturb:9,get_probabilistic_method:3,get_season_by_index:10,get_season_of_data:10,get_sequence_membership:6,get_uod:4,get_upp:[4,6,9],getchildren:4,getstr:4,git:13,github:[0,13],given:[3,4,9,10,11],glass:[1,2],good:13,googl:13,gov:5,grant_bound:4,greater:4,grid:[1,2,3,10],gridpartition:[3,11,13],group:[3,4,6,8,9,10],hand:4,handl:[4,6],hard:4,harmoni:[6,13],has_interval_forecast:4,has_point_forecast:4,has_probability_forecast:4,has_season:4,head:0,heavysid:3,heavyside_cdf:3,height:11,henon:[1,2],here:13,heteroskedast:9,high:[3,4,6,9],highorderflrg:6,highorderft:[6,9],highordernonstationaryflrg:9,highordernonstationaryft:9,histogram:12,histori:5,hoang:6,hoft:[1,2,9],honsft:[2,6],horizon:[3,4],horizont:[0,5],hossein:6,hour:[3,10],hour_of_dai:10,hour_of_month:10,hour_of_week:10,hour_of_year:10,http:[0,5,13],http_server:4,huarng:[1,2,13],huarngpartition:[11,13],human:0,hwang:[1,2],hybrid:[6,13],hyndman:5,identifi:[3,4,6,9,10],ieee:[6,9],ifmg:0,ifnmg:0,ift:[1,2],ignor:[3,10],imag:[4,11],implement:[4,10,13],improv:[6,11,13],improvedweightedflrg:6,improvedweightedft:6,inc:[3,4],increment:[3,4,5],ind:10,indentifi:3,index:[3,4,5,7,10],index_field:10,index_season:10,index_seri:5,indexedflr:4,indic:[3,4,5],inequ:3,infer:5,infil:3,inform:[3,4],informationgain:11,initi:[4,5],initial_valu:5,inmet:[1,2],innov:[6,13],inp:5,input:[4,6,8,9,10],insert:[3,4],insert_benchmark:3,insert_right:4,insid:[3,4,10],inst:[4,9],instal:0,instanc:[9,13],instead:4,instituit:0,institut:0,instituto:5,integ:[3,4],integr:5,intel:[6,13],intellig:6,intend:0,intern:6,internet:5,interpol:3,interpret:4,interv:[3,4,6,7,9,11,12,13],interval_dataframe_analytic_column:3,interval_dataframe_synthetic_column:3,interval_heurist:6,interval_quantil:6,interval_to_interv:3,intervalar:13,intervalft:6,introduc:13,introspect:4,invers:[4,13],ipynb:13,is_high_ord:4,is_multivari:4,ismail:[6,13],ismailefendi:[1,2],item:4,itemgett:4,iter:[4,5],its:[5,6,8,10,13],ixic:5,januari:5,jaroszewski:9,javedani:6,jeng:6,job:3,jonathan:9,jone:[4,5],journal:5,jun:[11,13],jupyt:13,kde:[1,2],kei:[3,4],kernel:12,kernel_funct:12,kernelsmooth:12,knearestneighbor:3,knn:[1,2],kullbackleiblerdiverg:12,kwarg:[3,4,6,7,8,9,10,11,12],lab:0,label:[3,12],lag:[4,5,13],largest:4,last:4,later:13,layman:0,lcolor:3,lee:6,left:4,legend:[3,4],len_tot:4,length:[3,4,6,7,8,9,10,11,13],less:4,lett:5,level:4,lgd:4,lhs_conditional_prob:6,librari:[2,5],like:[4,13],limit:4,lin:11,linear:[5,9],linearmodel:3,linearseasonalindex:10,linewidth:3,linspac:5,list:[3,4,5,6,7,8,9,10,11,13],ljung:3,lo_param:3,load:[4,5,6,13],load_env:4,load_obj:4,local:5,locat:[4,9],location_param:9,log:4,logic:[4,6,8,9,10],logist:[4,5],logistic_map:[1,2],look:4,lookup:4,lorentz:[1,2],lorenz:5,loss:3,lower:[4,5,6,9],lower_set:11,mackei:[1,2],mackey_glass:5,mai:5,main:13,malaysia:[6,13],mandatori:4,mani:13,map:[3,5],mape:3,mape_interv:3,marcin:9,market:5,mass:4,match:4,math:[5,11],mathemat:5,matplotlib:4,max:4,max_inc:5,max_ini:5,max_lag:[3,4,6,7,8,9,10],maxim:4,maximum:[4,11],mean:[3,4,5],measur:[1,2],mech:[6,13],membership:[1,2,6,8,9,10,11,13],membership_funct:11,memori:4,merg:4,meta:7,meteorologia:5,method:[0,3,4,5,6,7,8,9,10,11,13],metric:3,mft:3,midpoint:[4,9],min:4,min_inc:5,min_ini:5,min_ord:4,mina:0,mind:0,ming:6,minim:[3,4,6,7,8,9,10],minimum:[4,13],minute_of_dai:10,minute_of_hour:10,minute_of_month:10,minute_of_week:10,minute_of_year:10,mode:4,model:[0,1,2,3,4,5,11,13],modelo:3,models_fo:3,models_ho:3,modul:[0,1,13],monash:5,month:10,monthli:[3,5],more:13,most:13,move:3,msft:[2,6],mu_inc:5,mu_ini:5,much:4,multi:[3,4,10],multiseason:[2,6],multiseasonalft:10,multivari:[2,4,5,6],musikasuwan:9,mvft:[2,6],nacion:5,naiv:[1,2],name:[3,4,5,7,8,9,10,11],nasdaq:[1,2],nation:5,natur:5,nbin:[4,6],nbsp:0,ndata:[3,4,6,9],nearest:3,need:4,neighbor:3,next:13,nice:4,noaa:5,node:[3,4],nois:9,noise_param:9,non:[3,4,9,13],none:[3,4,5,7,8,9,10,11,12],nonperiod:5,nonstationari:[2,4,6],nonstationaryflrg:9,nonstationaryft:9,norm:6,normal:13,north:0,norton:5,notebook:13,noth:13,nov:[11,13],now:4,npart:[9,11],nsft:[2,6],num:5,num_batch:4,num_season:10,number:[3,4,5,6,7,10,11,12,13],numer:13,numpi:[4,5],obj:[3,4,11],object:[3,4,8,10,11,12],objectsist:3,occur:4,occurr:4,old:4,older:4,oldest:4,onc:4,one:[3,4,6,7,8,9,10,13],onli:4,only_lin:9,open:3,open_benchmark_db:3,oper:[4,13],operation_matrix:6,option:[3,4],order:[3,4,6,9,10,13],ordered_set:[4,9],ordin:4,org:[0,5],origin:[3,4,13],original_max:4,original_min:4,oscil:5,other:[3,4,7,8],otherwis:3,out:13,outfil:3,output:[11,13],over:4,overlap:13,own:8,p500:5,packag:[0,1],page:0,pair:5,panda:[3,4,5,10],par1:9,par2:9,parallel_util:[1,2],param:[3,4,8,9,10,11],paramet:[3,4,5,6,7,8,9,10,11,12,13],parametr:13,part:9,partit:[3,4,9,10,11,13],partition:[1,2,3,4,6,7,8,13],partition_funct:[4,6],partitioners_method:3,partitioners_model:3,pass:3,passeng:5,past:4,path:[3,4,11],pattern:4,pct:9,pdf:12,percent:3,percentag:3,percentu:[3,4],perform:[3,9,10,11,13],perform_loc:9,perform_width:9,period:9,persist:4,persist_env:4,persist_obj:4,person:[4,5],pertub:9,perturb:[2,6],perturbate_paramet:9,perturbation_factor:9,perturbation_factors__old:9,pesquisa:5,pftsexploreorderandpartit:3,php:5,phy:[5,6,13],physiolog:5,pictur:[3,4],pierc:3,pinbal:3,pinball_mean:3,pip:13,plambda:4,plot:[3,10,11,12],plot_compared_intervals_ahead:3,plot_compared_seri:3,plot_dataframe_interv:3,plot_dataframe_interval_pinbal:3,plot_dataframe_point:3,plot_dataframe_probabilist:3,plot_density_rectang:3,plot_distribut:3,plot_interv:3,plot_partition:11,plot_point:3,plot_probability_distribut:3,plot_residu:3,plot_rul:4,plot_set:[9,11],plot_sets_condit:9,plotcompar:3,plotforecast:3,plotresidu:3,pmf:[3,11],pmf_to_cdf:3,point:[3,4,6,7,8,9,10,12,13],point_dataframe_analytic_column:3,point_dataframe_synthetic_column:3,point_expected_valu:6,point_heurist:6,point_to_interv:3,poit:3,poly_width:9,polynomi:9,polynomialnonstationarypartition:9,poor:5,posit:[4,10],post:4,posterior:3,postprocess:[4,13],power:[4,6,13],pprint:4,pre:4,prebuilt:3,predict:[3,4,13],prefix:11,preprocess:[4,8,13],primari:3,print:3,print_distribution_statist:3,print_interval_statist:3,print_point_statist:3,probabil:3,probabilist:[1,2,3,4,6,7,13],probabilistic_dataframe_analytic_column:3,probabilistic_dataframe_synthetic_column:3,probabilisticweightedflrg:6,probabilisticweightedft:6,probabilitydist:3,probabilitydistribut:[1,2,3],probabl:[3,4,6,7,12],problem:6,procedur:[3,4],process:[3,4,5],process_common_data:3,process_interval_job:3,process_point_job:3,process_probabilistic_job:3,product:[5,6,13],prof:0,progress:3,project:[11,13],propos:13,provid:[0,4,13],psd:5,pseudologlikelihood:12,pwflrg:6,pwft:[1,2],python:[2,13],q05:3,q25:3,q75:3,q95:3,quantil:[3,7,12],quantile_regress:3,quantileregress:3,quantreg:[1,2],queri:3,quick:0,quot:5,quotat:5,rais:4,random_walk:5,rang:[3,13],rank:3,rate:[6,13],read:5,readabl:0,real:[4,13],recent:13,record:4,recurr:4,red:3,reference_data:3,refin:[6,13],regress:3,relationship:[4,6,8,9,10],remov:4,ren:6,replac:3,repo:13,repr:4,repres:[4,12],represent:13,research:[0,13],residu:3,residualanalysi:[1,2],resolut:3,respect:4,respons:10,result:[3,4],revers:4,review:[3,13],rhs_conditional_prob:6,rhs_unconditional_prob:6,right:4,ringgit:[6,13],rmse:3,rmse_interv:3,rmseavg:3,rmsestd:3,rng:9,robert:5,roger:4,roi:4,root:3,rossler:[1,2],rule:[3,4,8,13],rules_by_axi:4,run:3,run_interv:3,run_point:3,run_probabilist:3,sadaei:[1,2,13],salang:9,same:4,sampl:[3,5,6,13],sampler:7,save:[3,4,9,11],save_best:3,save_dataframe_interv:3,save_dataframe_point:3,save_dataframe_probabilist:3,save_model:4,scale:[3,4,13],scale_down:9,scale_param:3,scale_up:9,scan:4,scheme:[3,13],scienc:5,scientist:0,score:3,search:[0,4,6,13],season:[2,3,4,6,13],seasonalensembleft:7,seasonalflrg:10,seasonalft:10,seasonalindex:[2,6],second:10,second_of_dai:10,second_of_hour:10,second_of_minut:10,secur:5,selecaosimples_menorrms:3,select:5,sep:5,separ:5,sequenc:4,seri:[1,2,3,4,6,7,8,9,10,11],set:[3,4,6,8,9,10,11,12,13],set_data:10,set_lh:8,set_ord:4,set_rh:8,set_transform:7,setnam:11,sever:[3,11],severiano:6,sft:[2,6],shape:4,sharp:3,sharpavg:3,sharpstd:3,shortnam:4,show:[4,11],show_and_save_imag:4,shyi:6,side:4,sigma_inc:5,sigma_ini:5,sigmf:4,sigmoid:4,silva:[0,6],simpl:[0,5,10],simple_model_predict:4,simple_model_train:4,simplenonstationary_gridpartitioner_build:9,simplenonstationarypartition:9,simpler:4,simplesearch_rms:3,singl:4,single_plot_residu:3,singleton:[1,2,4],singletonpartition:11,sistema:5,size:[3,4,9,11],slice:4,slide:[3,4],sliding_window:4,sliding_window_benchmark:3,smape:3,smith:4,smooth:[4,13],social:[11,13],solar:6,sonda:[1,2],song:[1,2,10,13],sort:4,sort_ascend:3,sort_column:3,sortedcollect:[1,2],sourc:[3,4,5,6,7,8,9,10,11,12],sp500:5,space:3,specif:[3,4,6,7,8,9,10],split:[3,4,11],splitabov:11,splitbelow:11,splite:13,sql:3,sqlite3:3,sqlite:3,squar:3,ssci:6,standard:[3,5,13],start:[0,3,4,9],start_dispy_clust:4,stat:[3,6,13],station:5,stationari:9,statist:[0,3],statsmodel:3,step:[3,4,6,7,8,9,10,13],steps_ahead:[3,4],stochast:5,stock:5,stop_dispy_clust:4,store:[3,4],strang:5,string:[4,8,11],strip_datepart:10,structur:4,student:0,submodul:[0,1],subpackag:[0,1],suitabl:0,sum:6,sunspot:[1,2],superset:4,support:4,symbol:5,symmetr:3,symposium:6,synthet:[3,5],syst:[6,10,11,13],system:[5,6,9],tabl:3,tabular_dataframe_column:3,tag:3,taiex:[1,2,6,13],taiwan:5,take:13,tam:[3,9,11,12],target:3,tau:[3,5],technol:[11,13],tempor:[4,10,13],term:[3,6,13],test:[3,4,13],test_data:3,than:[4,13],thei:4,theil:3,theilsinequ:3,theoret:3,theori:13,thi:[0,4,5,6,9,10,13],thoma:4,those:4,thres1:11,thres2:11,threshold:11,through:5,time:[1,2,3,4,6,7,8,9,10,11],time_from:3,time_to:3,timegridpartition:10,times2:3,timeseri:5,titl:[3,11,12],tool:[0,13],total:5,tradit:6,train:[3,4,6,7,8,9,10,11],train_data:[3,7],train_individual_model:7,train_method:4,train_paramet:4,transact:9,transform:[1,2,3,8,9,11,13],transformations_param:4,transit:[4,13],translat:13,trapezoid:[4,11,13],trapmf:4,tree:[1,2],trend:[6,13],trendweightedflrg:6,trendweightedft:6,triangular:4,trigger:4,trimf:4,tsa:3,tsdl:5,tupl:3,two:5,twse:5,type:[3,4,5,12,13],typeonlegend:3,uavg:3,ufmg:0,under:4,unified_scaled_interv:3,unified_scaled_interval_pinbal:3,unified_scaled_point:3,unified_scaled_probabilist:3,uniform:5,uniqu:[4,6,9,10],uniquefilenam:4,unit:10,univari:5,univers:[0,3,4,5,9,10,11,12,13],unpack_arg:9,uod:[3,4,6,12],uod_clip:4,up_param:3,update_model:6,update_uod:7,updateuod:[4,8],upper:[4,5,6,9],upper_set:11,url:[0,3,5],usa:5,usag:0,usd:[1,2],use:[0,4],used:[3,4,6,11,13],user:3,using:[4,6,13],ustatist:3,ustd:3,usual:[4,13],util:[1,2,6],val:11,valid:4,valu:[3,4,5,6,7,8,9,10,12,13],valueerror:4,variabl:[2,4,6],varianc:[4,5],vector:4,veri:[5,6],verif:3,visualize_distribut:6,vmax:5,vmin:5,vol:[6,10,11,13],want:0,weather:3,weight:[5,6,13],weightedflrg:6,weightedft:6,when:4,where:[3,4],which:[3,4,13],white_nois:5,whose:0,width:[9,11,12],width_param:9,window:[3,4],window_index:9,window_kei:3,window_s:9,windows:[3,4],winkler:3,winkler_mean:3,winkler_scor:3,without:4,word:3,work:4,wrap:3,www:5,yahoo:5,year:10,yearli:5,yeh:[11,13],you:4,young:4,younger:4,youngest:4,zenodo:0},titles:["pyFTS - Fuzzy Time Series for Python","pyFTS","pyFTS package","pyFTS.benchmarks package","pyFTS.common package","pyFTS.data package","pyFTS.models package","pyFTS.models.ensemble package","pyFTS.models.multivariate package","pyFTS.models.nonstationary package","pyFTS.models.seasonal package","pyFTS.partitioners package","pyFTS.probabilistic package","pyFTS Quick Start"],titleterms:{FTS:13,airpasseng:5,arima:3,artifici:5,benchmark:3,bitcoin:5,chaotic:5,chen:6,cheng:6,cmean:11,cmsft:10,common:[4,5,8,9,10],composit:4,conf:2,content:[2,3,4,5,6,7,8,9,10,11,12],cvft:9,data:5,dataset:5,dowjon:5,enrol:5,ensembl:7,entropi:11,ethereum:5,eur:5,exampl:13,fcm:11,flr:[4,8],flrg:[4,8,9],fts:4,fuzzi:[0,13],fuzzyset:4,gbp:5,glass:5,grid:11,henon:5,hoft:6,honsft:9,how:[0,13],huarng:11,hwang:6,ift:6,index:0,inmet:5,instal:13,ismailefendi:6,kde:12,knn:3,librari:0,logistic_map:5,lorentz:5,mackei:5,measur:3,membership:4,model:[6,7,8,9,10],modul:[2,3,4,5,6,7,8,9,10,11,12],msft:10,multiseason:7,multivari:8,mvft:8,naiv:3,nasdaq:5,nonstationari:9,nsft:9,packag:[2,3,4,5,6,7,8,9,10,11,12],parallel_util:11,partition:[9,10,11],perturb:9,probabilist:12,probabilitydistribut:12,pwft:6,pyft:[0,1,2,3,4,5,6,7,8,9,10,11,12,13],pyftsa:[],python:0,quantreg:3,quick:13,refer:[0,13],residualanalysi:3,rossler:5,sadaei:6,season:10,seasonalindex:10,seri:[0,5,13],sft:10,singleton:11,sonda:5,song:6,sortedcollect:4,start:13,submodul:[2,3,4,5,6,7,8,9,10,11,12],subpackag:[2,6],sunspot:5,taiex:5,time:[0,5,13],transform:4,tree:4,usag:13,usd:5,util:[3,4,9,11],variabl:8,what:[0,13]}}) \ No newline at end of file +Search.setIndex({docnames:["index","modules","pyFTS","pyFTS.benchmarks","pyFTS.common","pyFTS.data","pyFTS.models","pyFTS.models.ensemble","pyFTS.models.multivariate","pyFTS.models.nonstationary","pyFTS.models.seasonal","pyFTS.partitioners","pyFTS.probabilistic","quickstart"],envversion:53,filenames:["index.rst","modules.rst","pyFTS.rst","pyFTS.benchmarks.rst","pyFTS.common.rst","pyFTS.data.rst","pyFTS.models.rst","pyFTS.models.ensemble.rst","pyFTS.models.multivariate.rst","pyFTS.models.nonstationary.rst","pyFTS.models.seasonal.rst","pyFTS.partitioners.rst","pyFTS.probabilistic.rst","quickstart.rst"],objects:{"":{pyFTS:[2,0,0,"-"]},"pyFTS.benchmarks":{Measures:[3,0,0,"-"],ResidualAnalysis:[3,0,0,"-"],Util:[3,0,0,"-"],arima:[3,0,0,"-"],benchmarks:[3,0,0,"-"],knn:[3,0,0,"-"],naive:[3,0,0,"-"],quantreg:[3,0,0,"-"]},"pyFTS.benchmarks.Measures":{BoxLjungStatistic:[3,1,1,""],BoxPierceStatistic:[3,1,1,""],TheilsInequality:[3,1,1,""],UStatistic:[3,1,1,""],acf:[3,1,1,""],brier_score:[3,1,1,""],coverage:[3,1,1,""],crps:[3,1,1,""],get_distribution_statistics:[3,1,1,""],get_interval_statistics:[3,1,1,""],get_point_statistics:[3,1,1,""],heavyside:[3,1,1,""],heavyside_cdf:[3,1,1,""],mape:[3,1,1,""],mape_interval:[3,1,1,""],pinball:[3,1,1,""],pinball_mean:[3,1,1,""],pmf_to_cdf:[3,1,1,""],resolution:[3,1,1,""],rmse:[3,1,1,""],rmse_interval:[3,1,1,""],sharpness:[3,1,1,""],smape:[3,1,1,""],winkler_mean:[3,1,1,""],winkler_score:[3,1,1,""]},"pyFTS.benchmarks.ResidualAnalysis":{chi_squared:[3,1,1,""],compare_residuals:[3,1,1,""],plotResiduals:[3,1,1,""],plot_residuals:[3,1,1,""],residuals:[3,1,1,""],single_plot_residuals:[3,1,1,""]},"pyFTS.benchmarks.Util":{analytic_tabular_dataframe:[3,1,1,""],analytical_data_columns:[3,1,1,""],base_dataframe_columns:[3,1,1,""],cast_dataframe_to_synthetic:[3,1,1,""],cast_dataframe_to_synthetic_interval:[3,1,1,""],cast_dataframe_to_synthetic_point:[3,1,1,""],cast_dataframe_to_synthetic_probabilistic:[3,1,1,""],check_ignore_list:[3,1,1,""],check_replace_list:[3,1,1,""],create_benchmark_tables:[3,1,1,""],extract_measure:[3,1,1,""],find_best:[3,1,1,""],get_dataframe_from_bd:[3,1,1,""],insert_benchmark:[3,1,1,""],interval_dataframe_analytic_columns:[3,1,1,""],interval_dataframe_synthetic_columns:[3,1,1,""],open_benchmark_db:[3,1,1,""],plot_dataframe_interval:[3,1,1,""],plot_dataframe_interval_pinball:[3,1,1,""],plot_dataframe_point:[3,1,1,""],plot_dataframe_probabilistic:[3,1,1,""],point_dataframe_analytic_columns:[3,1,1,""],point_dataframe_synthetic_columns:[3,1,1,""],probabilistic_dataframe_analytic_columns:[3,1,1,""],probabilistic_dataframe_synthetic_columns:[3,1,1,""],process_common_data:[3,1,1,""],save_dataframe_interval:[3,1,1,""],save_dataframe_point:[3,1,1,""],save_dataframe_probabilistic:[3,1,1,""],scale:[3,1,1,""],scale_params:[3,1,1,""],stats:[3,1,1,""],tabular_dataframe_columns:[3,1,1,""],unified_scaled_interval:[3,1,1,""],unified_scaled_interval_pinball:[3,1,1,""],unified_scaled_point:[3,1,1,""],unified_scaled_probabilistic:[3,1,1,""]},"pyFTS.benchmarks.arima":{ARIMA:[3,2,1,""]},"pyFTS.benchmarks.arima.ARIMA":{ar:[3,3,1,""],forecast:[3,3,1,""],forecast_ahead_distribution:[3,3,1,""],forecast_ahead_interval:[3,3,1,""],forecast_distribution:[3,3,1,""],forecast_interval:[3,3,1,""],ma:[3,3,1,""],train:[3,3,1,""]},"pyFTS.benchmarks.benchmarks":{SelecaoSimples_MenorRMSE:[3,1,1,""],compareModelsPlot:[3,1,1,""],compareModelsTable:[3,1,1,""],get_benchmark_interval_methods:[3,1,1,""],get_benchmark_point_methods:[3,1,1,""],get_benchmark_probabilistic_methods:[3,1,1,""],get_interval_methods:[3,1,1,""],get_point_methods:[3,1,1,""],get_probabilistic_methods:[3,1,1,""],pftsExploreOrderAndPartitions:[3,1,1,""],plotCompared:[3,1,1,""],plot_compared_intervals_ahead:[3,1,1,""],plot_compared_series:[3,1,1,""],plot_density_rectange:[3,1,1,""],plot_distribution:[3,1,1,""],plot_interval:[3,1,1,""],plot_point:[3,1,1,""],plot_probability_distributions:[3,1,1,""],print_distribution_statistics:[3,1,1,""],print_interval_statistics:[3,1,1,""],print_point_statistics:[3,1,1,""],process_interval_jobs:[3,1,1,""],process_point_jobs:[3,1,1,""],process_probabilistic_jobs:[3,1,1,""],run_interval:[3,1,1,""],run_point:[3,1,1,""],run_probabilistic:[3,1,1,""],simpleSearch_RMSE:[3,1,1,""],sliding_window_benchmarks:[3,1,1,""]},"pyFTS.benchmarks.knn":{KNearestNeighbors:[3,2,1,""]},"pyFTS.benchmarks.knn.KNearestNeighbors":{forecast_distribution:[3,3,1,""],knn:[3,3,1,""],train:[3,3,1,""]},"pyFTS.benchmarks.naive":{Naive:[3,2,1,""]},"pyFTS.benchmarks.naive.Naive":{forecast:[3,3,1,""]},"pyFTS.benchmarks.quantreg":{QuantileRegression:[3,2,1,""]},"pyFTS.benchmarks.quantreg.QuantileRegression":{forecast:[3,3,1,""],forecast_ahead_distribution:[3,3,1,""],forecast_ahead_interval:[3,3,1,""],forecast_distribution:[3,3,1,""],forecast_interval:[3,3,1,""],interval_to_interval:[3,3,1,""],linearmodel:[3,3,1,""],point_to_interval:[3,3,1,""],train:[3,3,1,""]},"pyFTS.common":{Composite:[4,0,0,"-"],FLR:[4,0,0,"-"],FuzzySet:[4,0,0,"-"],Membership:[4,0,0,"-"],SortedCollection:[4,0,0,"-"],Transformations:[4,0,0,"-"],Util:[4,0,0,"-"],flrg:[4,0,0,"-"],fts:[4,0,0,"-"],tree:[4,0,0,"-"]},"pyFTS.common.Composite":{FuzzySet:[4,2,1,""]},"pyFTS.common.Composite.FuzzySet":{append:[4,3,1,""],append_set:[4,3,1,""],membership:[4,3,1,""]},"pyFTS.common.FLR":{FLR:[4,2,1,""],IndexedFLR:[4,2,1,""],generate_high_order_recurrent_flr:[4,1,1,""],generate_indexed_flrs:[4,1,1,""],generate_non_recurrent_flrs:[4,1,1,""],generate_recurrent_flrs:[4,1,1,""]},"pyFTS.common.FLR.FLR":{LHS:[4,4,1,""],RHS:[4,4,1,""]},"pyFTS.common.FLR.IndexedFLR":{index:[4,4,1,""]},"pyFTS.common.FuzzySet":{FuzzySet:[4,2,1,""],check_bounds:[4,1,1,""],check_bounds_index:[4,1,1,""],fuzzyfy:[4,1,1,""],fuzzyfy_instance:[4,1,1,""],fuzzyfy_instances:[4,1,1,""],fuzzyfy_series:[4,1,1,""],fuzzyfy_series_old:[4,1,1,""],get_fuzzysets:[4,1,1,""],get_maximum_membership_fuzzyset:[4,1,1,""],get_maximum_membership_fuzzyset_index:[4,1,1,""],grant_bounds:[4,1,1,""],set_ordered:[4,1,1,""]},"pyFTS.common.FuzzySet.FuzzySet":{Z:[4,4,1,""],alpha:[4,4,1,""],centroid:[4,4,1,""],membership:[4,3,1,""],mf:[4,4,1,""],name:[4,4,1,""],parameters:[4,4,1,""],partition_function:[4,3,1,""],type:[4,4,1,""],variable:[4,4,1,""]},"pyFTS.common.Membership":{bellmf:[4,1,1,""],gaussmf:[4,1,1,""],sigmf:[4,1,1,""],singleton:[4,1,1,""],trapmf:[4,1,1,""],trimf:[4,1,1,""]},"pyFTS.common.SortedCollection":{SortedCollection:[4,2,1,""]},"pyFTS.common.SortedCollection.SortedCollection":{around:[4,3,1,""],between:[4,3,1,""],clear:[4,3,1,""],copy:[4,3,1,""],count:[4,3,1,""],find:[4,3,1,""],find_ge:[4,3,1,""],find_gt:[4,3,1,""],find_le:[4,3,1,""],find_lt:[4,3,1,""],index:[4,3,1,""],insert:[4,3,1,""],insert_right:[4,3,1,""],inside:[4,3,1,""],key:[4,4,1,""],remove:[4,3,1,""]},"pyFTS.common.Transformations":{AdaptiveExpectation:[4,2,1,""],BoxCox:[4,2,1,""],Differential:[4,2,1,""],Scale:[4,2,1,""],Transformation:[4,2,1,""],Z:[4,1,1,""],aggregate:[4,1,1,""],roi:[4,1,1,""],smoothing:[4,1,1,""]},"pyFTS.common.Transformations.AdaptiveExpectation":{apply:[4,3,1,""],inverse:[4,3,1,""],parameters:[4,4,1,""]},"pyFTS.common.Transformations.BoxCox":{apply:[4,3,1,""],inverse:[4,3,1,""],parameters:[4,4,1,""]},"pyFTS.common.Transformations.Differential":{apply:[4,3,1,""],inverse:[4,3,1,""],parameters:[4,4,1,""]},"pyFTS.common.Transformations.Scale":{apply:[4,3,1,""],inverse:[4,3,1,""],parameters:[4,4,1,""]},"pyFTS.common.Transformations.Transformation":{apply:[4,3,1,""],inverse:[4,3,1,""]},"pyFTS.common.Util":{current_milli_time:[4,1,1,""],distributed_predict:[4,1,1,""],distributed_train:[4,1,1,""],draw_sets_on_axis:[4,1,1,""],enumerate2:[4,1,1,""],load_env:[4,1,1,""],load_obj:[4,1,1,""],persist_env:[4,1,1,""],persist_obj:[4,1,1,""],plot_rules:[4,1,1,""],show_and_save_image:[4,1,1,""],simple_model_predict:[4,1,1,""],simple_model_train:[4,1,1,""],sliding_window:[4,1,1,""],start_dispy_cluster:[4,1,1,""],stop_dispy_cluster:[4,1,1,""],uniquefilename:[4,1,1,""]},"pyFTS.common.flrg":{FLRG:[4,2,1,""]},"pyFTS.common.flrg.FLRG":{LHS:[4,4,1,""],RHS:[4,4,1,""],append_rhs:[4,3,1,""],get_key:[4,3,1,""],get_lower:[4,3,1,""],get_membership:[4,3,1,""],get_midpoint:[4,3,1,""],get_midpoints:[4,3,1,""],get_upper:[4,3,1,""],order:[4,4,1,""]},"pyFTS.common.fts":{FTS:[4,2,1,""]},"pyFTS.common.fts.FTS":{alpha_cut:[4,4,1,""],append_transformation:[4,3,1,""],apply_inverse_transformations:[4,3,1,""],apply_transformations:[4,3,1,""],auto_update:[4,4,1,""],benchmark_only:[4,4,1,""],clone_parameters:[4,3,1,""],detail:[4,4,1,""],fit:[4,3,1,""],flrgs:[4,4,1,""],forecast:[4,3,1,""],forecast_ahead:[4,3,1,""],forecast_ahead_distribution:[4,3,1,""],forecast_ahead_interval:[4,3,1,""],forecast_distribution:[4,3,1,""],forecast_interval:[4,3,1,""],fuzzy:[4,3,1,""],get_UoD:[4,3,1,""],has_interval_forecasting:[4,4,1,""],has_point_forecasting:[4,4,1,""],has_probability_forecasting:[4,4,1,""],has_seasonality:[4,4,1,""],indexer:[4,4,1,""],is_high_order:[4,4,1,""],is_multivariate:[4,4,1,""],len_total:[4,3,1,""],max_lag:[4,4,1,""],merge:[4,3,1,""],min_order:[4,4,1,""],name:[4,4,1,""],order:[4,4,1,""],original_max:[4,4,1,""],original_min:[4,4,1,""],partitioner:[4,4,1,""],predict:[4,3,1,""],sets:[4,4,1,""],shortname:[4,4,1,""],train:[4,3,1,""],transformations:[4,4,1,""],transformations_param:[4,4,1,""],uod_clip:[4,4,1,""]},"pyFTS.common.tree":{FLRGTree:[4,2,1,""],FLRGTreeNode:[4,2,1,""],build_tree_without_order:[4,1,1,""],flat:[4,1,1,""]},"pyFTS.common.tree.FLRGTreeNode":{appendChild:[4,3,1,""],getChildren:[4,3,1,""],getStr:[4,3,1,""],paths:[4,3,1,""]},"pyFTS.data":{AirPassengers:[5,0,0,"-"],Bitcoin:[5,0,0,"-"],DowJones:[5,0,0,"-"],EURGBP:[5,0,0,"-"],EURUSD:[5,0,0,"-"],Enrollments:[5,0,0,"-"],Ethereum:[5,0,0,"-"],GBPUSD:[5,0,0,"-"],INMET:[5,0,0,"-"],NASDAQ:[5,0,0,"-"],SONDA:[5,0,0,"-"],SP500:[5,0,0,"-"],TAIEX:[5,0,0,"-"],artificial:[5,0,0,"-"],common:[5,0,0,"-"],henon:[5,0,0,"-"],logistic_map:[5,0,0,"-"],lorentz:[5,0,0,"-"],mackey_glass:[5,0,0,"-"],rossler:[5,0,0,"-"],sunspots:[5,0,0,"-"]},"pyFTS.data.AirPassengers":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.Bitcoin":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.DowJones":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.EURGBP":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.EURUSD":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.Enrollments":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.Ethereum":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.GBPUSD":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.INMET":{get_dataframe:[5,1,1,""]},"pyFTS.data.NASDAQ":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.SONDA":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.SP500":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.TAIEX":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.artificial":{generate_gaussian_linear:[5,1,1,""],generate_uniform_linear:[5,1,1,""],random_walk:[5,1,1,""],white_noise:[5,1,1,""]},"pyFTS.data.common":{get_dataframe:[5,1,1,""]},"pyFTS.data.henon":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.logistic_map":{get_data:[5,1,1,""]},"pyFTS.data.lorentz":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.mackey_glass":{get_data:[5,1,1,""]},"pyFTS.data.rossler":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.sunspots":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.models":{chen:[6,0,0,"-"],cheng:[6,0,0,"-"],ensemble:[7,0,0,"-"],hofts:[6,0,0,"-"],hwang:[6,0,0,"-"],ifts:[6,0,0,"-"],ismailefendi:[6,0,0,"-"],multivariate:[8,0,0,"-"],nonstationary:[9,0,0,"-"],pwfts:[6,0,0,"-"],sadaei:[6,0,0,"-"],seasonal:[10,0,0,"-"],song:[6,0,0,"-"],yu:[6,0,0,"-"]},"pyFTS.models.chen":{ConventionalFLRG:[6,2,1,""],ConventionalFTS:[6,2,1,""]},"pyFTS.models.chen.ConventionalFLRG":{append_rhs:[6,3,1,""],get_key:[6,3,1,""]},"pyFTS.models.chen.ConventionalFTS":{forecast:[6,3,1,""],generate_flrg:[6,3,1,""],train:[6,3,1,""]},"pyFTS.models.cheng":{TrendWeightedFLRG:[6,2,1,""],TrendWeightedFTS:[6,2,1,""]},"pyFTS.models.cheng.TrendWeightedFLRG":{weights:[6,3,1,""]},"pyFTS.models.cheng.TrendWeightedFTS":{generate_FLRG:[6,3,1,""]},"pyFTS.models.ensemble":{ensemble:[7,0,0,"-"],multiseasonal:[7,0,0,"-"]},"pyFTS.models.ensemble.ensemble":{AllMethodEnsembleFTS:[7,2,1,""],EnsembleFTS:[7,2,1,""],sampler:[7,1,1,""]},"pyFTS.models.ensemble.ensemble.AllMethodEnsembleFTS":{set_transformations:[7,3,1,""],train:[7,3,1,""]},"pyFTS.models.ensemble.ensemble.EnsembleFTS":{append_model:[7,3,1,""],forecast:[7,3,1,""],forecast_ahead_distribution:[7,3,1,""],forecast_ahead_interval:[7,3,1,""],forecast_distribution:[7,3,1,""],forecast_interval:[7,3,1,""],get_distribution_interquantile:[7,3,1,""],get_interval:[7,3,1,""],get_models_forecasts:[7,3,1,""],get_point:[7,3,1,""],models:[7,4,1,""],parameters:[7,4,1,""],train:[7,3,1,""]},"pyFTS.models.ensemble.multiseasonal":{SeasonalEnsembleFTS:[7,2,1,""],train_individual_model:[7,1,1,""]},"pyFTS.models.ensemble.multiseasonal.SeasonalEnsembleFTS":{forecast_distribution:[7,3,1,""],train:[7,3,1,""],update_uod:[7,3,1,""]},"pyFTS.models.hofts":{HighOrderFLRG:[6,2,1,""],HighOrderFTS:[6,2,1,""]},"pyFTS.models.hofts.HighOrderFLRG":{append_lhs:[6,3,1,""],append_rhs:[6,3,1,""]},"pyFTS.models.hofts.HighOrderFTS":{configure_lags:[6,3,1,""],forecast:[6,3,1,""],generate_flrg:[6,3,1,""],generate_lhs_flrg:[6,3,1,""],train:[6,3,1,""]},"pyFTS.models.hwang":{HighOrderFTS:[6,2,1,""]},"pyFTS.models.hwang.HighOrderFTS":{configure_lags:[6,3,1,""],forecast:[6,3,1,""],train:[6,3,1,""]},"pyFTS.models.ifts":{IntervalFTS:[6,2,1,""]},"pyFTS.models.ifts.IntervalFTS":{forecast_interval:[6,3,1,""],get_lower:[6,3,1,""],get_sequence_membership:[6,3,1,""],get_upper:[6,3,1,""]},"pyFTS.models.ismailefendi":{ImprovedWeightedFLRG:[6,2,1,""],ImprovedWeightedFTS:[6,2,1,""]},"pyFTS.models.ismailefendi.ImprovedWeightedFLRG":{append_rhs:[6,3,1,""],weights:[6,3,1,""]},"pyFTS.models.ismailefendi.ImprovedWeightedFTS":{forecast:[6,3,1,""],generate_flrg:[6,3,1,""],train:[6,3,1,""]},"pyFTS.models.multivariate":{FLR:[8,0,0,"-"],common:[8,0,0,"-"],flrg:[8,0,0,"-"],mvfts:[8,0,0,"-"],variable:[8,0,0,"-"]},"pyFTS.models.multivariate.FLR":{FLR:[8,2,1,""]},"pyFTS.models.multivariate.FLR.FLR":{set_lhs:[8,3,1,""],set_rhs:[8,3,1,""]},"pyFTS.models.multivariate.common":{fuzzyfy_instance:[8,1,1,""]},"pyFTS.models.multivariate.flrg":{FLRG:[8,2,1,""]},"pyFTS.models.multivariate.flrg.FLRG":{append_rhs:[8,3,1,""],get_membership:[8,3,1,""],set_lhs:[8,3,1,""]},"pyFTS.models.multivariate.mvfts":{MVFTS:[8,2,1,""]},"pyFTS.models.multivariate.mvfts.MVFTS":{append_variable:[8,3,1,""],apply_transformations:[8,3,1,""],clone_parameters:[8,3,1,""],forecast:[8,3,1,""],format_data:[8,3,1,""],generate_flrg:[8,3,1,""],generate_flrs:[8,3,1,""],generate_lhs_flrs:[8,3,1,""],train:[8,3,1,""]},"pyFTS.models.multivariate.variable":{Variable:[8,2,1,""]},"pyFTS.models.multivariate.variable.Variable":{alias:[8,4,1,""],apply_inverse_transformations:[8,3,1,""],apply_transformations:[8,3,1,""],build:[8,3,1,""],data_label:[8,4,1,""],name:[8,4,1,""]},"pyFTS.models.nonstationary":{common:[9,0,0,"-"],cvfts:[9,0,0,"-"],flrg:[9,0,0,"-"],honsfts:[9,0,0,"-"],nsfts:[9,0,0,"-"],partitioners:[9,0,0,"-"],perturbation:[9,0,0,"-"],util:[9,0,0,"-"]},"pyFTS.models.nonstationary.common":{FuzzySet:[9,2,1,""],check_bounds:[9,1,1,""],check_bounds_index:[9,1,1,""],fuzzify:[9,1,1,""],fuzzySeries:[9,1,1,""],window_index:[9,1,1,""]},"pyFTS.models.nonstationary.common.FuzzySet":{get_lower:[9,3,1,""],get_midpoint:[9,3,1,""],get_upper:[9,3,1,""],location:[9,4,1,""],location_params:[9,4,1,""],membership:[9,3,1,""],noise:[9,4,1,""],noise_params:[9,4,1,""],perform_location:[9,3,1,""],perform_width:[9,3,1,""],perturbate_parameters:[9,3,1,""],width:[9,4,1,""],width_params:[9,4,1,""]},"pyFTS.models.nonstationary.cvfts":{ConditionalVarianceFTS:[9,2,1,""],HighOrderNonstationaryFLRG:[9,2,1,""]},"pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS":{forecast:[9,3,1,""],forecast_interval:[9,3,1,""],generate_flrg:[9,3,1,""],perturbation_factors:[9,3,1,""],perturbation_factors__old:[9,3,1,""],train:[9,3,1,""]},"pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG":{append_lhs:[9,3,1,""],append_rhs:[9,3,1,""]},"pyFTS.models.nonstationary.flrg":{NonStationaryFLRG:[9,2,1,""]},"pyFTS.models.nonstationary.flrg.NonStationaryFLRG":{get_key:[9,3,1,""],get_lower:[9,3,1,""],get_membership:[9,3,1,""],get_midpoint:[9,3,1,""],get_upper:[9,3,1,""],unpack_args:[9,3,1,""]},"pyFTS.models.nonstationary.honsfts":{HighOrderNonStationaryFLRG:[9,2,1,""],HighOrderNonStationaryFTS:[9,2,1,""]},"pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG":{append_lhs:[9,3,1,""],append_rhs:[9,3,1,""]},"pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS":{forecast:[9,3,1,""],forecast_interval:[9,3,1,""],generate_flrg:[9,3,1,""],train:[9,3,1,""]},"pyFTS.models.nonstationary.nsfts":{ConventionalNonStationaryFLRG:[9,2,1,""],NonStationaryFTS:[9,2,1,""]},"pyFTS.models.nonstationary.nsfts.ConventionalNonStationaryFLRG":{append_rhs:[9,3,1,""],get_key:[9,3,1,""]},"pyFTS.models.nonstationary.nsfts.NonStationaryFTS":{conditional_perturbation_factors:[9,3,1,""],forecast:[9,3,1,""],forecast_interval:[9,3,1,""],generate_flrg:[9,3,1,""],train:[9,3,1,""]},"pyFTS.models.nonstationary.partitioners":{PolynomialNonStationaryPartitioner:[9,2,1,""],SimpleNonStationaryPartitioner:[9,2,1,""],simplenonstationary_gridpartitioner_builder:[9,1,1,""]},"pyFTS.models.nonstationary.partitioners.PolynomialNonStationaryPartitioner":{build:[9,3,1,""],get_polynomial_perturbations:[9,3,1,""],poly_width:[9,3,1,""],scale_down:[9,3,1,""],scale_up:[9,3,1,""]},"pyFTS.models.nonstationary.partitioners.SimpleNonStationaryPartitioner":{build:[9,3,1,""]},"pyFTS.models.nonstationary.perturbation":{exponential:[9,1,1,""],linear:[9,1,1,""],periodic:[9,1,1,""],polynomial:[9,1,1,""]},"pyFTS.models.nonstationary.util":{plot_sets:[9,1,1,""],plot_sets_conditional:[9,1,1,""]},"pyFTS.models.pwfts":{ProbabilisticWeightedFLRG:[6,2,1,""],ProbabilisticWeightedFTS:[6,2,1,""],visualize_distributions:[6,1,1,""]},"pyFTS.models.pwfts.ProbabilisticWeightedFLRG":{append_rhs:[6,3,1,""],get_lower:[6,3,1,""],get_membership:[6,3,1,""],get_midpoint:[6,3,1,""],get_upper:[6,3,1,""],lhs_conditional_probability:[6,3,1,""],partition_function:[6,3,1,""],rhs_conditional_probability:[6,3,1,""],rhs_unconditional_probability:[6,3,1,""]},"pyFTS.models.pwfts.ProbabilisticWeightedFTS":{add_new_PWFLGR:[6,3,1,""],flrg_lhs_conditional_probability:[6,3,1,""],flrg_lhs_unconditional_probability:[6,3,1,""],flrg_rhs_conditional_probability:[6,3,1,""],forecast:[6,3,1,""],forecast_ahead:[6,3,1,""],forecast_ahead_distribution:[6,3,1,""],forecast_ahead_interval:[6,3,1,""],forecast_distribution:[6,3,1,""],forecast_interval:[6,3,1,""],generate_flrg:[6,3,1,""],generate_lhs_flrg:[6,3,1,""],get_lower:[6,3,1,""],get_midpoint:[6,3,1,""],get_upper:[6,3,1,""],interval_heuristic:[6,3,1,""],interval_quantile:[6,3,1,""],point_expected_value:[6,3,1,""],point_heuristic:[6,3,1,""],train:[6,3,1,""],update_model:[6,3,1,""]},"pyFTS.models.sadaei":{ExponentialyWeightedFLRG:[6,2,1,""],ExponentialyWeightedFTS:[6,2,1,""]},"pyFTS.models.sadaei.ExponentialyWeightedFLRG":{append_rhs:[6,3,1,""],weights:[6,3,1,""]},"pyFTS.models.sadaei.ExponentialyWeightedFTS":{forecast:[6,3,1,""],generate_flrg:[6,3,1,""],train:[6,3,1,""]},"pyFTS.models.seasonal":{SeasonalIndexer:[10,0,0,"-"],cmsfts:[10,0,0,"-"],common:[10,0,0,"-"],msfts:[10,0,0,"-"],partitioner:[10,0,0,"-"],sfts:[10,0,0,"-"]},"pyFTS.models.seasonal.SeasonalIndexer":{DataFrameSeasonalIndexer:[10,2,1,""],DateTimeSeasonalIndexer:[10,2,1,""],LinearSeasonalIndexer:[10,2,1,""],SeasonalIndexer:[10,2,1,""]},"pyFTS.models.seasonal.SeasonalIndexer.DataFrameSeasonalIndexer":{get_data:[10,3,1,""],get_data_by_season:[10,3,1,""],get_index_by_season:[10,3,1,""],get_season_by_index:[10,3,1,""],get_season_of_data:[10,3,1,""],set_data:[10,3,1,""]},"pyFTS.models.seasonal.SeasonalIndexer.DateTimeSeasonalIndexer":{get_data:[10,3,1,""],get_data_by_season:[10,3,1,""],get_index:[10,3,1,""],get_index_by_season:[10,3,1,""],get_season_by_index:[10,3,1,""],get_season_of_data:[10,3,1,""],set_data:[10,3,1,""]},"pyFTS.models.seasonal.SeasonalIndexer.LinearSeasonalIndexer":{get_data:[10,3,1,""],get_index_by_season:[10,3,1,""],get_season_by_index:[10,3,1,""],get_season_of_data:[10,3,1,""]},"pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer":{get_data:[10,3,1,""],get_data_by_season:[10,3,1,""],get_index:[10,3,1,""],get_index_by_season:[10,3,1,""],get_season_by_index:[10,3,1,""],get_season_of_data:[10,3,1,""]},"pyFTS.models.seasonal.cmsfts":{ContextualMultiSeasonalFTS:[10,2,1,""],ContextualSeasonalFLRG:[10,2,1,""]},"pyFTS.models.seasonal.cmsfts.ContextualMultiSeasonalFTS":{forecast:[10,3,1,""],forecast_ahead:[10,3,1,""],generate_flrg:[10,3,1,""],get_midpoints:[10,3,1,""],train:[10,3,1,""]},"pyFTS.models.seasonal.cmsfts.ContextualSeasonalFLRG":{append_rhs:[10,3,1,""]},"pyFTS.models.seasonal.common":{DateTime:[10,2,1,""],FuzzySet:[10,2,1,""],strip_datepart:[10,1,1,""]},"pyFTS.models.seasonal.common.DateTime":{day_of_month:[10,4,1,""],day_of_week:[10,4,1,""],day_of_year:[10,4,1,""],hour:[10,4,1,""],hour_of_day:[10,4,1,""],hour_of_month:[10,4,1,""],hour_of_week:[10,4,1,""],hour_of_year:[10,4,1,""],minute_of_day:[10,4,1,""],minute_of_hour:[10,4,1,""],minute_of_month:[10,4,1,""],minute_of_week:[10,4,1,""],minute_of_year:[10,4,1,""],month:[10,4,1,""],second:[10,4,1,""],second_of_day:[10,4,1,""],second_of_hour:[10,4,1,""],second_of_minute:[10,4,1,""],year:[10,4,1,""]},"pyFTS.models.seasonal.common.FuzzySet":{membership:[10,3,1,""]},"pyFTS.models.seasonal.msfts":{MultiSeasonalFTS:[10,2,1,""]},"pyFTS.models.seasonal.msfts.MultiSeasonalFTS":{forecast:[10,3,1,""],forecast_ahead:[10,3,1,""],generate_flrg:[10,3,1,""],train:[10,3,1,""]},"pyFTS.models.seasonal.partitioner":{TimeGridPartitioner:[10,2,1,""]},"pyFTS.models.seasonal.partitioner.TimeGridPartitioner":{build:[10,3,1,""],plot:[10,3,1,""]},"pyFTS.models.seasonal.sfts":{SeasonalFLRG:[10,2,1,""],SeasonalFTS:[10,2,1,""]},"pyFTS.models.seasonal.sfts.SeasonalFLRG":{append_rhs:[10,3,1,""],get_key:[10,3,1,""]},"pyFTS.models.seasonal.sfts.SeasonalFTS":{forecast:[10,3,1,""],generate_flrg:[10,3,1,""],get_midpoints:[10,3,1,""],train:[10,3,1,""]},"pyFTS.models.song":{ConventionalFTS:[6,2,1,""]},"pyFTS.models.song.ConventionalFTS":{flr_membership_matrix:[6,3,1,""],forecast:[6,3,1,""],operation_matrix:[6,3,1,""],train:[6,3,1,""]},"pyFTS.models.yu":{WeightedFLRG:[6,2,1,""],WeightedFTS:[6,2,1,""]},"pyFTS.models.yu.WeightedFLRG":{append_rhs:[6,3,1,""],weights:[6,3,1,""]},"pyFTS.models.yu.WeightedFTS":{forecast:[6,3,1,""],generate_FLRG:[6,3,1,""],train:[6,3,1,""]},"pyFTS.partitioners":{CMeans:[11,0,0,"-"],Entropy:[11,0,0,"-"],FCM:[11,0,0,"-"],Grid:[11,0,0,"-"],Huarng:[11,0,0,"-"],Singleton:[11,0,0,"-"],Util:[11,0,0,"-"],parallel_util:[11,0,0,"-"],partitioner:[11,0,0,"-"]},"pyFTS.partitioners.CMeans":{CMeansPartitioner:[11,2,1,""],c_means:[11,1,1,""],distance:[11,1,1,""]},"pyFTS.partitioners.CMeans.CMeansPartitioner":{build:[11,3,1,""]},"pyFTS.partitioners.Entropy":{EntropyPartitioner:[11,2,1,""],PMF:[11,1,1,""],bestSplit:[11,1,1,""],entropy:[11,1,1,""],informationGain:[11,1,1,""],splitAbove:[11,1,1,""],splitBelow:[11,1,1,""]},"pyFTS.partitioners.Entropy.EntropyPartitioner":{build:[11,3,1,""]},"pyFTS.partitioners.FCM":{FCMPartitioner:[11,2,1,""],fuzzy_cmeans:[11,1,1,""],fuzzy_distance:[11,1,1,""],membership:[11,1,1,""]},"pyFTS.partitioners.FCM.FCMPartitioner":{build:[11,3,1,""]},"pyFTS.partitioners.Grid":{GridPartitioner:[11,2,1,""]},"pyFTS.partitioners.Grid.GridPartitioner":{build:[11,3,1,""]},"pyFTS.partitioners.Huarng":{HuarngPartitioner:[11,2,1,""]},"pyFTS.partitioners.Huarng.HuarngPartitioner":{build:[11,3,1,""]},"pyFTS.partitioners.Singleton":{SingletonPartitioner:[11,2,1,""]},"pyFTS.partitioners.Singleton.SingletonPartitioner":{build:[11,3,1,""]},"pyFTS.partitioners.Util":{explore_partitioners:[11,1,1,""],plot_partitioners:[11,1,1,""],plot_sets:[11,1,1,""]},"pyFTS.partitioners.parallel_util":{explore_partitioners:[11,1,1,""]},"pyFTS.partitioners.partitioner":{Partitioner:[11,2,1,""]},"pyFTS.partitioners.partitioner.Partitioner":{build:[11,3,1,""],get_name:[11,3,1,""],lower_set:[11,3,1,""],membership_function:[11,4,1,""],name:[11,4,1,""],partitions:[11,4,1,""],plot:[11,3,1,""],plot_set:[11,3,1,""],prefix:[11,4,1,""],setnames:[11,4,1,""],transformation:[11,4,1,""],upper_set:[11,3,1,""]},"pyFTS.probabilistic":{ProbabilityDistribution:[12,0,0,"-"],kde:[12,0,0,"-"]},"pyFTS.probabilistic.ProbabilityDistribution":{ProbabilityDistribution:[12,2,1,""]},"pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution":{append:[12,3,1,""],append_interval:[12,3,1,""],averageloglikelihood:[12,3,1,""],bins:[12,4,1,""],build_cdf_qtl:[12,3,1,""],crossentropy:[12,3,1,""],cumulative:[12,3,1,""],density:[12,3,1,""],differential_offset:[12,3,1,""],empiricalloglikelihood:[12,3,1,""],entropy:[12,3,1,""],expected_value:[12,3,1,""],kullbackleiblerdivergence:[12,3,1,""],labels:[12,4,1,""],plot:[12,3,1,""],pseudologlikelihood:[12,3,1,""],quantile:[12,3,1,""],set:[12,3,1,""],type:[12,4,1,""],uod:[12,4,1,""]},"pyFTS.probabilistic.kde":{KernelSmoothing:[12,2,1,""]},"pyFTS.probabilistic.kde.KernelSmoothing":{h:[12,4,1,""],kernel:[12,4,1,""],kernel_function:[12,3,1,""],probability:[12,3,1,""]},pyFTS:{benchmarks:[3,0,0,"-"],common:[4,0,0,"-"],conf:[2,0,0,"-"],data:[5,0,0,"-"],models:[6,0,0,"-"],partitioners:[11,0,0,"-"],probabilistic:[12,0,0,"-"]}},objnames:{"0":["py","module","Python module"],"1":["py","function","Python function"],"2":["py","class","Python class"],"3":["py","method","Python method"],"4":["py","attribute","Python attribute"]},objtypes:{"0":"py:module","1":"py:function","2":"py:class","3":"py:method","4":"py:attribute"},terms:{"261459a0":5,"57a":5,"5egspc":5,"boolean":[3,4,11],"case":4,"class":[3,4,6,7,8,9,10,11,12,13],"default":[3,4,5],"enum":10,"fa\u00e7ad":[3,4],"final":4,"float":[3,4,5],"function":[3,4,9,11,12,13],"guimar\u00e3":[0,6],"h\u00e9non":5,"import":[4,8,13],"int":[6,13],"na\u00efv":3,"new":[4,7,8],"organiza\u00e7\u00e3o":5,"petr\u00f4nio":6,"r\u00f6ssler":5,"return":[3,4,5,6,7,8,9,10,11,12],"short":[4,6,13],"true":[3,4],"var":[5,8],"while":4,And:3,FTS:[0,3,4,6,7,8,9,10],For:3,LHS:[4,6,9],RHS:[4,6,9],The:[3,4,5,11,12,13],Then:[3,13],There:13,These:[0,13],Use:10,abdullah:[6,13],acc:4,account:12,accuraci:3,acf:3,actual:12,adapt:4,adaptiveexpect:4,add:[3,4,9],add_new_pwflgr:6,added:4,address:[3,4],affect:9,after:5,age:4,aged:4,aggreg:[4,7],ahead:[3,4,6,7,8,9,10,13],ahed:13,airlin:5,airpasseng:[1,2],alabama:5,alia:[3,4,8],all:[3,4,12,13],allmethodensembleft:7,almost:13,alpha:[4,6,7,10],alpha_cut:4,alreadi:5,also:[0,4,13],ambientai:5,analysi:3,analytic_tabular_datafram:3,analytical_data_column:3,angela:4,api:[0,4],append:[4,7,8,12],append_interv:12,append_lh:[6,9],append_model:7,append_rh:[4,6,8,9,10],append_set:4,append_transform:4,append_vari:8,appendchild:4,appl:[6,11,13],appli:[3,4,8,11,12],apply_inverse_transform:[4,8],apply_transform:[4,8],approach:[3,11,13],arg:9,argument:[3,4],arima:[1,2],arima_model:3,around:4,arrai:[4,5,9,10],artifici:[1,2],ascend:3,aspx:5,assert:12,assign:[4,12],assoc:3,associ:5,ata:3,atmospher:5,atribut:3,attibut:4,attractor:5,auto:11,auto_upd:4,autocorrel:3,autom:5,automat:4,auxiliar:3,auxiliari:12,averag:[3,5,12],averageloglikelihood:12,avg:5,axes:9,axi:[3,4,11,12],azim:3,bar:3,base:[3,4,6,7,8,9,10,11,12,13],base_dataframe_column:3,batch:4,batch_sav:4,befor:13,being:3,bell:4,bellmf:4,belo:[0,5],belog:4,below:13,benchmark:[1,2,4],benchmark_method:3,benchmark_methods_paramet:3,benchmark_model:3,benchmark_onli:4,bestsplit:11,better:13,between:[3,4,12],bill:4,bin:[3,12],bisect:4,bitcoin:[1,2],bivari:5,black:12,blue:3,bound:[4,5,6,9],box:[3,4,13],boxcox:4,boxljungstatist:3,boxpiercestatist:3,brasil:5,brasilia:5,brazil:0,brazilian:0,brier:3,brier_scor:3,btc:5,build:[8,9,10,11],build_cdf_qtl:12,build_method:3,build_tree_without_ord:4,built:11,buseco:5,busi:5,c_mean:11,calcul:[4,9,10],call:4,camwa:11,can:[3,4,13],capabl:3,capit:5,cast_dataframe_to_synthet:3,cast_dataframe_to_synthetic_interv:3,cast_dataframe_to_synthetic_point:3,cast_dataframe_to_synthetic_probabilist:3,ccst:5,center:4,centroid:[4,10],certain:12,chang:[5,11,13],chao:5,chaotic:[1,2],characterist:13,cheap:0,check:[4,5,13],check_bound:[4,9],check_bounds_index:[4,9],check_ignore_list:3,check_replace_list:3,chen:[1,2,8,10,13],cheng:[1,2,11,13],chi:3,chi_squar:3,chia:6,child:4,chissom:[6,13],clear:4,clip:4,clone:13,clone_paramet:[4,8],cluster:[3,4],cmap:3,cmean:[1,2],cmeanspartition:[11,13],cmsft:[2,6],code:13,coeffici:[3,5],colab:13,colabor:0,color:[3,9,12],column:[4,8],com:[5,13],common:[1,2,3,6,7,11,13],commun:5,compar:3,compare_residu:3,comparemodelsplot:3,comparemodelst:3,complet:5,complic:5,compon:7,composit:[1,2,5],compress:5,comput:[6,11,13],computation:0,condens:3,condit:3,conditional_perturbation_factor:9,conditionalvarianceft:9,conf:[0,1],confer:6,configure_lag:6,conn:3,connect:3,consid:4,const_t:9,constant:5,contain:[3,4,8,13],content:[0,1],contextu:10,contextualmultiseasonalft:10,contextualseasonalflrg:10,contin:12,continu:[3,5,12],control:5,convent:[6,9,10],conventionalflrg:6,conventionalft:[6,8],conventionalnonstationaryflrg:9,copi:4,cost:[11,13],count:[4,12],counter:11,covavg:3,coverag:3,covstd:3,cox:[4,13],creat:[3,4,11,13],create_benchmark_t:3,criteria:3,cross:[4,12],crossentropi:12,crp:3,crps1avg:3,crps1std:3,crps2avg:3,crps2std:3,crps_distr:3,crps_interv:3,crpsavg:3,crpsstd:3,csv:5,cummul:[],cumul:12,current:3,current_milli_tim:4,cut:4,cvft:[2,6],dado:[4,5,11],dai:5,daili:5,data:[0,1,2,3,4,6,7,8,9,10,11,12,13],data_column:3,data_field:10,data_label:8,data_point:8,databas:3,datafram:[3,4,5,8,10],dataframeseasonalindex:10,dataset:[1,2,3,4],date:[3,10],date_field:10,date_part:10,datepart:10,datetim:10,datetimeseasonalindex:10,david:4,day_of_month:10,day_of_week:10,day_of_year:10,dealer:5,dec:11,decemb:5,decis:3,decompress:5,defin:3,defuzzyf:13,deg:9,delet:4,deltadist:11,demo:13,densiti:[3,12],departa:0,depend:[3,4,13],dependeci:4,deri:[6,13],design:[3,4],detail:4,determin:3,determinist:[5,11],develop:[0,13],deviat:3,dict:[3,4],dictionari:[3,4],differenti:[4,5,12,13],differential_offset:12,diffus:[6,13],dill:4,dimension:5,directli:[4,13],discours:[3,4,9,10,11,12,13],discret:12,disk:[4,11],dispi:[3,4],displac:9,displai:3,distanc:[3,11],distribut:[3,4,5,6,7,12],distributed_predict:4,distributed_train:4,diverg:12,dji:5,dnf:5,document:0,doi10:6,doi:[0,3,5,11],dollar:[6,13],don:5,dow:5,dowjon:[1,2],download:5,draw_sets_on_axi:4,dure:[3,4],dynam:5,each:[3,4,5,7,8,13],easi:[0,4],easier:4,edu:5,edward:5,efendi:[6,13],effect:[11,13],effici:4,electr:[0,6,13],elev:3,empir:[11,12],empiricalloglikelihood:12,enayatifar:[6,13],end:9,endogen:8,energi:[6,13],engin:0,enrol:[1,2,6,10,13],ensembl:[2,4,6],ensembleft:7,entir:4,entropi:[1,2,12,13],entropypartition:[11,13],enumer:10,enumerate2:4,environ:4,epanechnikov:12,equal:[3,4,6,7,8,9,10,13],equat:5,error:3,espaciai:5,esrl:5,estim:[3,12],etc:[4,13],eth:5,ethereum:[1,2],eur:[1,2],eurgbp:5,eurusd:5,even:[10,11],exact:4,exampl:0,exchang:[5,6,13],execut:3,exist:5,expect:[4,6,12],expected_valu:12,experi:3,expert:[0,6,13],exploit:0,explore_partition:11,exponenti:[6,9,13],exponentiali:6,exponentialyweightedflrg:6,exponentialyweightedft:6,express:3,extens:8,extern:[3,4],externalforecast:3,externalmodel:3,extract:[3,5],extract_measur:3,facil:[3,4,5,11],fall:3,fals:[3,4,8,9,11],fcm:[1,2],fcmpartition:[11,13],feder:0,fetch:4,field:[5,10],fig:[3,4],figur:4,file:[3,4,5,9,11],file_analyt:3,file_path:4,file_synthet:3,filenam:[3,4,5],filenem:3,filesystem:4,fill:3,filter:3,financ:5,find:[4,10],find_best:3,find_g:4,find_gt:4,find_l:4,find_lt:4,first:[3,4,6,9,10],fit:[3,4,6,7,8,9,10],five:4,flag:4,flashquot:5,flat:4,flow:5,flr:[1,2,6,9,10],flr_membership_matrix:6,flrg:[1,2,6,10],flrg_lhs_conditional_prob:6,flrg_lhs_unconditional_prob:6,flrg_rhs_conditional_prob:6,flrgtree:4,flrgtreenod:4,foreast:3,forecast:[3,4,6,7,8,9,10,11,13],forecast_ahead:[4,6,10],forecast_ahead_distribut:[3,4,6,7],forecast_ahead_interv:[3,4,6,7],forecast_distribut:[3,4,6,7],forecast_interv:[3,4,6,7,9],forex:5,fork:0,format:3,format_data:8,forward:4,found:[4,13],frederico:[0,6],frequenc:12,from:[0,3,4,5,6,8,12,13],fset:8,fts:[1,2,3,6,7,8,9,10],fts_method:4,fuzz:6,fuzzi:[2,4,6,8,9,10,11],fuzzif:[11,13],fuzzifi:[4,9],fuzzy_cmean:11,fuzzy_dist:11,fuzzy_set:4,fuzzydata:4,fuzzyf:[4,13],fuzzyfi:4,fuzzyfy_inst:[4,8],fuzzyfy_seri:4,fuzzyfy_series_old:4,fuzzyseri:9,fuzzyset:[1,2,6,9,10],gadelha:[0,6],gani:[6,13],garibaldi:9,gaussian:[4,5],gaussmf:4,gbp:[1,2],gbpusd:5,gcos_wgsp:5,gener:[4,5,11,13],generate_flr:8,generate_flrg:[6,8,9,10],generate_gaussian_linear:5,generate_high_order_recurrent_flr:4,generate_indexed_flr:4,generate_lhs_flr:8,generate_lhs_flrg:6,generate_non_recurrent_flr:4,generate_recurrent_flr:4,generate_uniform_linear:5,gerai:0,get:[3,4,5],get_benchmark_interval_method:3,get_benchmark_point_method:3,get_benchmark_probabilistic_method:3,get_data:[5,10],get_data_by_season:10,get_datafram:5,get_dataframe_from_bd:3,get_distribution_interquantil:7,get_distribution_statist:3,get_fuzzyset:4,get_index:10,get_index_by_season:10,get_interv:7,get_interval_method:3,get_interval_statist:3,get_kei:[4,6,9,10],get_low:[4,6,9],get_maximum_membership_fuzzyset:4,get_maximum_membership_fuzzyset_index:4,get_membership:[4,6,8,9],get_midpoint:[4,6,9,10],get_models_forecast:7,get_nam:11,get_point:7,get_point_method:3,get_point_statist:3,get_polynomial_perturb:9,get_probabilistic_method:3,get_season_by_index:10,get_season_of_data:10,get_sequence_membership:6,get_uod:4,get_upp:[4,6,9],getchildren:4,getstr:4,git:13,github:[0,13],given:[3,4,9,10,11,12],glass:[1,2],good:13,googl:13,gov:5,grant_bound:4,greater:4,grid:[1,2,3,10],gridpartition:[3,11,13],group:[3,4,6,8,9,10],hand:4,handl:[4,6],hard:4,harmoni:[6,13],has_interval_forecast:4,has_point_forecast:4,has_probability_forecast:4,has_season:4,head:0,heavysid:3,heavyside_cdf:3,height:11,henon:[1,2],here:13,heteroskedast:9,high:[3,4,6,9],highorderflrg:6,highorderft:[6,9],highordernonstationaryflrg:9,highordernonstationaryft:9,histogram:12,histori:5,hoang:6,hoft:[1,2,9],honsft:[2,6],horizon:[3,4],horizont:[0,5],hossein:6,hour:[3,10],hour_of_dai:10,hour_of_month:10,hour_of_week:10,hour_of_year:10,http:[0,5,13],http_server:4,huarng:[1,2,13],huarngpartition:[11,13],human:0,hwang:[1,2],hybrid:[6,13],hyndman:5,identifi:[3,4,6,9,10],ieee:[6,9],ifmg:0,ifnmg:0,ift:[1,2],ignor:[3,10],imag:[4,11],implement:[4,10,13],improv:[6,11,13],improvedweightedflrg:6,improvedweightedft:6,inc:[3,4],increment:[3,4,5,12],ind:10,indentifi:3,index:[3,4,5,7,10],index_field:10,index_season:10,index_seri:5,indexedflr:4,indic:[3,4,5],inequ:3,infer:5,infil:3,inform:[3,4,12],informationgain:11,initi:[4,5],initial_valu:5,inmet:[1,2],innov:[6,13],inp:5,input:[4,6,8,9,10,12],insert:[3,4],insert_benchmark:3,insert_right:4,insid:[3,4,10,12],inst:[4,9],instal:0,instanc:[9,13],instead:4,instituit:0,institut:0,instituto:5,integ:[3,4],integr:5,intel:[6,13],intellig:6,intend:0,intern:6,internet:5,interpol:3,interpret:4,interv:[3,4,6,7,9,11,12,13],interval_dataframe_analytic_column:3,interval_dataframe_synthetic_column:3,interval_heurist:6,interval_quantil:6,interval_to_interv:3,intervalar:13,intervalft:6,introduc:13,introspect:4,invers:[4,13],ipynb:13,is_high_ord:4,is_multivari:4,ismail:[6,13],ismailefendi:[1,2],item:4,itemgett:4,iter:[4,5],its:[5,6,8,10,13],ixic:5,januari:5,jaroszewski:9,javedani:6,jeng:6,job:3,jonathan:9,jone:[4,5],journal:5,jun:[11,13],jupyt:13,kde:[1,2],kei:[3,4],kernel:12,kernel_funct:12,kernelsmooth:12,knearestneighbor:3,knn:[1,2],kullback:12,kullbackleiblerdiverg:12,kwarg:[3,4,6,7,8,9,10,11,12],lab:0,label:[3,12],lag:[4,5,13],largest:4,last:4,later:13,layman:0,lcolor:3,lee:6,left:4,legend:[3,4],leibler:12,len_tot:4,length:[3,4,6,7,8,9,10,11,13],less:4,lett:5,level:4,lgd:4,lhs_conditional_prob:6,librari:[2,5],like:[4,13],likelihood:12,limit:4,lin:11,linear:[5,9],linearmodel:3,linearseasonalindex:10,linewidth:3,linspac:5,list:[3,4,5,6,7,8,9,10,11,12,13],ljung:3,lo_param:3,load:[4,5,6,13],load_env:4,load_obj:4,local:5,locat:[4,9],location_param:9,log:[4,12],logic:[4,6,8,9,10],logist:[4,5],logistic_map:[1,2],look:4,lookup:4,lorentz:[1,2],lorenz:5,loss:3,lower:[4,5,6,9],lower_set:11,mackei:[1,2],mackey_glass:5,mai:5,main:13,malaysia:[6,13],mandatori:4,mani:13,map:[3,5],mape:3,mape_interv:3,marcin:9,market:5,mass:4,match:4,math:[5,11],mathemat:5,matplotlib:4,max:4,max_inc:5,max_ini:5,max_lag:[3,4,6,7,8,9,10],maxim:4,maximum:[4,11],mean:[3,4,5],measur:[1,2],mech:[6,13],membership:[1,2,6,8,9,10,11,13],membership_funct:11,memori:4,merg:4,meta:7,meteorologia:5,method:[0,3,4,5,6,7,8,9,10,11,13],metric:3,mft:3,midpoint:[4,9],min:4,min_inc:5,min_ini:5,min_ord:4,mina:0,mind:0,ming:6,minim:[3,4,6,7,8,9,10],minimum:[4,13],minute_of_dai:10,minute_of_hour:10,minute_of_month:10,minute_of_week:10,minute_of_year:10,mode:4,model:[0,1,2,3,4,5,11,13],modelo:3,models_fo:3,models_ho:3,modul:[0,1,13],monash:5,month:10,monthli:[3,5],more:13,most:13,move:3,msft:[2,6],mu_inc:5,mu_ini:5,much:4,multi:[3,4,10],multiseason:[2,6],multiseasonalft:10,multivari:[2,4,5,6],musikasuwan:9,mvft:[2,6],nacion:5,naiv:[1,2],name:[3,4,5,7,8,9,10,11],nasdaq:[1,2],nation:5,natur:5,nbin:[4,6],nbsp:0,ndata:[3,4,6,9],nearest:3,need:4,neighbor:3,next:13,nice:4,noaa:5,node:[3,4],nois:9,noise_param:9,non:[3,4,9,13],none:[3,4,5,7,8,9,10,11,12],nonperiod:5,nonstationari:[2,4,6],nonstationaryflrg:9,nonstationaryft:9,norm:6,normal:13,north:0,norton:5,notebook:13,noth:13,nov:[11,13],now:4,npart:[9,11],nsft:[2,6],num:5,num_batch:4,num_season:10,number:[3,4,5,6,7,10,11,12,13],numer:13,numpi:[4,5],obj:[3,4,11],object:[3,4,8,10,11,12],objectsist:3,occur:4,occurr:4,old:4,older:4,oldest:4,onc:4,one:[3,4,6,7,8,9,10,12,13],onli:4,only_lin:9,open:3,open_benchmark_db:3,oper:[4,13],operation_matrix:6,option:[3,4],order:[3,4,6,9,10,13],ordered_set:[4,9],ordin:4,org:[0,5],origin:[3,4,13],original_max:4,original_min:4,oscil:5,other:[3,4,7,8],otherwis:3,out:13,outfil:3,output:[11,13],over:4,overlap:13,own:8,p500:5,packag:[0,1],page:0,pair:5,panda:[3,4,5,10],par1:9,par2:9,parallel_util:[1,2],param:[3,4,8,9,10,11],paramet:[3,4,5,6,7,8,9,10,11,12,13],parametr:13,part:9,partit:[3,4,9,10,11,13],partition:[1,2,3,4,6,7,8,13],partition_funct:[4,6],partitioners_method:3,partitioners_model:3,pass:3,passeng:5,past:4,path:[3,4,11],pattern:4,pct:9,pdf:12,percent:3,percentag:3,percentu:[3,4],perform:[3,9,10,11,13],perform_loc:9,perform_width:9,period:9,persist:4,persist_env:4,persist_obj:4,person:[4,5],pertub:9,perturb:[2,6],perturbate_paramet:9,perturbation_factor:9,perturbation_factors__old:9,pesquisa:5,pftsexploreorderandpartit:3,php:5,phy:[5,6,13],physiolog:5,pictur:[3,4],pierc:3,pinbal:3,pinball_mean:3,pip:13,plambda:4,plot:[3,10,11,12],plot_compared_intervals_ahead:3,plot_compared_seri:3,plot_dataframe_interv:3,plot_dataframe_interval_pinbal:3,plot_dataframe_point:3,plot_dataframe_probabilist:3,plot_density_rectang:3,plot_distribut:3,plot_interv:3,plot_partition:11,plot_point:3,plot_probability_distribut:3,plot_residu:3,plot_rul:4,plot_set:[9,11],plot_sets_condit:9,plotcompar:3,plotforecast:3,plotresidu:3,pmf:[3,11],pmf_to_cdf:3,point:[3,4,6,7,8,9,10,12,13],point_dataframe_analytic_column:3,point_dataframe_synthetic_column:3,point_expected_valu:6,point_heurist:6,point_to_interv:3,poit:3,poly_width:9,polynomi:9,polynomialnonstationarypartition:9,poor:5,posit:[4,10],post:4,posterior:3,postprocess:[4,13],power:[4,6,13],pprint:4,pre:4,prebuilt:3,predict:[3,4,13],prefix:11,preprocess:[4,8,13],primari:3,print:3,print_distribution_statist:3,print_interval_statist:3,print_point_statist:3,probabil:3,probabilist:[1,2,3,4,6,7,13],probabilistic_dataframe_analytic_column:3,probabilistic_dataframe_synthetic_column:3,probabilisticweightedflrg:6,probabilisticweightedft:6,probabilitydist:3,probabilitydistribut:[1,2,3,4],probabl:[3,4,6,7,12],problem:6,procedur:[3,4],process:[3,4,5],process_common_data:3,process_interval_job:3,process_point_job:3,process_probabilistic_job:3,product:[5,6,13],prof:0,progress:3,project:[11,13],propos:13,provid:[0,4,13],psd:5,pseudo:12,pseudologlikelihood:12,pwflrg:6,pwft:[1,2],python:[2,13],q05:3,q25:3,q75:3,q95:3,quantil:[3,7,12],quantile_regress:3,quantileregress:3,quantreg:[1,2],queri:3,quick:0,quot:5,quotat:5,rais:4,random_walk:5,rang:[3,13],rank:3,rate:[6,13],read:5,readabl:0,real:[4,13],recent:13,record:4,recurr:4,red:3,reference_data:3,refin:[6,13],regress:3,relationship:[4,6,8,9,10],remov:4,ren:6,replac:3,repo:13,repr:4,repres:[3,4,12],represent:13,research:[0,13],residu:3,residualanalysi:[1,2],resolut:3,respect:[4,12],respons:10,result:[3,4],revers:4,review:[3,13],rhs_conditional_prob:6,rhs_unconditional_prob:6,right:4,ringgit:[6,13],rmse:3,rmse_interv:3,rmseavg:3,rmsestd:3,rng:9,robert:5,roger:4,roi:4,root:3,rossler:[1,2],rule:[3,4,8,13],rules_by_axi:4,run:3,run_interv:3,run_point:3,run_probabilist:3,sadaei:[1,2,13],salang:9,same:4,sampl:[3,5,6,13],sampler:7,save:[3,4,9,11],save_best:3,save_dataframe_interv:3,save_dataframe_point:3,save_dataframe_probabilist:3,save_model:4,scale:[3,4,13],scale_down:9,scale_param:3,scale_up:9,scan:4,scheme:[3,13],scienc:5,scientist:0,score:3,search:[0,4,6,13],season:[2,3,4,6,13],seasonalensembleft:7,seasonalflrg:10,seasonalft:10,seasonalindex:[2,6],second:10,second_of_dai:10,second_of_hour:10,second_of_minut:10,secur:5,selecaosimples_menorrms:3,select:5,sep:5,separ:5,sequenc:4,seri:[1,2,3,4,6,7,8,9,10,11],set:[3,4,6,8,9,10,11,12,13],set_data:10,set_lh:8,set_ord:4,set_rh:8,set_transform:7,setnam:11,sever:[3,11],severiano:6,sft:[2,6],shape:4,sharp:3,sharpavg:3,sharpstd:3,shortnam:4,show:[4,11],show_and_save_imag:4,shyi:6,side:4,sigma_inc:5,sigma_ini:5,sigmf:4,sigmoid:4,silva:[0,6],simpl:[0,5,10],simple_model_predict:4,simple_model_train:4,simplenonstationary_gridpartitioner_build:9,simplenonstationarypartition:9,simpler:4,simplesearch_rms:3,singl:4,single_plot_residu:3,singleton:[1,2,4],singletonpartition:11,sistema:5,size:[3,4,9,11],slice:4,slide:[3,4],sliding_window:4,sliding_window_benchmark:3,smape:3,smith:4,smooth:[4,13],social:[11,13],solar:6,sonda:[1,2],song:[1,2,10,13],sort:4,sort_ascend:3,sort_column:3,sortedcollect:[1,2],sourc:[3,4,5,6,7,8,9,10,11,12],sp500:5,space:3,specif:[3,4,6,7,8,9,10],split:[3,4,11],splitabov:11,splitbelow:11,splite:13,sql:3,sqlite3:3,sqlite:3,squar:3,ssci:6,standard:[3,5,13],start:[0,3,4,9],start_dispy_clust:4,stat:[3,6,13],station:5,stationari:9,statist:[0,3],statsmodel:3,step:[3,4,6,7,8,9,10,13],steps_ahead:[3,4],stochast:5,stock:5,stop_dispy_clust:4,store:[3,4],strang:5,string:[4,8,11],strip_datepart:10,structur:4,student:0,submodul:[0,1],subpackag:[0,1],suitabl:0,sum:6,sunspot:[1,2],superset:4,support:4,symbol:5,symmetr:3,symposium:6,synthet:[3,5],syst:[6,10,11,13],system:[5,6,9],tabl:3,tabular_dataframe_column:3,tag:3,taiex:[1,2,6,13],taiwan:5,take:13,tam:[3,9,11,12],target:3,tau:[3,5],technol:[11,13],tempor:[4,10,13],term:[3,6,13],test:[3,4,13],test_data:3,than:[4,13],thei:4,theil:3,theilsinequ:3,theoret:3,theori:13,thi:[0,4,5,6,9,10,12,13],thoma:4,those:4,thres1:11,thres2:11,threshold:11,through:5,time:[1,2,3,4,6,7,8,9,10,11],time_from:3,time_to:3,timegridpartition:10,times2:3,timeseri:5,titl:[3,11,12],tool:[0,13],total:5,tradit:6,train:[3,4,6,7,8,9,10,11],train_data:[3,7],train_individual_model:7,train_method:4,train_paramet:4,transact:9,transform:[1,2,3,8,9,11,13],transformations_param:4,transit:[4,13],translat:13,trapezoid:[4,11,13],trapmf:4,tree:[1,2],trend:[6,13],trendweightedflrg:6,trendweightedft:6,triangular:4,trigger:4,trimf:4,tsa:3,tsdl:5,tupl:3,two:5,twse:5,type:[3,4,5,12,13],typeonlegend:3,uavg:3,ufmg:0,under:4,unified_scaled_interv:3,unified_scaled_interval_pinbal:3,unified_scaled_point:3,unified_scaled_probabilist:3,uniform:5,uniqu:[4,6,9,10],uniquefilenam:4,unit:10,univari:5,univers:[0,3,4,5,9,10,11,12,13],unpack_arg:9,uod:[3,4,6,12],uod_clip:4,up_param:3,update_model:6,update_uod:7,updateuod:[4,8],upper:[4,5,6,9],upper_set:11,url:[0,3,5],usa:5,usag:0,usd:[1,2],use:[0,4],used:[3,4,6,11,13],user:3,using:[4,6,13],ustatist:3,ustd:3,usual:[4,13],util:[1,2,6],val:11,valid:4,valu:[3,4,5,6,7,8,9,10,12,13],valueerror:4,variabl:[2,4,6],varianc:[4,5],vector:4,veri:[5,6],verif:3,visualize_distribut:6,vmax:5,vmin:5,vol:[6,10,11,13],want:0,weather:3,weight:[5,6,13],weightedflrg:6,weightedft:6,when:4,where:[3,4],which:[3,4,13],white_nois:5,whose:0,width:[9,11,12],width_param:9,window:[3,4],window_index:9,window_kei:3,window_s:9,windows:[3,4],winkler:3,winkler_mean:3,winkler_scor:3,without:4,word:3,work:4,wrap:3,www:5,yahoo:5,year:10,yearli:5,yeh:[11,13],you:4,young:4,younger:4,youngest:4,zenodo:0},titles:["pyFTS - Fuzzy Time Series for Python","pyFTS","pyFTS package","pyFTS.benchmarks package","pyFTS.common package","pyFTS.data package","pyFTS.models package","pyFTS.models.ensemble package","pyFTS.models.multivariate package","pyFTS.models.nonstationary package","pyFTS.models.seasonal package","pyFTS.partitioners package","pyFTS.probabilistic package","pyFTS Quick Start"],titleterms:{FTS:13,airpasseng:5,arima:3,artifici:5,benchmark:3,bitcoin:5,chaotic:5,chen:6,cheng:6,cmean:11,cmsft:10,common:[4,5,8,9,10],composit:4,conf:2,content:[2,3,4,5,6,7,8,9,10,11,12],cvft:9,data:5,dataset:5,dowjon:5,enrol:5,ensembl:7,entropi:11,ethereum:5,eur:5,exampl:13,fcm:11,flr:[4,8],flrg:[4,8,9],fts:4,fuzzi:[0,13],fuzzyset:4,gbp:5,glass:5,grid:11,henon:5,hoft:6,honsft:9,how:[0,13],huarng:11,hwang:6,ift:6,index:0,inmet:5,instal:13,ismailefendi:6,kde:12,knn:3,librari:0,logistic_map:5,lorentz:5,mackei:5,measur:3,membership:4,model:[6,7,8,9,10],modul:[2,3,4,5,6,7,8,9,10,11,12],msft:10,multiseason:7,multivari:8,mvft:8,naiv:3,nasdaq:5,nonstationari:9,nsft:9,packag:[2,3,4,5,6,7,8,9,10,11,12],parallel_util:11,partition:[9,10,11],perturb:9,probabilist:12,probabilitydistribut:12,pwft:6,pyft:[0,1,2,3,4,5,6,7,8,9,10,11,12,13],pyftsa:[],python:0,quantreg:3,quick:13,refer:[0,13],residualanalysi:3,rossler:5,sadaei:6,season:10,seasonalindex:10,seri:[0,5,13],sft:10,singleton:11,sonda:5,song:6,sortedcollect:4,start:13,submodul:[2,3,4,5,6,7,8,9,10,11,12],subpackag:[2,6],sunspot:5,taiex:5,time:[0,5,13],transform:4,tree:4,usag:13,usd:5,util:[3,4,9,11],variabl:8,what:[0,13]}}) \ No newline at end of file diff --git a/pyFTS/benchmarks/Measures.py b/pyFTS/benchmarks/Measures.py index 2cae1a6..ca156fe 100644 --- a/pyFTS/benchmarks/Measures.py +++ b/pyFTS/benchmarks/Measures.py @@ -7,7 +7,7 @@ pyFTS module for common benchmark metrics import time import numpy as np import pandas as pd -from pyFTS.common import FuzzySet,SortedCollection +from pyFTS.common import FuzzySet, SortedCollection from pyFTS.probabilistic import ProbabilityDistribution @@ -23,10 +23,10 @@ def acf(data, k): sigma = np.var(data) n = len(data) s = 0 - for t in np.arange(0,n-k): - s += (data[t]-mu) * (data[t+k] - mu) + for t in np.arange(0, n - k): + s += (data[t] - mu) * (data[t + k] - mu) - return 1/((n-k)*sigma)*s + return 1 / ((n - k) * sigma) * s def rmse(targets, forecasts): @@ -85,9 +85,9 @@ def smape(targets, forecasts, type=2): if isinstance(forecasts, list): forecasts = np.array(forecasts) if type == 1: - return np.mean(np.abs(forecasts - targets) / ((forecasts + targets)/2)) + return np.mean(np.abs(forecasts - targets) / ((forecasts + targets) / 2)) elif type == 2: - return np.mean(np.abs(forecasts - targets) / (abs(forecasts) + abs(targets)) )*100 + return np.mean(np.abs(forecasts - targets) / (abs(forecasts) + abs(targets))) * 100 else: return sum(np.abs(forecasts - targets)) / sum(forecasts + targets) @@ -113,8 +113,8 @@ def UStatistic(targets, forecasts): naive = [] y = [] - for k in np.arange(0,l-1): - y.append((forecasts[k ] - targets[k]) ** 2) + for k in np.arange(0, l - 1): + y.append((forecasts[k] - targets[k]) ** 2) naive.append((targets[k + 1] - targets[k]) ** 2) return np.sqrt(sum(y) / sum(naive)) @@ -129,11 +129,10 @@ def TheilsInequality(targets, forecasts): """ res = targets - forecasts t = len(res) - us = np.sqrt(sum([u**2 for u in res])) - ys = np.sqrt(sum([y**2 for y in targets])) - fs = np.sqrt(sum([f**2 for f in forecasts])) - return us / (ys + fs) - + us = np.sqrt(sum([u ** 2 for u in res])) + ys = np.sqrt(sum([y ** 2 for y in targets])) + fs = np.sqrt(sum([f ** 2 for f in forecasts])) + return us / (ys + fs) def BoxPierceStatistic(data, h): @@ -146,10 +145,10 @@ def BoxPierceStatistic(data, h): """ n = len(data) s = 0 - for k in np.arange(1,h+1): + for k in np.arange(1, h + 1): r = acf(data, k) - s += r**2 - return n*s + s += r ** 2 + return n * s def BoxLjungStatistic(data, h): @@ -162,10 +161,10 @@ def BoxLjungStatistic(data, h): """ n = len(data) s = 0 - for k in np.arange(1,h+1): + for k in np.arange(1, h + 1): r = acf(data, k) - s += r**2 / (n -k) - return n*(n-2)*s + s += r ** 2 / (n - k) + return n * (n - 2) * s def sharpness(forecasts): @@ -174,7 +173,6 @@ def sharpness(forecasts): return np.mean(tmp) - def resolution(forecasts): """Resolution - Standard deviation of the intervals""" shp = sharpness(forecasts) @@ -230,9 +228,9 @@ def winkler_score(tau, target, forecast): if forecast[0] < target and target < forecast[1]: return delta elif forecast[0] > target: - return delta + 2*(forecast[0] - target)/tau + return delta + 2 * (forecast[0] - target) / tau elif forecast[1] < target: - return delta + 2*(target - forecast[1])/tau + return delta + 2 * (target - forecast[1]) / tau def winkler_mean(tau, targets, forecasts): @@ -261,7 +259,7 @@ def brier_score(targets, densities): ret.append(score) except ValueError as ex: ret.append(sum([d.distribution[k] ** 2 for k in d.bins])) - return sum(ret)/len(ret) + return sum(ret) / len(ret) def pmf_to_cdf(density): @@ -271,7 +269,7 @@ def pmf_to_cdf(density): prev = 0 for col in density.columns: prev += density[col][row] if not np.isnan(density[col][row]) else 0 - tmp.append( prev ) + tmp.append(prev) ret.append(tmp) df = pd.DataFrame(ret, columns=density.columns) return df @@ -280,6 +278,7 @@ def pmf_to_cdf(density): def heavyside(bin, target): return 1 if bin >= target else 0 + def heavyside_cdf(bins, targets): ret = [] for t in targets: @@ -304,7 +303,7 @@ def crps(targets, densities): l = len(densities[0].bins) n = len(densities) for ct, df in enumerate(densities): - _crps += sum([(df.cummulative(bin) - (1 if bin >= targets[ct] else 0)) ** 2 for bin in df.bins]) + _crps += sum([(df.cumulative(bin) - (1 if bin >= targets[ct] else 0)) ** 2 for bin in df.bins]) return _crps / float(l * n) @@ -319,7 +318,7 @@ def get_point_statistics(data, model, **kwargs): :return: a list with the RMSE, SMAPE and U Statistic ''' - steps_ahead = kwargs.get('steps_ahead',1) + steps_ahead = kwargs.get('steps_ahead', 1) kwargs['type'] = 'point' indexer = kwargs.get('indexer', None) @@ -337,7 +336,7 @@ def get_point_statistics(data, model, **kwargs): if steps_ahead == 1: forecasts = model.predict(ndata, **kwargs) - + if model.is_multivariate and model.has_seasonality: ndata = model.indexer.get_data(ndata) elif model.is_multivariate: @@ -354,12 +353,12 @@ def get_point_statistics(data, model, **kwargs): else: steps_ahead_sampler = kwargs.get('steps_ahead_sampler', 1) nforecasts = [] - for k in np.arange(model.order, len(ndata)-steps_ahead,steps_ahead_sampler): + for k in np.arange(model.order, len(ndata) - steps_ahead, steps_ahead_sampler): sample = ndata[k - model.order: k] tmp = model.predict(sample, **kwargs) nforecasts.append(tmp[-1]) - start = model.max_lag + steps_ahead -1 + start = model.max_lag + steps_ahead - 1 ret.append(np.round(rmse(ndata[start:-1:steps_ahead_sampler], nforecasts), 2)) ret.append(np.round(mape(ndata[start:-1:steps_ahead_sampler], nforecasts), 2)) ret.append(np.round(UStatistic(ndata[start:-1:steps_ahead_sampler], nforecasts), 2)) @@ -368,7 +367,7 @@ def get_point_statistics(data, model, **kwargs): def get_interval_statistics(data, model, **kwargs): - ''' + """ Condensate all measures for point interval forecasters :param data: test data @@ -376,7 +375,7 @@ def get_interval_statistics(data, model, **kwargs): :param kwargs: :return: a list with the sharpness, resolution, coverage, .05 pinball mean, .25 pinball mean, .75 pinball mean and .95 pinball mean. - ''' + """ steps_ahead = kwargs.get('steps_ahead', 1) kwargs['type'] = 'interval' @@ -401,7 +400,7 @@ def get_interval_statistics(data, model, **kwargs): tmp = model.predict(sample, **kwargs) forecasts.append(tmp[-1]) - start = model.max_lag + steps_ahead -1 + start = model.max_lag + steps_ahead - 1 ret.append(round(sharpness(forecasts), 2)) ret.append(round(resolution(forecasts), 2)) ret.append(round(coverage(data[model.max_lag:], forecasts), 2)) @@ -415,14 +414,14 @@ def get_interval_statistics(data, model, **kwargs): def get_distribution_statistics(data, model, **kwargs): - ''' + """ Get CRPS statistic and time for a forecasting model :param data: test data :param model: FTS model with probabilistic forecasting capability :param kwargs: :return: a list with the CRPS and execution time - ''' + """ steps_ahead = kwargs.get('steps_ahead', 1) kwargs['type'] = 'distribution' @@ -450,5 +449,3 @@ def get_distribution_statistics(data, model, **kwargs): ret.append(round(_e1 - _s1, 3)) ret.append(round(brier_score(data[start:-1:skip], forecasts), 3)) return ret - - diff --git a/pyFTS/common/Membership.py b/pyFTS/common/Membership.py index 7a2355b..3561253 100644 --- a/pyFTS/common/Membership.py +++ b/pyFTS/common/Membership.py @@ -87,4 +87,4 @@ def singleton(x, parameters): :param parameters: a list with one real value :returns """ - return x == parameters[0] \ No newline at end of file + return x == parameters[0] diff --git a/pyFTS/common/fts.py b/pyFTS/common/fts.py index dd6f732..3783857 100644 --- a/pyFTS/common/fts.py +++ b/pyFTS/common/fts.py @@ -166,7 +166,7 @@ class FTS(object): :param data: time series data with the minimal length equal to the max_lag of the model :param kwargs: model specific parameters - :return: a list with the forecasted intervals + :return: a list with the prediction intervals """ raise NotImplementedError('This model do not perform one step ahead interval forecasts!') @@ -176,7 +176,7 @@ class FTS(object): :param data: time series data with the minimal length equal to the max_lag of the model :param kwargs: model specific parameters - :return: a list with the forecasted Probability Distributions + :return: a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions """ raise NotImplementedError('This model do not perform one step ahead distribution forecasts!') diff --git a/pyFTS/probabilistic/ProbabilityDistribution.py b/pyFTS/probabilistic/ProbabilityDistribution.py index 5613975..ac8b76c 100644 --- a/pyFTS/probabilistic/ProbabilityDistribution.py +++ b/pyFTS/probabilistic/ProbabilityDistribution.py @@ -61,10 +61,21 @@ class ProbabilityDistribution(object): self.name = kwargs.get("name", "") def set(self, value, density): + """ + Assert a probability 'density' for a certain value 'value', such that P(value) = density + + :param value: A value in the universe of discourse from the distribution + :param density: The probability density to assign to the value + """ k = self.bin_index.find_ge(value) self.distribution[k] = density def append(self, values): + """ + Increment the frequency count for the values + + :param values: A list of values to account the frequency + """ if self.type == "histogram": for k in values: v = self.bin_index.find_ge(k) @@ -78,6 +89,11 @@ class ProbabilityDistribution(object): self.distribution[self.bins[v]] = d def append_interval(self, intervals): + """ + Increment the frequency count for all values inside an interval + + :param intervals: A list of intervals do increment the frequency + """ if self.type == "histogram": for interval in intervals: for k in self.bin_index.inside(interval[0], interval[1]): @@ -85,6 +101,12 @@ class ProbabilityDistribution(object): self.count += 1 def density(self, values): + """ + Return the probability densities for the input values + + :param values: List of values to return the densities + :return: List of probability densities for the input values + """ ret = [] scalar = False @@ -109,6 +131,12 @@ class ProbabilityDistribution(object): return ret def differential_offset(self, value): + """ + Auxiliary function for probability distributions of differentiated data + + :param value: + :return: + """ nbins = [] dist = {} @@ -127,6 +155,11 @@ class ProbabilityDistribution(object): self.qtl = None def expected_value(self): + """ + Return the expected value of the distribution, as E[X] = ∑ x * P(x) + + :return: The expected value of the distribution + """ return np.nansum([v * self.distribution[v] for v in self.bins]) def build_cdf_qtl(self): @@ -147,7 +180,13 @@ class ProbabilityDistribution(object): self.quantile_index = SortedCollection.SortedCollection(iterable=_keys) - def cummulative(self, values): + def cumulative(self, values): + """ + Return the cumulative probability densities for the input values + + :param values: A list of input values + :return: The cumulative probability densities for the input values + """ if self.cdf is None: self.build_cdf_qtl() @@ -161,6 +200,12 @@ class ProbabilityDistribution(object): return self.cdf[values] def quantile(self, values): + """ + Return the quantile values for the input values + + :param values: input values + :return: The list of the quantile values for the input values + """ if self.qtl is None: self.build_cdf_qtl() @@ -176,21 +221,43 @@ class ProbabilityDistribution(object): return ret def entropy(self): + """ + Return the entropy of the probability distribution, H[X] = + + :return:the entropy of the probability distribution + """ h = -sum([self.distribution[k] * np.log(self.distribution[k]) if self.distribution[k] > 0 else 0 for k in self.bins]) return h def crossentropy(self,q): + """ + Cross entropy between the actual probability distribution and the informed one. + + :param q: a probabilistic.ProbabilityDistribution object + :return: Cross entropy between this probability distribution and the given distribution + """ h = -sum([self.distribution[k] * np.log(q.distribution[k]) if self.distribution[k] > 0 else 0 for k in self.bins]) return h def kullbackleiblerdivergence(self,q): + """ + Kullback-Leibler divergence between the actual probability distribution and the informed one. + + :param q: a probabilistic.ProbabilityDistribution object + :return: Kullback-Leibler divergence + """ h = sum([self.distribution[k] * np.log(self.distribution[k]/q.distribution[k]) if self.distribution[k] > 0 else 0 for k in self.bins]) return h def empiricalloglikelihood(self): + """ + Empirical Log Likelihood of the probability distribution + + :return: + """ _s = 0 for k in self.bins: if self.distribution[k] > 0: @@ -198,6 +265,12 @@ class ProbabilityDistribution(object): return _s def pseudologlikelihood(self, data): + """ + Pseudo log likelihood of the probability distribution with respect to data + + :param data: + :return: + """ densities = self.density(data) @@ -208,6 +281,12 @@ class ProbabilityDistribution(object): return _s def averageloglikelihood(self, data): + """ + Average log likelihood of the probability distribution with respect to data + + :param data: + :return: + """ densities = self.density(data) diff --git a/pyFTS/probabilistic/kde.py b/pyFTS/probabilistic/kde.py index 9eb95b5..b5c668f 100644 --- a/pyFTS/probabilistic/kde.py +++ b/pyFTS/probabilistic/kde.py @@ -18,6 +18,12 @@ class KernelSmoothing(object): self.transf = Transformations.Scale(min=0,max=1) def kernel_function(self, u): + """ + Apply the kernel + + :param u: + :return: + """ if self.kernel == "epanechnikov": tmp = (3/4)*(1.0 - u**2) return tmp if tmp > 0 else 0