Correções de bugs e pequenas otimizações diversas:

- Otimização do GridPartitioner
 - Correção na geração de PFLRG's em PFTS
 - Métodos de __str__ mais intuitivos
This commit is contained in:
Petrônio Cândido de Lima e Silva 2017-01-10 18:05:51 -02:00
parent dba1919a18
commit ba1b4fbae6
10 changed files with 506 additions and 465 deletions

View File

@ -5,337 +5,345 @@ import matplotlib.colors as pltcolors
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.cross_validation import KFold
import Measures
from pyFTS.benchmarks import Measures
from pyFTS.partitioners import Grid
from pyFTS.common import Membership,FuzzySet,FLR,Transformations
from pyFTS.common import Membership, FuzzySet, FLR, Transformations
def getIntervalStatistics(original, models):
ret = "Model & RMSE & MAPE & Sharpness & Resolution & Coverage \\ \n"
for fts in models:
forecasts = fts.forecast(original)
ret = ret + fts.shortname + " & "
ret = ret + str(round(Measures.rmse_interval(original[fts.order - 1:], forecasts), 2)) + " & "
ret = ret + str(round(Measures.mape_interval(original[fts.order - 1:], forecasts), 2)) + " & "
ret = ret + str(round(Measures.sharpness(forecasts), 2)) + " & "
ret = ret + str(round(Measures.resolution(forecasts), 2)) + " & "
ret = ret + str(round(Measures.coverage(original[fts.order - 1:], forecasts), 2)) + " \\ \n"
return ret
def getIntervalStatistics(original,models):
ret = "Model & RMSE & MAPE & Sharpness & Resolution & Coverage \\ \n"
for fts in models:
forecasts = fts.forecast(original)
ret = ret + fts.shortname + " & "
ret = ret + str( round(Measures.rmse_interval(original[fts.order-1 :],forecasts),2)) + " & "
ret = ret + str( round(Measures.mape_interval(original[fts.order-1 :],forecasts),2)) + " & "
ret = ret + str( round(Measures.sharpness(forecasts),2)) + " & "
ret = ret + str( round(Measures.resolution(forecasts),2)) + " & "
ret = ret + str( round(Measures.coverage(original[fts.order-1 :],forecasts),2)) + " \\ \n"
return ret
def plotDistribution(dist):
for k in dist.index:
alpha = np.array([dist[x][k] for x in dist])*100
x = [k for x in np.arange(0,len(alpha))]
y = dist.columns
plt.scatter(x,y,c=alpha,marker='s',linewidths=0,cmap='Oranges',norm=pltcolors.Normalize(vmin=0,vmax=1),vmin=0,vmax=1,edgecolors=None)
def plotComparedSeries(original,models, colors):
fig = plt.figure(figsize=[25,10])
ax = fig.add_subplot(111)
mi = []
ma = []
ax.plot(original,color='black',label="Original")
count = 0
for fts in models:
forecasted = fts.forecast(original)
if fts.isInterval:
lower = [kk[0] for kk in forecasted]
upper = [kk[1] for kk in forecasted]
mi.append(min(lower))
ma.append(max(upper))
for k in np.arange(0,fts.order):
lower.insert(0,None)
upper.insert(0,None)
ax.plot(lower,color=colors[count],label=fts.shortname)
ax.plot(upper,color=colors[count])
else:
mi.append(min(forecasted))
ma.append(max(forecasted))
forecasted.insert(0,None)
ax.plot(forecasted,color=colors[count],label=fts.shortname)
handles0, labels0 = ax.get_legend_handles_labels()
ax.legend(handles0,labels0)
count = count + 1
#ax.set_title(fts.name)
ax.set_ylim([min(mi),max(ma)])
ax.set_ylabel('F(T)')
ax.set_xlabel('T')
ax.set_xlim([0,len(original)])
for k in dist.index:
alpha = np.array([dist[x][k] for x in dist]) * 100
x = [k for x in np.arange(0, len(alpha))]
y = dist.columns
plt.scatter(x, y, c=alpha, marker='s', linewidths=0, cmap='Oranges', norm=pltcolors.Normalize(vmin=0, vmax=1),
vmin=0, vmax=1, edgecolors=None)
def plotComparedIntervalsAhead(original,models, colors, distributions, time_from, time_to):
fig = plt.figure(figsize=[25,10])
ax = fig.add_subplot(111)
def plotComparedSeries(original, models, colors):
fig = plt.figure(figsize=[15, 5])
ax = fig.add_subplot(111)
mi = []
ma = []
mi = []
ma = []
count = 0
for fts in models:
if fts.isDensity and distributions[count]:
density = fts.forecastDistributionAhead(original[:time_from],time_to,25)
for k in density.index:
alpha = np.array([density[x][k] for x in density])*100
x = [time_from + fts.order + k for x in np.arange(0,len(alpha))]
y = density.columns
ax.scatter(x,y,c=alpha,marker='s',linewidths=0,cmap='Oranges',
norm=pltcolors.Normalize(vmin=0,vmax=1),vmin=0,vmax=1,edgecolors=None)
ax.plot(original, color='black', label="Original")
count = 0
for fts in models:
if fts.hasPointForecasting:
forecasted = fts.forecast(original)
mi.append(min(forecasted))
ma.append(max(forecasted))
for k in np.arange(0, fts.order):
forecasted.insert(0, None)
ax.plot(forecasted, color=colors[count], label=fts.shortname, ls="-")
if fts.isInterval:
forecasts = fts.forecastAhead(original[:time_from],time_to)
lower = [kk[0] for kk in forecasts]
upper = [kk[1] for kk in forecasts]
mi.append(min(lower))
ma.append(max(upper))
for k in np.arange(0,time_from):
lower.insert(0,None)
upper.insert(0,None)
ax.plot(lower,color=colors[count],label=fts.shortname)
ax.plot(upper,color=colors[count])
if fts.hasIntervalForecasting:
forecasted = fts.forecastInterval(original)
lower = [kk[0] for kk in forecasted]
upper = [kk[1] for kk in forecasted]
mi.append(min(lower))
ma.append(max(upper))
for k in np.arange(0, fts.order):
lower.insert(0, None)
upper.insert(0, None)
ax.plot(lower, color=colors[count], label=fts.shortname,ls="--")
ax.plot(upper, color=colors[count],ls="--")
else:
forecasts = fts.forecast(original)
mi.append(min(forecasts))
ma.append(max(forecasts))
for k in np.arange(0,time_from):
forecasts.insert(0,None)
ax.plot(forecasts,color=colors[count],label=fts.shortname)
handles0, labels0 = ax.get_legend_handles_labels()
ax.legend(handles0,labels0)
count = count + 1
ax.plot(original,color='black',label="Original")
#ax.set_title(fts.name)
ax.set_ylim([min(mi),max(ma)])
ax.set_ylabel('F(T)')
ax.set_xlabel('T')
ax.set_xlim([0,len(original)])
handles0, labels0 = ax.get_legend_handles_labels()
ax.legend(handles0, labels0, loc=2)
count = count + 1
# ax.set_title(fts.name)
ax.set_ylim([min(mi), max(ma)])
ax.set_ylabel('F(T)')
ax.set_xlabel('T')
ax.set_xlim([0, len(original)])
def plotCompared(original,forecasts,labels,title):
fig = plt.figure(figsize=[13,6])
ax = fig.add_subplot(111)
ax.plot(original,color='k',label="Original")
for c in range(0,len(forecasts)):
ax.plot(forecasts[c],label=labels[c])
handles0, labels0 = ax.get_legend_handles_labels()
ax.legend(handles0,labels0)
ax.set_title(title)
ax.set_ylabel('F(T)')
ax.set_xlabel('T')
ax.set_xlim([0,len(original)])
ax.set_ylim([min(original),max(original)])
def plotComparedIntervalsAhead(original, models, colors, distributions, time_from, time_to):
fig = plt.figure(figsize=[25, 10])
ax = fig.add_subplot(111)
def SelecaoKFold_MenorRMSE(original,parameters,modelo):
nfolds = 5
ret = []
errors = np.array([[0 for k in parameters] for z in np.arange(0,nfolds)])
forecasted_best = []
print("Série Original")
fig = plt.figure(figsize=[18,10])
fig.suptitle("Comparação de modelos ")
ax0 = fig.add_axes([0, 0.5, 0.65, 0.45]) #left, bottom, width, height
ax0.set_xlim([0,len(original)])
ax0.set_ylim([min(original),max(original)])
ax0.set_title('Série Temporal')
ax0.set_ylabel('F(T)')
ax0.set_xlabel('T')
ax0.plot(original,label="Original")
min_rmse_fold = 100000.0
best = None
fc = 0 #Fold count
kf = KFold(len(original), n_folds=nfolds)
for train_ix, test_ix in kf:
train = original[train_ix]
test = original[test_ix]
min_rmse = 100000.0
best_fold = None
forecasted_best_fold = []
errors_fold = []
pc = 0 #Parameter count
for p in parameters:
sets = Grid.GridPartitionerTrimf(train,p)
fts = modelo(str(p)+ " particoes")
fts.train(train,sets)
forecasted = [fts.forecast(xx) for xx in test]
error = Measures.rmse(np.array(forecasted),np.array(test))
errors_fold.append(error)
print(fc, p, error)
errors[fc,pc] = error
if error < min_rmse:
min_rmse = error
best_fold = fts
forecasted_best_fold = forecasted
pc = pc + 1
forecasted_best_fold = [best_fold.forecast(xx) for xx in original]
ax0.plot(forecasted_best_fold,label=best_fold.name)
if np.mean(errors_fold) < min_rmse_fold:
min_rmse_fold = np.mean(errors)
best = best_fold
forecasted_best = forecasted_best_fold
fc = fc + 1
handles0, labels0 = ax0.get_legend_handles_labels()
ax0.legend(handles0, labels0)
ax1 = Axes3D(fig, rect=[0.7, 0.5, 0.3, 0.45], elev=30, azim=144)
#ax1 = fig.add_axes([0.6, 0.0, 0.45, 0.45], projection='3d')
ax1.set_title('Comparação dos Erros Quadráticos Médios')
ax1.set_zlabel('RMSE')
ax1.set_xlabel('K-fold')
ax1.set_ylabel('Partições')
X,Y = np.meshgrid(np.arange(0,nfolds),parameters)
surf = ax1.plot_surface(X, Y, errors.T, rstride=1, cstride=1, antialiased=True)
ret.append(best)
ret.append(forecasted_best)
mi = []
ma = []
# Modelo diferencial
print("\nSérie Diferencial")
errors = np.array([[0 for k in parameters] for z in np.arange(0,nfolds)])
forecastedd_best = []
ax2 = fig.add_axes([0, 0, 0.65, 0.45]) #left, bottom, width, height
ax2.set_xlim([0,len(original)])
ax2.set_ylim([min(original),max(original)])
ax2.set_title('Série Temporal')
ax2.set_ylabel('F(T)')
ax2.set_xlabel('T')
ax2.plot(original,label="Original")
min_rmse = 100000.0
min_rmse_fold = 100000.0
bestd = None
fc = 0
diff = Transformations.differential(original)
kf = KFold(len(original), n_folds=nfolds)
for train_ix, test_ix in kf:
train = diff[train_ix]
test = diff[test_ix]
min_rmse = 100000.0
best_fold = None
forecasted_best_fold = []
errors_fold = []
pc = 0
for p in parameters:
sets = Grid.GridPartitionerTrimf(train,p)
fts = modelo(str(p)+ " particoes")
fts.train(train,sets)
forecasted = [fts.forecastDiff(test,xx) for xx in np.arange(len(test))]
error = Measures.rmse(np.array(forecasted),np.array(test))
print(fc, p,error)
errors[fc,pc] = error
errors_fold.append(error)
if error < min_rmse:
min_rmse = error
best_fold = fts
pc = pc + 1
forecasted_best_fold = [best_fold.forecastDiff(original, xx) for xx in np.arange(len(original))]
ax2.plot(forecasted_best_fold,label=best_fold.name)
if np.mean(errors_fold) < min_rmse_fold:
min_rmse_fold = np.mean(errors)
best = best_fold
forecasted_best = forecasted_best_fold
fc = fc + 1
handles0, labels0 = ax2.get_legend_handles_labels()
ax2.legend(handles0, labels0)
ax3 = Axes3D(fig, rect=[0.7, 0, 0.3, 0.45], elev=30, azim=144)
#ax1 = fig.add_axes([0.6, 0.0, 0.45, 0.45], projection='3d')
ax3.set_title('Comparação dos Erros Quadráticos Médios')
ax3.set_zlabel('RMSE')
ax3.set_xlabel('K-fold')
ax3.set_ylabel('Partições')
X,Y = np.meshgrid(np.arange(0,nfolds),parameters)
surf = ax3.plot_surface(X, Y, errors.T, rstride=1, cstride=1, antialiased=True)
ret.append(best)
ret.append(forecasted_best)
return ret
count = 0
for fts in models:
if fts.hasDistributionForecasting and distributions[count]:
density = fts.forecastDistributionAhead(original[:time_from], time_to, 25)
for k in density.index:
alpha = np.array([density[x][k] for x in density]) * 100
x = [time_from + fts.order + k for x in np.arange(0, len(alpha))]
y = density.columns
ax.scatter(x, y, c=alpha, marker='s', linewidths=0, cmap='Oranges',
norm=pltcolors.Normalize(vmin=0, vmax=1), vmin=0, vmax=1, edgecolors=None)
def SelecaoSimples_MenorRMSE(original,parameters,modelo):
ret = []
errors = []
forecasted_best = []
print("Série Original")
fig = plt.figure(figsize=[20,12])
fig.suptitle("Comparação de modelos ")
ax0 = fig.add_axes([0, 0.5, 0.65, 0.45]) #left, bottom, width, height
ax0.set_xlim([0,len(original)])
ax0.set_ylim([min(original),max(original)])
ax0.set_title('Série Temporal')
ax0.set_ylabel('F(T)')
ax0.set_xlabel('T')
ax0.plot(original,label="Original")
min_rmse = 100000.0
best = None
for p in parameters:
sets = Grid.GridPartitionerTrimf(original,p)
fts = modelo(str(p)+ " particoes")
fts.train(original,sets)
#print(original)
forecasted = fts.forecast(original)
forecasted.insert(0,original[0])
#print(forecasted)
ax0.plot(forecasted,label=fts.name)
error = Measures.rmse(np.array(forecasted),np.array(original))
print(p,error)
errors.append(error)
if error < min_rmse:
min_rmse = error
best = fts
forecasted_best = forecasted
handles0, labels0 = ax0.get_legend_handles_labels()
ax0.legend(handles0, labels0)
ax1 = fig.add_axes([0.7, 0.5, 0.3, 0.45]) #left, bottom, width, height
ax1.set_title('Comparação dos Erros Quadráticos Médios')
ax1.set_ylabel('RMSE')
ax1.set_xlabel('Quantidade de Partições')
ax1.set_xlim([min(parameters),max(parameters)])
ax1.plot(parameters,errors)
ret.append(best)
ret.append(forecasted_best)
# Modelo diferencial
print("\nSérie Diferencial")
difffts = Transformations.differential(original)
errors = []
forecastedd_best = []
ax2 = fig.add_axes([0, 0, 0.65, 0.45]) #left, bottom, width, height
ax2.set_xlim([0,len(difffts)])
ax2.set_ylim([min(difffts),max(difffts)])
ax2.set_title('Série Temporal')
ax2.set_ylabel('F(T)')
ax2.set_xlabel('T')
ax2.plot(difffts,label="Original")
min_rmse = 100000.0
bestd = None
for p in parameters:
sets = Grid.GridPartitionerTrimf(difffts,p)
fts = modelo(str(p)+ " particoes")
fts.train(difffts,sets)
forecasted = fts.forecast(difffts)
forecasted.insert(0,difffts[0])
ax2.plot(forecasted,label=fts.name)
error = Measures.rmse(np.array(forecasted),np.array(difffts))
print(p,error)
errors.append(error)
if error < min_rmse:
min_rmse = error
bestd = fts
forecastedd_best = forecasted
handles0, labels0 = ax2.get_legend_handles_labels()
ax2.legend(handles0, labels0)
ax3 = fig.add_axes([0.7, 0, 0.3, 0.45]) #left, bottom, width, height
ax3.set_title('Comparação dos Erros Quadráticos Médios')
ax3.set_ylabel('RMSE')
ax3.set_xlabel('Quantidade de Partições')
ax3.set_xlim([min(parameters),max(parameters)])
ax3.plot(parameters,errors)
ret.append(bestd)
ret.append(forecastedd_best)
return ret
if fts.hasIntervalForecasting:
forecasts = fts.forecastAhead(original[:time_from], time_to)
lower = [kk[0] for kk in forecasts]
upper = [kk[1] for kk in forecasts]
mi.append(min(lower))
ma.append(max(upper))
for k in np.arange(0, time_from):
lower.insert(0, None)
upper.insert(0, None)
ax.plot(lower, color=colors[count], label=fts.shortname)
ax.plot(upper, color=colors[count])
def compareModelsPlot(original,models_fo,models_ho):
fig = plt.figure(figsize=[13,6])
else:
forecasts = fts.forecast(original)
mi.append(min(forecasts))
ma.append(max(forecasts))
for k in np.arange(0, time_from):
forecasts.insert(0, None)
ax.plot(forecasts, color=colors[count], label=fts.shortname)
handles0, labels0 = ax.get_legend_handles_labels()
ax.legend(handles0, labels0)
count = count + 1
ax.plot(original, color='black', label="Original")
# ax.set_title(fts.name)
ax.set_ylim([min(mi), max(ma)])
ax.set_ylabel('F(T)')
ax.set_xlabel('T')
ax.set_xlim([0, len(original)])
def plotCompared(original, forecasts, labels, title):
fig = plt.figure(figsize=[13, 6])
ax = fig.add_subplot(111)
ax.plot(original, color='k', label="Original")
for c in range(0, len(forecasts)):
ax.plot(forecasts[c], label=labels[c])
handles0, labels0 = ax.get_legend_handles_labels()
ax.legend(handles0, labels0)
ax.set_title(title)
ax.set_ylabel('F(T)')
ax.set_xlabel('T')
ax.set_xlim([0, len(original)])
ax.set_ylim([min(original), max(original)])
def SelecaoKFold_MenorRMSE(original, parameters, modelo):
nfolds = 5
ret = []
errors = np.array([[0 for k in parameters] for z in np.arange(0, nfolds)])
forecasted_best = []
print("Série Original")
fig = plt.figure(figsize=[18, 10])
fig.suptitle("Comparação de modelos ")
ax0 = fig.add_axes([0, 0, 1, 1]) #left, bottom, width, height
ax0 = fig.add_axes([0, 0.5, 0.65, 0.45]) # left, bottom, width, height
ax0.set_xlim([0, len(original)])
ax0.set_ylim([min(original), max(original)])
ax0.set_title('Série Temporal')
ax0.set_ylabel('F(T)')
ax0.set_xlabel('T')
ax0.plot(original, label="Original")
min_rmse_fold = 100000.0
best = None
fc = 0 # Fold count
kf = KFold(len(original), n_folds=nfolds)
for train_ix, test_ix in kf:
train = original[train_ix]
test = original[test_ix]
min_rmse = 100000.0
best_fold = None
forecasted_best_fold = []
errors_fold = []
pc = 0 # Parameter count
for p in parameters:
sets = Grid.GridPartitionerTrimf(train, p)
fts = modelo(str(p) + " particoes")
fts.train(train, sets)
forecasted = [fts.forecast(xx) for xx in test]
error = Measures.rmse(np.array(forecasted), np.array(test))
errors_fold.append(error)
print(fc, p, error)
errors[fc, pc] = error
if error < min_rmse:
min_rmse = error
best_fold = fts
forecasted_best_fold = forecasted
pc = pc + 1
forecasted_best_fold = [best_fold.forecast(xx) for xx in original]
ax0.plot(forecasted_best_fold, label=best_fold.name)
if np.mean(errors_fold) < min_rmse_fold:
min_rmse_fold = np.mean(errors)
best = best_fold
forecasted_best = forecasted_best_fold
fc = fc + 1
handles0, labels0 = ax0.get_legend_handles_labels()
ax0.legend(handles0, labels0)
ax1 = Axes3D(fig, rect=[0.7, 0.5, 0.3, 0.45], elev=30, azim=144)
# ax1 = fig.add_axes([0.6, 0.0, 0.45, 0.45], projection='3d')
ax1.set_title('Comparação dos Erros Quadráticos Médios')
ax1.set_zlabel('RMSE')
ax1.set_xlabel('K-fold')
ax1.set_ylabel('Partições')
X, Y = np.meshgrid(np.arange(0, nfolds), parameters)
surf = ax1.plot_surface(X, Y, errors.T, rstride=1, cstride=1, antialiased=True)
ret.append(best)
ret.append(forecasted_best)
# Modelo diferencial
print("\nSérie Diferencial")
errors = np.array([[0 for k in parameters] for z in np.arange(0, nfolds)])
forecastedd_best = []
ax2 = fig.add_axes([0, 0, 0.65, 0.45]) # left, bottom, width, height
ax2.set_xlim([0, len(original)])
ax2.set_ylim([min(original), max(original)])
ax2.set_title('Série Temporal')
ax2.set_ylabel('F(T)')
ax2.set_xlabel('T')
ax2.plot(original, label="Original")
min_rmse = 100000.0
min_rmse_fold = 100000.0
bestd = None
fc = 0
diff = Transformations.differential(original)
kf = KFold(len(original), n_folds=nfolds)
for train_ix, test_ix in kf:
train = diff[train_ix]
test = diff[test_ix]
min_rmse = 100000.0
best_fold = None
forecasted_best_fold = []
errors_fold = []
pc = 0
for p in parameters:
sets = Grid.GridPartitionerTrimf(train, p)
fts = modelo(str(p) + " particoes")
fts.train(train, sets)
forecasted = [fts.forecastDiff(test, xx) for xx in np.arange(len(test))]
error = Measures.rmse(np.array(forecasted), np.array(test))
print(fc, p, error)
errors[fc, pc] = error
errors_fold.append(error)
if error < min_rmse:
min_rmse = error
best_fold = fts
pc = pc + 1
forecasted_best_fold = [best_fold.forecastDiff(original, xx) for xx in np.arange(len(original))]
ax2.plot(forecasted_best_fold, label=best_fold.name)
if np.mean(errors_fold) < min_rmse_fold:
min_rmse_fold = np.mean(errors)
best = best_fold
forecasted_best = forecasted_best_fold
fc = fc + 1
handles0, labels0 = ax2.get_legend_handles_labels()
ax2.legend(handles0, labels0)
ax3 = Axes3D(fig, rect=[0.7, 0, 0.3, 0.45], elev=30, azim=144)
# ax1 = fig.add_axes([0.6, 0.0, 0.45, 0.45], projection='3d')
ax3.set_title('Comparação dos Erros Quadráticos Médios')
ax3.set_zlabel('RMSE')
ax3.set_xlabel('K-fold')
ax3.set_ylabel('Partições')
X, Y = np.meshgrid(np.arange(0, nfolds), parameters)
surf = ax3.plot_surface(X, Y, errors.T, rstride=1, cstride=1, antialiased=True)
ret.append(best)
ret.append(forecasted_best)
return ret
def SelecaoSimples_MenorRMSE(original, parameters, modelo):
ret = []
errors = []
forecasted_best = []
print("Série Original")
fig = plt.figure(figsize=[20, 12])
fig.suptitle("Comparação de modelos ")
ax0 = fig.add_axes([0, 0.5, 0.65, 0.45]) # left, bottom, width, height
ax0.set_xlim([0, len(original)])
ax0.set_ylim([min(original), max(original)])
ax0.set_title('Série Temporal')
ax0.set_ylabel('F(T)')
ax0.set_xlabel('T')
ax0.plot(original, label="Original")
min_rmse = 100000.0
best = None
for p in parameters:
sets = Grid.GridPartitionerTrimf(original, p)
fts = modelo(str(p) + " particoes")
fts.train(original, sets)
# print(original)
forecasted = fts.forecast(original)
forecasted.insert(0, original[0])
# print(forecasted)
ax0.plot(forecasted, label=fts.name)
error = Measures.rmse(np.array(forecasted), np.array(original))
print(p, error)
errors.append(error)
if error < min_rmse:
min_rmse = error
best = fts
forecasted_best = forecasted
handles0, labels0 = ax0.get_legend_handles_labels()
ax0.legend(handles0, labels0)
ax1 = fig.add_axes([0.7, 0.5, 0.3, 0.45]) # left, bottom, width, height
ax1.set_title('Comparação dos Erros Quadráticos Médios')
ax1.set_ylabel('RMSE')
ax1.set_xlabel('Quantidade de Partições')
ax1.set_xlim([min(parameters), max(parameters)])
ax1.plot(parameters, errors)
ret.append(best)
ret.append(forecasted_best)
# Modelo diferencial
print("\nSérie Diferencial")
difffts = Transformations.differential(original)
errors = []
forecastedd_best = []
ax2 = fig.add_axes([0, 0, 0.65, 0.45]) # left, bottom, width, height
ax2.set_xlim([0, len(difffts)])
ax2.set_ylim([min(difffts), max(difffts)])
ax2.set_title('Série Temporal')
ax2.set_ylabel('F(T)')
ax2.set_xlabel('T')
ax2.plot(difffts, label="Original")
min_rmse = 100000.0
bestd = None
for p in parameters:
sets = Grid.GridPartitionerTrimf(difffts, p)
fts = modelo(str(p) + " particoes")
fts.train(difffts, sets)
forecasted = fts.forecast(difffts)
forecasted.insert(0, difffts[0])
ax2.plot(forecasted, label=fts.name)
error = Measures.rmse(np.array(forecasted), np.array(difffts))
print(p, error)
errors.append(error)
if error < min_rmse:
min_rmse = error
bestd = fts
forecastedd_best = forecasted
handles0, labels0 = ax2.get_legend_handles_labels()
ax2.legend(handles0, labels0)
ax3 = fig.add_axes([0.7, 0, 0.3, 0.45]) # left, bottom, width, height
ax3.set_title('Comparação dos Erros Quadráticos Médios')
ax3.set_ylabel('RMSE')
ax3.set_xlabel('Quantidade de Partições')
ax3.set_xlim([min(parameters), max(parameters)])
ax3.plot(parameters, errors)
ret.append(bestd)
ret.append(forecastedd_best)
return ret
def compareModelsPlot(original, models_fo, models_ho):
fig = plt.figure(figsize=[13, 6])
fig.suptitle("Comparação de modelos ")
ax0 = fig.add_axes([0, 0, 1, 1]) # left, bottom, width, height
rows = []
for model in models_fo:
fts = model["model"]
@ -346,28 +354,29 @@ def compareModelsPlot(original,models_fo,models_ho):
handles0, labels0 = ax0.get_legend_handles_labels()
ax0.legend(handles0, labels0)
def compareModelsTable(original,models_fo,models_ho):
fig = plt.figure(figsize=[12,4])
def compareModelsTable(original, models_fo, models_ho):
fig = plt.figure(figsize=[12, 4])
fig.suptitle("Comparação de modelos ")
columns = ['Modelo','Ordem','Partições','RMSE','MAPE (%)']
columns = ['Modelo', 'Ordem', 'Partições', 'RMSE', 'MAPE (%)']
rows = []
for model in models_fo:
fts = model["model"]
error_r = Measures.rmse(model["forecasted"],original)
error_m = round(Measures.mape(model["forecasted"],original)*100,2)
rows.append([model["name"],fts.order,len(fts.sets),error_r,error_m])
error_r = Measures.rmse(model["forecasted"], original)
error_m = round(Measures.mape(model["forecasted"], original) * 100, 2)
rows.append([model["name"], fts.order, len(fts.sets), error_r, error_m])
for model in models_ho:
fts = model["model"]
error_r = Measures.rmse(model["forecasted"][fts.order:],original[fts.order:])
error_m = round(Measures.mape(model["forecasted"][fts.order:],original[fts.order:])*100,2)
rows.append([model["name"],fts.order,len(fts.sets),error_r,error_m])
ax1 = fig.add_axes([0, 0, 1, 1]) #left, bottom, width, height
error_r = Measures.rmse(model["forecasted"][fts.order:], original[fts.order:])
error_m = round(Measures.mape(model["forecasted"][fts.order:], original[fts.order:]) * 100, 2)
rows.append([model["name"], fts.order, len(fts.sets), error_r, error_m])
ax1 = fig.add_axes([0, 0, 1, 1]) # left, bottom, width, height
ax1.set_xticks([])
ax1.set_yticks([])
ax1.table(cellText=rows,
colLabels=columns,
cellLoc='center',
bbox=[0,0,1,1])
colLabels=columns,
cellLoc='center',
bbox=[0, 0, 1, 1])
sup = "\\begin{tabular}{"
header = ""
body = ""
@ -392,100 +401,102 @@ def compareModelsTable(original,models_fo,models_ho):
return sup + header + body + "\\end{tabular}"
from pyFTS import hwang
def HOSelecaoSimples_MenorRMSE(original,parameters,orders):
ret = []
errors = np.array([[0 for k in range(len(parameters))] for kk in range(len(orders))])
forecasted_best = []
print("Série Original")
fig = plt.figure(figsize=[20,12])
fig.suptitle("Comparação de modelos ")
ax0 = fig.add_axes([0, 0.5, 0.6, 0.45]) #left, bottom, width, height
ax0.set_xlim([0,len(original)])
ax0.set_ylim([min(original),max(original)])
ax0.set_title('Série Temporal')
ax0.set_ylabel('F(T)')
ax0.set_xlabel('T')
ax0.plot(original,label="Original")
min_rmse = 100000.0
best = None
pc = 0
for p in parameters:
oc = 0
for o in orders:
sets = Grid.GridPartitionerTrimf(original,p)
fts = hwang.HighOrderFTS(o,"k = " + str(p)+ " w = " + str(o))
fts.train(original,sets)
forecasted = [fts.forecast(original, xx) for xx in range(o,len(original))]
error = Measures.rmse(np.array(forecasted),np.array(original[o:]))
for kk in range(o):
forecasted.insert(0,None)
ax0.plot(forecasted,label=fts.name)
print(o,p,error)
errors[oc,pc] = error
if error < min_rmse:
min_rmse = error
best = fts
forecasted_best = forecasted
oc = oc + 1
pc = pc + 1
handles0, labels0 = ax0.get_legend_handles_labels()
ax0.legend(handles0, labels0)
ax1 = Axes3D(fig, rect=[0.6, 0.5, 0.45, 0.45], elev=30, azim=144)
#ax1 = fig.add_axes([0.6, 0.5, 0.45, 0.45], projection='3d')
ax1.set_title('Comparação dos Erros Quadráticos Médios por tamanho da janela')
ax1.set_ylabel('RMSE')
ax1.set_xlabel('Quantidade de Partições')
ax1.set_zlabel('W')
X,Y = np.meshgrid(parameters,orders)
surf = ax1.plot_surface(X, Y, errors, rstride=1, cstride=1, antialiased=True)
ret.append(best)
ret.append(forecasted_best)
def HOSelecaoSimples_MenorRMSE(original, parameters, orders):
ret = []
errors = np.array([[0 for k in range(len(parameters))] for kk in range(len(orders))])
forecasted_best = []
print("Série Original")
fig = plt.figure(figsize=[20, 12])
fig.suptitle("Comparação de modelos ")
ax0 = fig.add_axes([0, 0.5, 0.6, 0.45]) # left, bottom, width, height
ax0.set_xlim([0, len(original)])
ax0.set_ylim([min(original), max(original)])
ax0.set_title('Série Temporal')
ax0.set_ylabel('F(T)')
ax0.set_xlabel('T')
ax0.plot(original, label="Original")
min_rmse = 100000.0
best = None
pc = 0
for p in parameters:
oc = 0
for o in orders:
sets = Grid.GridPartitionerTrimf(original, p)
fts = hwang.HighOrderFTS(o, "k = " + str(p) + " w = " + str(o))
fts.train(original, sets)
forecasted = [fts.forecast(original, xx) for xx in range(o, len(original))]
error = Measures.rmse(np.array(forecasted), np.array(original[o:]))
for kk in range(o):
forecasted.insert(0, None)
ax0.plot(forecasted, label=fts.name)
print(o, p, error)
errors[oc, pc] = error
if error < min_rmse:
min_rmse = error
best = fts
forecasted_best = forecasted
oc = oc + 1
pc = pc + 1
handles0, labels0 = ax0.get_legend_handles_labels()
ax0.legend(handles0, labels0)
ax1 = Axes3D(fig, rect=[0.6, 0.5, 0.45, 0.45], elev=30, azim=144)
# ax1 = fig.add_axes([0.6, 0.5, 0.45, 0.45], projection='3d')
ax1.set_title('Comparação dos Erros Quadráticos Médios por tamanho da janela')
ax1.set_ylabel('RMSE')
ax1.set_xlabel('Quantidade de Partições')
ax1.set_zlabel('W')
X, Y = np.meshgrid(parameters, orders)
surf = ax1.plot_surface(X, Y, errors, rstride=1, cstride=1, antialiased=True)
ret.append(best)
ret.append(forecasted_best)
# Modelo diferencial
print("\nSérie Diferencial")
errors = np.array([[0 for k in range(len(parameters))] for kk in range(len(orders))])
forecastedd_best = []
ax2 = fig.add_axes([0, 0, 0.6, 0.45]) #left, bottom, width, height
ax2.set_xlim([0,len(original)])
ax2.set_ylim([min(original),max(original)])
ax2.set_title('Série Temporal')
ax2.set_ylabel('F(T)')
ax2.set_xlabel('T')
ax2.plot(original,label="Original")
min_rmse = 100000.0
bestd = None
pc = 0
for p in parameters:
oc = 0
for o in orders:
sets = Grid.GridPartitionerTrimf(Transformations.differential(original),p)
fts = hwang.HighOrderFTS(o,"k = " + str(p)+ " w = " + str(o))
fts.train(original,sets)
forecasted = [fts.forecastDiff(original, xx) for xx in range(o,len(original))]
error = Measures.rmse(np.array(forecasted),np.array(original[o:]))
for kk in range(o):
forecasted.insert(0,None)
ax2.plot(forecasted,label=fts.name)
print(o,p,error)
errors[oc,pc] = error
if error < min_rmse:
min_rmse = error
bestd = fts
forecastedd_best = forecasted
oc = oc + 1
pc = pc + 1
handles0, labels0 = ax2.get_legend_handles_labels()
ax2.legend(handles0, labels0)
ax3 = Axes3D(fig, rect=[0.6, 0.0, 0.45, 0.45], elev=30, azim=144)
#ax3 = fig.add_axes([0.6, 0.0, 0.45, 0.45], projection='3d')
ax3.set_title('Comparação dos Erros Quadráticos Médios')
ax3.set_ylabel('RMSE')
ax3.set_xlabel('Quantidade de Partições')
ax3.set_zlabel('W')
X,Y = np.meshgrid(parameters,orders)
surf = ax3.plot_surface(X, Y, errors, rstride=1, cstride=1, antialiased=True)
ret.append(bestd)
ret.append(forecastedd_best)
return ret
print("\nSérie Diferencial")
errors = np.array([[0 for k in range(len(parameters))] for kk in range(len(orders))])
forecastedd_best = []
ax2 = fig.add_axes([0, 0, 0.6, 0.45]) # left, bottom, width, height
ax2.set_xlim([0, len(original)])
ax2.set_ylim([min(original), max(original)])
ax2.set_title('Série Temporal')
ax2.set_ylabel('F(T)')
ax2.set_xlabel('T')
ax2.plot(original, label="Original")
min_rmse = 100000.0
bestd = None
pc = 0
for p in parameters:
oc = 0
for o in orders:
sets = Grid.GridPartitionerTrimf(Transformations.differential(original), p)
fts = hwang.HighOrderFTS(o, "k = " + str(p) + " w = " + str(o))
fts.train(original, sets)
forecasted = [fts.forecastDiff(original, xx) for xx in range(o, len(original))]
error = Measures.rmse(np.array(forecasted), np.array(original[o:]))
for kk in range(o):
forecasted.insert(0, None)
ax2.plot(forecasted, label=fts.name)
print(o, p, error)
errors[oc, pc] = error
if error < min_rmse:
min_rmse = error
bestd = fts
forecastedd_best = forecasted
oc = oc + 1
pc = pc + 1
handles0, labels0 = ax2.get_legend_handles_labels()
ax2.legend(handles0, labels0)
ax3 = Axes3D(fig, rect=[0.6, 0.0, 0.45, 0.45], elev=30, azim=144)
# ax3 = fig.add_axes([0.6, 0.0, 0.45, 0.45], projection='3d')
ax3.set_title('Comparação dos Erros Quadráticos Médios')
ax3.set_ylabel('RMSE')
ax3.set_xlabel('Quantidade de Partições')
ax3.set_zlabel('W')
X, Y = np.meshgrid(parameters, orders)
surf = ax3.plot_surface(X, Y, errors, rstride=1, cstride=1, antialiased=True)
ret.append(bestd)
ret.append(forecastedd_best)
return ret

View File

@ -1,10 +1,14 @@
import numpy as np
class FLR:
def __init__(self, LHS, RHS):
self.LHS = LHS
self.RHS = RHS
def __str__(self):
return str(self.LHS) + " -> " + str(self.RHS)
return self.LHS.name + " -> " + self.RHS.name
def generateNonRecurrentFLRs(fuzzyData):
flrs = {}

View File

@ -20,7 +20,7 @@ class FuzzySet:
return self.mf(x, self.parameters)
def __str__(self):
return self.name + ": " + str(self.mf) + "(" + str(self.parameters) + ")"
return self.name + ": " + str(self.mf.__name__) + "(" + str(self.parameters) + ")"
def fuzzyInstance(inst, fuzzySets):

23
fts.py
View File

@ -10,9 +10,11 @@ class FTS:
self.shortname = name
self.name = name
self.detail = name
self.isSeasonal = False
self.isInterval = False
self.isDensity = False
self.hasSeasonality = False
self.hasPointForecasting = True
self.hasIntervalForecasting = False
self.hasDistributionForecasting = False
self.dump = False
def fuzzy(self, data):
best = {"fuzzyset": "", "membership": 0.0}
@ -28,6 +30,21 @@ class FTS:
def forecast(self, data):
pass
def forecastInterval(self, data):
pass
def forecastDistribution(self, data):
pass
def forecastAhead(self, data, steps):
pass
def forecastAheadInterval(self, data, steps):
pass
def forecastAheadDistribution(self, data, steps):
pass
def train(self, data, sets):
pass

View File

@ -1,6 +1,6 @@
import numpy as np
from pyFTS.common import FuzzySet,FLR
import fts
from pyFTS import fts
class HighOrderFLRG:
@ -18,7 +18,7 @@ class HighOrderFLRG:
if len(self.strlhs) == 0:
for c in self.LHS:
if len(self.strlhs) > 0:
self.strlhs = self.strlhs + ", "
self.strlhs += ", "
self.strlhs = self.strlhs + c.name
return self.strlhs
@ -63,7 +63,7 @@ class HighOrderFTS(fts.FTS):
self.sets = sets
for s in self.sets: self.setsDict[s.name] = s
tmpdata = FuzzySet.fuzzySeries(data, sets)
flrs = FuzzySet.generateRecurrentFLRs(tmpdata)
flrs = FLR.generateRecurrentFLRs(tmpdata)
self.flrgs = self.generateFLRG(flrs)
def getMidpoints(self, flrg):

View File

@ -1,6 +1,6 @@
import numpy as np
from pyFTS.common import FuzzySet,FLR,Transformations
import fts
from pyFTS import fts
class HighOrderFTS(fts.FTS):

View File

@ -1,6 +1,6 @@
import numpy as np
from pyFTS.common import FuzzySet,FLR
import hofts, fts, tree
from pyFTS import hofts, fts, tree
class IntervalFTS(hofts.HighOrderFTS):
@ -10,7 +10,8 @@ class IntervalFTS(hofts.HighOrderFTS):
self.name = "Interval FTS"
self.detail = "Silva, P.; Guimarães, F.; Sadaei, H. (2016)"
self.flrgs = {}
self.isInterval = True
self.hasPointForecasting = False
self.hasIntervalForecasting = True
def getUpper(self, flrg):
if flrg.strLHS() in self.flrgs:

View File

@ -10,17 +10,21 @@ from pyFTS.common import FuzzySet, Membership
def GridPartitionerTrimf(data, npart, names=None, prefix="A"):
sets = []
dmax = max(data)
dmax += dmax * 0.10
dmax += dmax * 0.1
print(dmax)
dmin = min(data)
dmin -= dmin * 0.10
dmin -= dmin * 0.1
print(dmin)
dlen = dmax - dmin
partlen = math.ceil(dlen / npart)
partition = math.ceil(dmin)
for c in range(npart):
#p2 = partlen / 2
#partition = dmin #+ partlen
count = 0
for c in np.arange(dmin, dmax, partlen):
sets.append(
FuzzySet.FuzzySet(prefix + str(c), Membership.trimf, [round(partition - partlen, 3), partition, partition + partlen],
partition))
partition += partlen
FuzzySet.FuzzySet(prefix + str(count), Membership.trimf, [c - partlen, c, c + partlen],c))
count += 1
#partition += partlen
return sets

28
pfts.py
View File

@ -2,21 +2,21 @@ import numpy as np
import pandas as pd
import math
from pyFTS.common import FuzzySet, FLR
import hofts, ifts, tree
from pyFTS import hofts, ifts, tree
class ProbabilisticFLRG(hofts.HighOrderFLRG):
def __init__(self, order):
super(ProbabilisticFLRG, self).__init__(order)
self.RHS = {}
self.frequencyCount = 0
self.frequencyCount = 0.0
def appendRHS(self, c):
self.frequencyCount = self.frequencyCount + 1
self.frequencyCount += 1
if c.name in self.RHS:
self.RHS[c.name] = self.RHS[c.name] + 1
self.RHS[c.name] += 1
else:
self.RHS[c.name] = 1
self.RHS[c.name] = 1.0
def getProbability(self, c):
return self.RHS[c] / self.frequencyCount
@ -38,23 +38,27 @@ class ProbabilisticFTS(ifts.IntervalFTS):
self.detail = "Silva, P.; Guimarães, F.; Sadaei, H."
self.flrgs = {}
self.globalFrequency = 0
self.isInterval = True
self.isDensity = True
self.hasPointForecasting = True
self.hasIntervalForecasting = True
self.hasDistributionForecasting = True
def generateFLRG(self, flrs):
flrgs = {}
l = len(flrs)
for k in np.arange(self.order + 1, l):
for k in np.arange(self.order, l+1):
if self.dump: print("FLR: " + str(k))
flrg = ProbabilisticFLRG(self.order)
for kk in np.arange(k - self.order, k):
flrg.appendLHS(flrs[kk].LHS)
if self.dump: print("LHS: " + str(flrs[kk]))
if flrg.strLHS() in flrgs:
flrgs[flrg.strLHS()].appendRHS(flrs[k].RHS)
flrgs[flrg.strLHS()].appendRHS(flrs[k-1].RHS)
else:
flrgs[flrg.strLHS()] = flrg;
flrgs[flrg.strLHS()].appendRHS(flrs[k].RHS)
flrgs[flrg.strLHS()].appendRHS(flrs[k-1].RHS)
if self.dump: print("RHS: " + str(flrs[k-1]))
self.globalFrequency = self.globalFrequency + 1
return (flrgs)
@ -68,9 +72,9 @@ class ProbabilisticFTS(ifts.IntervalFTS):
def getMidpoints(self, flrg):
if flrg.strLHS() in self.flrgs:
tmp = self.flrgs[flrg.strLHS()]
ret = sum(np.array([tmp.getProbability(s) * self.setsDict[s].midpoint for s in tmp.RHS]))
ret = sum(np.array([tmp.getProbability(s) * self.setsDict[s].centroid for s in tmp.RHS]))
else:
ret = sum(np.array([0.33 * s.midpoint for s in flrg.LHS]))
ret = sum(np.array([0.33 * s.centroid for s in flrg.LHS]))
return ret
def getUpper(self, flrg):

View File

@ -27,7 +27,7 @@ class SeasonalFTS(fts.FTS):
self.name = "Seasonal FTS"
self.detail = "Chen"
self.seasonality = 1
self.isSeasonal = True
self.hasSeasonality = True
def generateFLRG(self, flrs):
flrgs = []