Naïve forecaster; Theil's U Statistic in Measures
This commit is contained in:
parent
9a90c4d4e4
commit
72610e9dc3
@ -24,6 +24,18 @@ def mape_interval(targets, forecasts):
|
|||||||
return np.mean(abs(fmean - targets) / fmean) * 100
|
return np.mean(abs(fmean - targets) / fmean) * 100
|
||||||
|
|
||||||
|
|
||||||
|
# Theil's U Statistic
|
||||||
|
def U(targets, forecasts):
|
||||||
|
#forecasts.insert(0,None)
|
||||||
|
l = len(targets)
|
||||||
|
naive = []
|
||||||
|
y = []
|
||||||
|
for k in np.arange(0,l-1):
|
||||||
|
y.append(((targets[k+1]-forecasts[k])/targets[k]) ** 2)
|
||||||
|
naive.append(((targets[k + 1] - targets[k]) / targets[k]) ** 2)
|
||||||
|
return np.sqrt(sum(y)/sum(naive))
|
||||||
|
|
||||||
|
|
||||||
# Sharpness - Mean size of the intervals
|
# Sharpness - Mean size of the intervals
|
||||||
def sharpness(forecasts):
|
def sharpness(forecasts):
|
||||||
tmp = [i[1] - i[0] for i in forecasts]
|
tmp = [i[1] - i[0] for i in forecasts]
|
||||||
|
@ -11,6 +11,7 @@ from mpl_toolkits.mplot3d import Axes3D
|
|||||||
from pyFTS.benchmarks import Measures
|
from pyFTS.benchmarks import Measures
|
||||||
from pyFTS.partitioners import Grid
|
from pyFTS.partitioners import Grid
|
||||||
from pyFTS.common import Membership, FuzzySet, FLR, Transformations, Util
|
from pyFTS.common import Membership, FuzzySet, FLR, Transformations, Util
|
||||||
|
from pyFTS import pfts
|
||||||
|
|
||||||
|
|
||||||
def getIntervalStatistics(original, models):
|
def getIntervalStatistics(original, models):
|
||||||
@ -35,7 +36,8 @@ def plotDistribution(dist):
|
|||||||
vmin=0, vmax=1, edgecolors=None)
|
vmin=0, vmax=1, edgecolors=None)
|
||||||
|
|
||||||
|
|
||||||
def plotComparedSeries(original, models, colors, typeonlegend=False, save=False, file=None,tam=[20, 5],intervals=True):
|
def plotComparedSeries(original, models, colors, typeonlegend=False, save=False, file=None, tam=[20, 5],
|
||||||
|
intervals=True):
|
||||||
fig = plt.figure(figsize=tam)
|
fig = plt.figure(figsize=tam)
|
||||||
ax = fig.add_subplot(111)
|
ax = fig.add_subplot(111)
|
||||||
|
|
||||||
@ -81,8 +83,6 @@ def plotComparedSeries(original, models, colors, typeonlegend=False, save=False,
|
|||||||
Util.showAndSaveImage(fig, file, save)
|
Util.showAndSaveImage(fig, file, save)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def plotComparedIntervalsAhead(original, models, colors, distributions, time_from, time_to,
|
def plotComparedIntervalsAhead(original, models, colors, distributions, time_from, time_to,
|
||||||
interpol=False, save=False, file=None, tam=[20, 5], resolution=None):
|
interpol=False, save=False, file=None, tam=[20, 5], resolution=None):
|
||||||
fig = plt.figure(figsize=tam)
|
fig = plt.figure(figsize=tam)
|
||||||
@ -96,7 +96,8 @@ def plotComparedIntervalsAhead(original, models, colors, distributions, time_fro
|
|||||||
count = 0
|
count = 0
|
||||||
for fts in models:
|
for fts in models:
|
||||||
if fts.hasDistributionForecasting and distributions[count]:
|
if fts.hasDistributionForecasting and distributions[count]:
|
||||||
density = fts.forecastAheadDistribution(original[time_from - fts.order:time_from], time_to, resolution, parameters=None)
|
density = fts.forecastAheadDistribution(original[time_from - fts.order:time_from], time_to, resolution,
|
||||||
|
parameters=None)
|
||||||
|
|
||||||
y = density.columns
|
y = density.columns
|
||||||
t = len(y)
|
t = len(y)
|
||||||
@ -112,7 +113,8 @@ def plotComparedIntervalsAhead(original, models, colors, distributions, time_fro
|
|||||||
diffs = [(density[q][k + 1] - density[q][k]) / 50 for q in density]
|
diffs = [(density[q][k + 1] - density[q][k]) / 50 for q in density]
|
||||||
for p in np.arange(0, 50):
|
for p in np.arange(0, 50):
|
||||||
xx = [time_from + k + 0.02 * p for q in np.arange(0, t)]
|
xx = [time_from + k + 0.02 * p for q in np.arange(0, t)]
|
||||||
alpha2 = np.array([density[density.columns[q]][k] + diffs[q]*p for q in np.arange(0, t)]) * 100
|
alpha2 = np.array(
|
||||||
|
[density[density.columns[q]][k] + diffs[q] * p for q in np.arange(0, t)]) * 100
|
||||||
ax.scatter(xx, y, c=alpha2, marker='s', linewidths=0, cmap='Oranges',
|
ax.scatter(xx, y, c=alpha2, marker='s', linewidths=0, cmap='Oranges',
|
||||||
norm=pltcolors.Normalize(vmin=0, vmax=1), vmin=0, vmax=1, edgecolors=None)
|
norm=pltcolors.Normalize(vmin=0, vmax=1), vmin=0, vmax=1, edgecolors=None)
|
||||||
|
|
||||||
@ -430,14 +432,15 @@ def compareModelsTable(original, models_fo, models_ho):
|
|||||||
return sup + header + body + "\\end{tabular}"
|
return sup + header + body + "\\end{tabular}"
|
||||||
|
|
||||||
|
|
||||||
def simpleSearch_RMSE(original, model, partitions, orders, save=False, file=None,tam=[10, 15],plotforecasts=False,elev=30, azim=144):
|
def simpleSearch_RMSE(original, model, partitions, orders, save=False, file=None, tam=[10, 15], plotforecasts=False,
|
||||||
|
elev=30, azim=144):
|
||||||
ret = []
|
ret = []
|
||||||
errors = np.array([[0 for k in range(len(partitions))] for kk in range(len(orders))])
|
errors = np.array([[0 for k in range(len(partitions))] for kk in range(len(orders))])
|
||||||
forecasted_best = []
|
forecasted_best = []
|
||||||
fig = plt.figure(figsize=tam)
|
fig = plt.figure(figsize=tam)
|
||||||
# fig.suptitle("Comparação de modelos ")
|
# fig.suptitle("Comparação de modelos ")
|
||||||
if plotforecasts:
|
if plotforecasts:
|
||||||
ax0 = fig.add_axes([0, 0.5, 0.9, 0.45]) # left, bottom, width, height
|
ax0 = fig.add_axes([0, 0.4, 0.9, 0.5]) # left, bottom, width, height
|
||||||
ax0.set_xlim([0, len(original)])
|
ax0.set_xlim([0, len(original)])
|
||||||
ax0.set_ylim([min(original) * 0.9, max(original) * 1.1])
|
ax0.set_ylim([min(original) * 0.9, max(original) * 1.1])
|
||||||
ax0.set_title('Forecasts')
|
ax0.set_title('Forecasts')
|
||||||
@ -473,7 +476,7 @@ def simpleSearch_RMSE(original, model, partitions, orders, save=False, file=None
|
|||||||
# handles0, labels0 = ax0.get_legend_handles_labels()
|
# handles0, labels0 = ax0.get_legend_handles_labels()
|
||||||
# ax0.legend(handles0, labels0)
|
# ax0.legend(handles0, labels0)
|
||||||
ax0.plot(original, label="Original", linewidth=3.0, color="black")
|
ax0.plot(original, label="Original", linewidth=3.0, color="black")
|
||||||
ax1 = Axes3D(fig, rect=[0, 1, 0.9, 0.45], elev=elev, azim=azim)
|
ax1 = Axes3D(fig, rect=[0, 1, 0.9, 0.9], elev=elev, azim=azim)
|
||||||
if not plotforecasts: ax1 = Axes3D(fig, rect=[0, 1, 0.9, 0.9], elev=elev, azim=azim)
|
if not plotforecasts: ax1 = Axes3D(fig, rect=[0, 1, 0.9, 0.9], elev=elev, azim=azim)
|
||||||
# ax1 = fig.add_axes([0.6, 0.5, 0.45, 0.45], projection='3d')
|
# ax1 = fig.add_axes([0.6, 0.5, 0.45, 0.45], projection='3d')
|
||||||
ax1.set_title('Error Surface')
|
ax1.set_title('Error Surface')
|
||||||
@ -485,6 +488,70 @@ def simpleSearch_RMSE(original, model, partitions, orders, save=False, file=None
|
|||||||
ret.append(best)
|
ret.append(best)
|
||||||
ret.append(forecasted_best)
|
ret.append(forecasted_best)
|
||||||
|
|
||||||
|
# plt.tight_layout()
|
||||||
|
|
||||||
Util.showAndSaveImage(fig, file, save)
|
Util.showAndSaveImage(fig, file, save)
|
||||||
|
|
||||||
return ret
|
return ret
|
||||||
|
|
||||||
|
|
||||||
|
def pftsExploreOrderAndPartitions(data,save=False, file=None):
|
||||||
|
fig, axes = plt.subplots(nrows=4, ncols=1, figsize=[6, 8])
|
||||||
|
data_fs1 = Grid.GridPartitionerTrimf(data, 10)
|
||||||
|
mi = []
|
||||||
|
ma = []
|
||||||
|
|
||||||
|
axes[0].set_title('Point Forecasts by Order')
|
||||||
|
axes[2].set_title('Interval Forecasts by Order')
|
||||||
|
|
||||||
|
for order in np.arange(1, 6):
|
||||||
|
fts = pfts.ProbabilisticFTS("")
|
||||||
|
fts.shortname = "n = " + str(order)
|
||||||
|
fts.train(data, data_fs1, order=order)
|
||||||
|
point_forecasts = fts.forecast(data)
|
||||||
|
interval_forecasts = fts.forecastInterval(data)
|
||||||
|
lower = [kk[0] for kk in interval_forecasts]
|
||||||
|
upper = [kk[1] for kk in interval_forecasts]
|
||||||
|
mi.append(min(lower) * 0.95)
|
||||||
|
ma.append(max(upper) * 1.05)
|
||||||
|
for k in np.arange(0, order):
|
||||||
|
point_forecasts.insert(0, None)
|
||||||
|
lower.insert(0, None)
|
||||||
|
upper.insert(0, None)
|
||||||
|
axes[0].plot(point_forecasts, label=fts.shortname)
|
||||||
|
axes[2].plot(lower, label=fts.shortname)
|
||||||
|
axes[2].plot(upper)
|
||||||
|
|
||||||
|
axes[1].set_title('Point Forecasts by Number of Partitions')
|
||||||
|
axes[3].set_title('Interval Forecasts by Number of Partitions')
|
||||||
|
|
||||||
|
for partitions in np.arange(5, 11):
|
||||||
|
data_fs = Grid.GridPartitionerTrimf(data, partitions)
|
||||||
|
fts = pfts.ProbabilisticFTS("")
|
||||||
|
fts.shortname = "q = " + str(partitions)
|
||||||
|
fts.train(data, data_fs, 1)
|
||||||
|
point_forecasts = fts.forecast(data)
|
||||||
|
interval_forecasts = fts.forecastInterval(data)
|
||||||
|
lower = [kk[0] for kk in interval_forecasts]
|
||||||
|
upper = [kk[1] for kk in interval_forecasts]
|
||||||
|
mi.append(min(lower) * 0.95)
|
||||||
|
ma.append(max(upper) * 1.05)
|
||||||
|
point_forecasts.insert(0, None)
|
||||||
|
lower.insert(0, None)
|
||||||
|
upper.insert(0, None)
|
||||||
|
axes[1].plot(point_forecasts, label=fts.shortname)
|
||||||
|
axes[3].plot(lower, label=fts.shortname)
|
||||||
|
axes[3].plot(upper)
|
||||||
|
|
||||||
|
for ax in axes:
|
||||||
|
ax.set_ylabel('F(T)')
|
||||||
|
ax.set_xlabel('T')
|
||||||
|
ax.plot(data, label="Original", color="black", linewidth=1.5)
|
||||||
|
handles, labels = ax.get_legend_handles_labels()
|
||||||
|
ax.legend(handles, labels, loc=2, bbox_to_anchor=(1, 1))
|
||||||
|
ax.set_ylim([min(mi), max(ma)])
|
||||||
|
ax.set_xlim([0, len(data)])
|
||||||
|
|
||||||
|
plt.tight_layout()
|
||||||
|
|
||||||
|
Util.showAndSaveImage(fig, file, save)
|
||||||
|
14
benchmarks/naive.py
Normal file
14
benchmarks/naive.py
Normal file
@ -0,0 +1,14 @@
|
|||||||
|
#!/usr/bin/python
|
||||||
|
# -*- coding: utf8 -*-
|
||||||
|
|
||||||
|
from pyFTS import fts
|
||||||
|
|
||||||
|
|
||||||
|
class Naive(fts.FTS):
|
||||||
|
def __init__(self, name):
|
||||||
|
super(Naive, self).__init__(1, "Naïve" + name)
|
||||||
|
self.name = "Naïve Model"
|
||||||
|
self.detail = "Naïve Model"
|
||||||
|
|
||||||
|
def forecast(self, data):
|
||||||
|
return data
|
Loading…
Reference in New Issue
Block a user