pyFTS/benchmarks/Measures.py
2017-01-22 18:41:42 -02:00

61 lines
1.5 KiB
Python

#!/usr/bin/python
# -*- coding: utf8 -*-
import numpy as np
import pandas as pd
# Erro quadrático médio
def rmse(targets, forecasts):
return np.sqrt(np.nanmean((forecasts - targets) ** 2))
def rmse_interval(targets, forecasts):
fmean = [np.mean(i) for i in forecasts]
return np.sqrt(np.nanmean((fmean - targets) ** 2))
# Erro Percentual médio
def mape(targets, forecasts):
return np.mean(abs(forecasts - targets) / forecasts) * 100
def mape_interval(targets, forecasts):
fmean = [np.mean(i) for i in forecasts]
return np.mean(abs(fmean - targets) / fmean) * 100
# Theil's U Statistic
def U(targets, forecasts):
#forecasts.insert(0,None)
l = len(targets)
naive = []
y = []
for k in np.arange(0,l-1):
y.append(((targets[k+1]-forecasts[k])/targets[k]) ** 2)
naive.append(((targets[k + 1] - targets[k]) / targets[k]) ** 2)
return np.sqrt(sum(y)/sum(naive))
# Sharpness - Mean size of the intervals
def sharpness(forecasts):
tmp = [i[1] - i[0] for i in forecasts]
return np.mean(tmp)
# Resolution - Standard deviation of the intervals
def resolution(forecasts):
shp = sharpness(forecasts)
tmp = [abs((i[1] - i[0]) - shp) for i in forecasts]
return np.mean(tmp)
# Percent of
def coverage(targets, forecasts):
preds = []
for i in np.arange(0, len(forecasts)):
if targets[i] >= forecasts[i][0] and targets[i] <= forecasts[i][1]:
preds.append(1)
else:
preds.append(0)
return np.mean(preds)