Updating documentiation

This commit is contained in:
Petrônio Cândido 2019-04-02 15:30:51 -03:00
parent 80046c306e
commit 6b8607cf3c
32 changed files with 630 additions and 292 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -84,13 +84,11 @@
<span class="kn">import</span> <span class="nn">traceback</span>
<span class="kn">import</span> <span class="nn">matplotlib</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="kn">import</span> <span class="nn">matplotlib.cm</span> <span class="k">as</span> <span class="nn">cmx</span>
<span class="kn">import</span> <span class="nn">matplotlib.colors</span> <span class="k">as</span> <span class="nn">pltcolors</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">from</span> <span class="nn">mpl_toolkits.mplot3d</span> <span class="k">import</span> <span class="n">Axes3D</span>
<span class="kn">from</span> <span class="nn">pyFTS.probabilistic</span> <span class="k">import</span> <span class="n">ProbabilityDistribution</span>
<span class="kn">from</span> <span class="nn">pyFTS.common</span> <span class="k">import</span> <span class="n">Transformations</span>
<span class="kn">from</span> <span class="nn">pyFTS.models</span> <span class="k">import</span> <span class="n">song</span><span class="p">,</span> <span class="n">chen</span><span class="p">,</span> <span class="n">yu</span><span class="p">,</span> <span class="n">ismailefendi</span><span class="p">,</span> <span class="n">sadaei</span><span class="p">,</span> <span class="n">hofts</span><span class="p">,</span> <span class="n">pwfts</span><span class="p">,</span> <span class="n">ifts</span><span class="p">,</span> <span class="n">cheng</span><span class="p">,</span> <span class="n">hwang</span>
<span class="kn">from</span> <span class="nn">pyFTS.models.multivariate</span> <span class="k">import</span> <span class="n">mvfts</span><span class="p">,</span> <span class="n">wmvfts</span><span class="p">,</span> <span class="n">cmvfts</span>
@ -100,12 +98,6 @@
<span class="kn">from</span> <span class="nn">pyFTS.common</span> <span class="k">import</span> <span class="n">Util</span> <span class="k">as</span> <span class="n">cUtil</span>
<span class="c1"># from sklearn.cross_validation import KFold</span>
<span class="kn">from</span> <span class="nn">pyFTS.partitioners</span> <span class="k">import</span> <span class="n">Grid</span>
<span class="kn">from</span> <span class="nn">matplotlib</span> <span class="k">import</span> <span class="n">rc</span>
<span class="c1">#rc(&#39;font&#39;,**{&#39;family&#39;:&#39;sans-serif&#39;,&#39;sans-serif&#39;:[&#39;Helvetica&#39;]})</span>
<span class="c1">## for Palatino and other serif fonts use:</span>
<span class="c1">#rc(&#39;font&#39;,**{&#39;family&#39;:&#39;serif&#39;,&#39;serif&#39;:[&#39;Palatino&#39;]})</span>
<span class="c1">#rc(&#39;text&#39;, usetex=True)</span>
<span class="n">colors</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;grey&#39;</span><span class="p">,</span> <span class="s1">&#39;darkgrey&#39;</span><span class="p">,</span> <span class="s1">&#39;rosybrown&#39;</span><span class="p">,</span> <span class="s1">&#39;maroon&#39;</span><span class="p">,</span> <span class="s1">&#39;red&#39;</span><span class="p">,</span><span class="s1">&#39;orange&#39;</span><span class="p">,</span> <span class="s1">&#39;gold&#39;</span><span class="p">,</span> <span class="s1">&#39;yellow&#39;</span><span class="p">,</span> <span class="s1">&#39;olive&#39;</span><span class="p">,</span> <span class="s1">&#39;green&#39;</span><span class="p">,</span>
<span class="s1">&#39;darkgreen&#39;</span><span class="p">,</span> <span class="s1">&#39;cyan&#39;</span><span class="p">,</span> <span class="s1">&#39;lightblue&#39;</span><span class="p">,</span><span class="s1">&#39;blue&#39;</span><span class="p">,</span> <span class="s1">&#39;darkblue&#39;</span><span class="p">,</span> <span class="s1">&#39;purple&#39;</span><span class="p">,</span> <span class="s1">&#39;darkviolet&#39;</span> <span class="p">]</span>
@ -292,10 +284,10 @@
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;Type parameter has a unkown value!&quot;</span><span class="p">)</span>
<span class="k">if</span> <span class="n">distributed</span><span class="p">:</span>
<span class="kn">import</span> <span class="nn">dispy</span><span class="o">,</span> <span class="nn">dispy.httpd</span>
<span class="kn">import</span> <span class="nn">pyFTS.distributed.dispy</span> <span class="k">as</span> <span class="nn">dispy</span>
<span class="n">nodes</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;nodes&quot;</span><span class="p">,</span> <span class="p">[</span><span class="s1">&#39;127.0.0.1&#39;</span><span class="p">])</span>
<span class="n">cluster</span><span class="p">,</span> <span class="n">http_server</span> <span class="o">=</span> <span class="n">cUtil</span><span class="o">.</span><span class="n">start_dispy_cluster</span><span class="p">(</span><span class="n">experiment_method</span><span class="p">,</span> <span class="n">nodes</span><span class="p">)</span>
<span class="n">cluster</span><span class="p">,</span> <span class="n">http_server</span> <span class="o">=</span> <span class="n">dispy</span><span class="o">.</span><span class="n">start_dispy_cluster</span><span class="p">(</span><span class="n">experiment_method</span><span class="p">,</span> <span class="n">nodes</span><span class="p">)</span>
<span class="n">jobs</span> <span class="o">=</span> <span class="p">[]</span>
@ -380,7 +372,7 @@
<span class="k">if</span> <span class="n">progress</span><span class="p">:</span>
<span class="n">progressbar</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="n">job</span><span class="p">()</span>
<span class="k">if</span> <span class="n">job</span><span class="o">.</span><span class="n">status</span> <span class="o">==</span> <span class="n">dispy</span><span class="o">.</span><span class="n">DispyJob</span><span class="o">.</span><span class="n">Finished</span> <span class="ow">and</span> <span class="n">job</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="n">job</span><span class="o">.</span><span class="n">status</span> <span class="o">==</span> <span class="n">dispy</span><span class="o">.</span><span class="n">dispy</span><span class="o">.</span><span class="n">DispyJob</span><span class="o">.</span><span class="n">Finished</span> <span class="ow">and</span> <span class="n">job</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">tmp</span> <span class="o">=</span> <span class="n">job</span><span class="o">.</span><span class="n">result</span>
<span class="n">synthesis_method</span><span class="p">(</span><span class="n">dataset</span><span class="p">,</span> <span class="n">tag</span><span class="p">,</span> <span class="n">tmp</span><span class="p">,</span> <span class="n">conn</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
@ -391,7 +383,7 @@
<span class="n">cluster</span><span class="o">.</span><span class="n">wait</span><span class="p">()</span> <span class="c1"># wait for all jobs to finish</span>
<span class="n">cUtil</span><span class="o">.</span><span class="n">stop_dispy_cluster</span><span class="p">(</span><span class="n">cluster</span><span class="p">,</span> <span class="n">http_server</span><span class="p">)</span>
<span class="n">dispy</span><span class="o">.</span><span class="n">stop_dispy_cluster</span><span class="p">(</span><span class="n">cluster</span><span class="p">,</span> <span class="n">http_server</span><span class="p">)</span>
<span class="n">conn</span><span class="o">.</span><span class="n">close</span><span class="p">()</span></div>
@ -755,145 +747,11 @@
<div class="viewcode-block" id="plot_compared_intervals_ahead"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.plot_compared_intervals_ahead">[docs]</a><span class="k">def</span> <span class="nf">plot_compared_intervals_ahead</span><span class="p">(</span><span class="n">original</span><span class="p">,</span> <span class="n">models</span><span class="p">,</span> <span class="n">colors</span><span class="p">,</span> <span class="n">distributions</span><span class="p">,</span> <span class="n">time_from</span><span class="p">,</span> <span class="n">time_to</span><span class="p">,</span> <span class="n">intervals</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
<span class="n">save</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">tam</span><span class="o">=</span><span class="p">[</span><span class="mi">20</span><span class="p">,</span> <span class="mi">5</span><span class="p">],</span> <span class="n">resolution</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">cmap</span><span class="o">=</span><span class="s1">&#39;Blues&#39;</span><span class="p">,</span> <span class="n">linewidth</span><span class="o">=</span><span class="mf">1.5</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Plot the forecasts of several one step ahead models, by point or by interval</span>
<span class="sd"> :param original: Original time series data (list)</span>
<span class="sd"> :param models: List of models to compare</span>
<span class="sd"> :param colors: List of models colors</span>
<span class="sd"> :param distributions: True to plot a distribution</span>
<span class="sd"> :param time_from: index of data poit to start the ahead forecasting</span>
<span class="sd"> :param time_to: number of steps ahead to forecast</span>
<span class="sd"> :param interpol: Fill space between distribution plots</span>
<span class="sd"> :param save: Save the picture on file</span>
<span class="sd"> :param file: Filename to save the picture</span>
<span class="sd"> :param tam: Size of the picture</span>
<span class="sd"> :param resolution: </span>
<span class="sd"> :param cmap: Color map to be used on distribution plot </span>
<span class="sd"> :param option: Distribution type to be passed for models</span>
<span class="sd"> :return: </span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">fig</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="n">tam</span><span class="p">)</span>
<span class="n">ax</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_subplot</span><span class="p">(</span><span class="mi">111</span><span class="p">)</span>
<span class="n">cm</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="n">cmap</span><span class="p">)</span>
<span class="n">cNorm</span> <span class="o">=</span> <span class="n">pltcolors</span><span class="o">.</span><span class="n">Normalize</span><span class="p">(</span><span class="n">vmin</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">vmax</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">scalarMap</span> <span class="o">=</span> <span class="n">cmx</span><span class="o">.</span><span class="n">ScalarMappable</span><span class="p">(</span><span class="n">norm</span><span class="o">=</span><span class="n">cNorm</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="n">cm</span><span class="p">)</span>
<span class="k">if</span> <span class="n">resolution</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> <span class="n">resolution</span> <span class="o">=</span> <span class="p">(</span><span class="nb">max</span><span class="p">(</span><span class="n">original</span><span class="p">)</span> <span class="o">-</span> <span class="nb">min</span><span class="p">(</span><span class="n">original</span><span class="p">))</span> <span class="o">/</span> <span class="mi">100</span>
<span class="n">mi</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">ma</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">count</span><span class="p">,</span> <span class="n">fts</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">models</span><span class="p">,</span> <span class="n">start</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
<span class="k">if</span> <span class="n">fts</span><span class="o">.</span><span class="n">has_probability_forecasting</span> <span class="ow">and</span> <span class="n">distributions</span><span class="p">[</span><span class="n">count</span><span class="p">]:</span>
<span class="n">density</span> <span class="o">=</span> <span class="n">fts</span><span class="o">.</span><span class="n">forecast_ahead_distribution</span><span class="p">(</span><span class="n">original</span><span class="p">[</span><span class="n">time_from</span> <span class="o">-</span> <span class="n">fts</span><span class="o">.</span><span class="n">order</span><span class="p">:</span><span class="n">time_from</span><span class="p">],</span> <span class="n">time_to</span><span class="p">,</span>
<span class="n">resolution</span><span class="o">=</span><span class="n">resolution</span><span class="p">)</span>
<span class="c1">#plot_density_scatter(ax, cmap, density, fig, resolution, time_from, time_to)</span>
<span class="n">plot_density_rectange</span><span class="p">(</span><span class="n">ax</span><span class="p">,</span> <span class="n">cm</span><span class="p">,</span> <span class="n">density</span><span class="p">,</span> <span class="n">fig</span><span class="p">,</span> <span class="n">resolution</span><span class="p">,</span> <span class="n">time_from</span><span class="p">,</span> <span class="n">time_to</span><span class="p">)</span>
<span class="k">if</span> <span class="n">fts</span><span class="o">.</span><span class="n">has_interval_forecasting</span> <span class="ow">and</span> <span class="n">intervals</span><span class="p">:</span>
<span class="n">forecasts</span> <span class="o">=</span> <span class="n">fts</span><span class="o">.</span><span class="n">forecast_ahead_interval</span><span class="p">(</span><span class="n">original</span><span class="p">[</span><span class="n">time_from</span> <span class="o">-</span> <span class="n">fts</span><span class="o">.</span><span class="n">order</span><span class="p">:</span><span class="n">time_from</span><span class="p">],</span> <span class="n">time_to</span><span class="p">)</span>
<span class="n">lower</span> <span class="o">=</span> <span class="p">[</span><span class="n">kk</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="k">for</span> <span class="n">kk</span> <span class="ow">in</span> <span class="n">forecasts</span><span class="p">]</span>
<span class="n">upper</span> <span class="o">=</span> <span class="p">[</span><span class="n">kk</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="k">for</span> <span class="n">kk</span> <span class="ow">in</span> <span class="n">forecasts</span><span class="p">]</span>
<span class="n">mi</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">min</span><span class="p">(</span><span class="n">lower</span><span class="p">))</span>
<span class="n">ma</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">max</span><span class="p">(</span><span class="n">upper</span><span class="p">))</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">time_from</span> <span class="o">-</span> <span class="n">fts</span><span class="o">.</span><span class="n">order</span><span class="p">):</span>
<span class="n">lower</span><span class="o">.</span><span class="n">insert</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="n">upper</span><span class="o">.</span><span class="n">insert</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">lower</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="n">colors</span><span class="p">[</span><span class="n">count</span><span class="p">],</span> <span class="n">label</span><span class="o">=</span><span class="n">fts</span><span class="o">.</span><span class="n">shortname</span><span class="p">,</span> <span class="n">linewidth</span><span class="o">=</span><span class="n">linewidth</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">upper</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="n">colors</span><span class="p">[</span><span class="n">count</span><span class="p">],</span> <span class="n">linewidth</span><span class="o">=</span><span class="n">linewidth</span><span class="o">*</span><span class="mf">1.5</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">original</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;black&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s2">&quot;Original&quot;</span><span class="p">,</span> <span class="n">linewidth</span><span class="o">=</span><span class="n">linewidth</span><span class="o">*</span><span class="mf">1.5</span><span class="p">)</span>
<span class="n">handles0</span><span class="p">,</span> <span class="n">labels0</span> <span class="o">=</span> <span class="n">ax</span><span class="o">.</span><span class="n">get_legend_handles_labels</span><span class="p">()</span>
<span class="k">if</span> <span class="kc">True</span> <span class="ow">in</span> <span class="n">distributions</span><span class="p">:</span>
<span class="n">lgd</span> <span class="o">=</span> <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">handles0</span><span class="p">,</span> <span class="n">labels0</span><span class="p">,</span> <span class="n">loc</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">lgd</span> <span class="o">=</span> <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">handles0</span><span class="p">,</span> <span class="n">labels0</span><span class="p">,</span> <span class="n">loc</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">bbox_to_anchor</span><span class="o">=</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span>
<span class="n">_mi</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">mi</span><span class="p">)</span>
<span class="k">if</span> <span class="n">_mi</span> <span class="o">&lt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">_mi</span> <span class="o">*=</span> <span class="mf">1.1</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">_mi</span> <span class="o">*=</span> <span class="mf">0.9</span>
<span class="n">_ma</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="n">ma</span><span class="p">)</span>
<span class="k">if</span> <span class="n">_ma</span> <span class="o">&lt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">_ma</span> <span class="o">*=</span> <span class="mf">0.9</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">_ma</span> <span class="o">*=</span> <span class="mf">1.1</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="n">_mi</span><span class="p">,</span> <span class="n">_ma</span><span class="p">])</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">&#39;F(T)&#39;</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">&#39;T&#39;</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">original</span><span class="p">)])</span>
<span class="n">cUtil</span><span class="o">.</span><span class="n">show_and_save_image</span><span class="p">(</span><span class="n">fig</span><span class="p">,</span> <span class="n">file</span><span class="p">,</span> <span class="n">save</span><span class="p">,</span> <span class="n">lgd</span><span class="o">=</span><span class="n">lgd</span><span class="p">)</span></div>
<div class="viewcode-block" id="plot_density_rectange"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.plot_density_rectange">[docs]</a><span class="k">def</span> <span class="nf">plot_density_rectange</span><span class="p">(</span><span class="n">ax</span><span class="p">,</span> <span class="n">cmap</span><span class="p">,</span> <span class="n">density</span><span class="p">,</span> <span class="n">fig</span><span class="p">,</span> <span class="n">resolution</span><span class="p">,</span> <span class="n">time_from</span><span class="p">,</span> <span class="n">time_to</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Auxiliar function to plot_compared_intervals_ahead</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="kn">from</span> <span class="nn">matplotlib.patches</span> <span class="k">import</span> <span class="n">Rectangle</span>
<span class="kn">from</span> <span class="nn">matplotlib.collections</span> <span class="k">import</span> <span class="n">PatchCollection</span>
<span class="n">patches</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">colors</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">density</span><span class="o">.</span><span class="n">index</span><span class="p">:</span>
<span class="k">for</span> <span class="n">y</span> <span class="ow">in</span> <span class="n">density</span><span class="o">.</span><span class="n">columns</span><span class="p">:</span>
<span class="n">s</span> <span class="o">=</span> <span class="n">Rectangle</span><span class="p">((</span><span class="n">time_from</span> <span class="o">+</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">),</span> <span class="mi">1</span><span class="p">,</span> <span class="n">resolution</span><span class="p">,</span> <span class="n">fill</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">lw</span> <span class="o">=</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">patches</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">s</span><span class="p">)</span>
<span class="n">colors</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">density</span><span class="p">[</span><span class="n">y</span><span class="p">][</span><span class="n">x</span><span class="p">]</span><span class="o">*</span><span class="mi">5</span><span class="p">)</span>
<span class="n">pc</span> <span class="o">=</span> <span class="n">PatchCollection</span><span class="p">(</span><span class="n">patches</span><span class="o">=</span><span class="n">patches</span><span class="p">,</span> <span class="n">match_original</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">pc</span><span class="o">.</span><span class="n">set_clim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">])</span>
<span class="n">pc</span><span class="o">.</span><span class="n">set_cmap</span><span class="p">(</span><span class="n">cmap</span><span class="p">)</span>
<span class="n">pc</span><span class="o">.</span><span class="n">set_array</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">colors</span><span class="p">))</span>
<span class="n">ax</span><span class="o">.</span><span class="n">add_collection</span><span class="p">(</span><span class="n">pc</span><span class="p">)</span>
<span class="n">cb</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">pc</span><span class="p">,</span> <span class="n">ax</span><span class="o">=</span><span class="n">ax</span><span class="p">)</span>
<span class="n">cb</span><span class="o">.</span><span class="n">set_label</span><span class="p">(</span><span class="s1">&#39;Density&#39;</span><span class="p">)</span></div>
<div class="viewcode-block" id="plot_distribution"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.plot_distribution">[docs]</a><span class="k">def</span> <span class="nf">plot_distribution</span><span class="p">(</span><span class="n">ax</span><span class="p">,</span> <span class="n">cmap</span><span class="p">,</span> <span class="n">probabilitydist</span><span class="p">,</span> <span class="n">fig</span><span class="p">,</span> <span class="n">time_from</span><span class="p">,</span> <span class="n">reference_data</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="kn">from</span> <span class="nn">matplotlib.patches</span> <span class="k">import</span> <span class="n">Rectangle</span>
<span class="kn">from</span> <span class="nn">matplotlib.collections</span> <span class="k">import</span> <span class="n">PatchCollection</span>
<span class="n">patches</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">colors</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">ct</span><span class="p">,</span> <span class="n">dt</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">probabilitydist</span><span class="p">):</span>
<span class="n">disp</span> <span class="o">=</span> <span class="mf">0.0</span>
<span class="k">if</span> <span class="n">reference_data</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">disp</span> <span class="o">=</span> <span class="n">reference_data</span><span class="p">[</span><span class="n">time_from</span><span class="o">+</span><span class="n">ct</span><span class="p">]</span>
<span class="k">for</span> <span class="n">y</span> <span class="ow">in</span> <span class="n">dt</span><span class="o">.</span><span class="n">bins</span><span class="p">:</span>
<span class="n">s</span> <span class="o">=</span> <span class="n">Rectangle</span><span class="p">((</span><span class="n">time_from</span><span class="o">+</span><span class="n">ct</span><span class="p">,</span> <span class="n">y</span><span class="o">+</span><span class="n">disp</span><span class="p">),</span> <span class="mi">1</span><span class="p">,</span> <span class="n">dt</span><span class="o">.</span><span class="n">resolution</span><span class="p">,</span> <span class="n">fill</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">lw</span> <span class="o">=</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">patches</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">s</span><span class="p">)</span>
<span class="n">colors</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">dt</span><span class="o">.</span><span class="n">density</span><span class="p">(</span><span class="n">y</span><span class="p">))</span>
<span class="n">scale</span> <span class="o">=</span> <span class="n">Transformations</span><span class="o">.</span><span class="n">Scale</span><span class="p">()</span>
<span class="n">colors</span> <span class="o">=</span> <span class="n">scale</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">colors</span><span class="p">)</span>
<span class="n">pc</span> <span class="o">=</span> <span class="n">PatchCollection</span><span class="p">(</span><span class="n">patches</span><span class="o">=</span><span class="n">patches</span><span class="p">,</span> <span class="n">match_original</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">pc</span><span class="o">.</span><span class="n">set_clim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">])</span>
<span class="n">pc</span><span class="o">.</span><span class="n">set_cmap</span><span class="p">(</span><span class="n">cmap</span><span class="p">)</span>
<span class="n">pc</span><span class="o">.</span><span class="n">set_array</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">colors</span><span class="p">))</span>
<span class="n">ax</span><span class="o">.</span><span class="n">add_collection</span><span class="p">(</span><span class="n">pc</span><span class="p">)</span>
<span class="n">cb</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">pc</span><span class="p">,</span> <span class="n">ax</span><span class="o">=</span><span class="n">ax</span><span class="p">)</span>
<span class="n">cb</span><span class="o">.</span><span class="n">set_label</span><span class="p">(</span><span class="s1">&#39;Density&#39;</span><span class="p">)</span></div>
<div class="viewcode-block" id="plot_interval"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.plot_interval">[docs]</a><span class="k">def</span> <span class="nf">plot_interval</span><span class="p">(</span><span class="n">axis</span><span class="p">,</span> <span class="n">intervals</span><span class="p">,</span> <span class="n">order</span><span class="p">,</span> <span class="n">label</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;red&#39;</span><span class="p">,</span> <span class="n">typeonlegend</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">ls</span><span class="o">=</span><span class="s1">&#39;-&#39;</span><span class="p">,</span> <span class="n">linewidth</span><span class="o">=</span><span class="mi">1</span><span class="p">):</span>
<span class="n">lower</span> <span class="o">=</span> <span class="p">[</span><span class="n">kk</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="k">for</span> <span class="n">kk</span> <span class="ow">in</span> <span class="n">intervals</span><span class="p">]</span>
<span class="n">upper</span> <span class="o">=</span> <span class="p">[</span><span class="n">kk</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="k">for</span> <span class="n">kk</span> <span class="ow">in</span> <span class="n">intervals</span><span class="p">]</span>
<span class="n">mi</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">lower</span><span class="p">)</span> <span class="o">*</span> <span class="mf">0.95</span>
<span class="n">ma</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="n">upper</span><span class="p">)</span> <span class="o">*</span> <span class="mf">1.05</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">order</span><span class="p">):</span>
<span class="n">lower</span><span class="o">.</span><span class="n">insert</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="n">upper</span><span class="o">.</span><span class="n">insert</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="k">if</span> <span class="n">typeonlegend</span><span class="p">:</span> <span class="n">label</span> <span class="o">+=</span> <span class="s2">&quot; (Interval)&quot;</span>
<span class="n">axis</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">lower</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="n">color</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">label</span><span class="p">,</span> <span class="n">ls</span><span class="o">=</span><span class="n">ls</span><span class="p">,</span><span class="n">linewidth</span><span class="o">=</span><span class="n">linewidth</span><span class="p">)</span>
<span class="n">axis</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">upper</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="n">color</span><span class="p">,</span> <span class="n">ls</span><span class="o">=</span><span class="n">ls</span><span class="p">,</span><span class="n">linewidth</span><span class="o">=</span><span class="n">linewidth</span><span class="p">)</span>
<span class="k">return</span> <span class="p">[</span><span class="n">mi</span><span class="p">,</span> <span class="n">ma</span><span class="p">]</span></div>
<div class="viewcode-block" id="plot_point"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.plot_point">[docs]</a><span class="k">def</span> <span class="nf">plot_point</span><span class="p">(</span><span class="n">axis</span><span class="p">,</span> <span class="n">points</span><span class="p">,</span> <span class="n">order</span><span class="p">,</span> <span class="n">label</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;red&#39;</span><span class="p">,</span> <span class="n">ls</span><span class="o">=</span><span class="s1">&#39;-&#39;</span><span class="p">,</span> <span class="n">linewidth</span><span class="o">=</span><span class="mi">1</span><span class="p">):</span>
<span class="n">mi</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">points</span><span class="p">)</span> <span class="o">*</span> <span class="mf">0.95</span>
@ -954,7 +812,7 @@
<span class="n">ls</span> <span class="o">=</span> <span class="s2">&quot;-&quot;</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">ls</span> <span class="o">=</span> <span class="s2">&quot;--&quot;</span>
<span class="n">tmpmi</span><span class="p">,</span> <span class="n">tmpma</span> <span class="o">=</span> <span class="n">plot_interval</span><span class="p">(</span><span class="n">ax</span><span class="p">,</span> <span class="n">forecasts</span><span class="p">,</span> <span class="n">fts</span><span class="o">.</span><span class="n">order</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">lbl</span><span class="p">,</span> <span class="n">typeonlegend</span><span class="o">=</span><span class="n">typeonlegend</span><span class="p">,</span>
<span class="n">tmpmi</span><span class="p">,</span> <span class="n">tmpma</span> <span class="o">=</span> <span class="n">Util</span><span class="o">.</span><span class="n">plot_interval</span><span class="p">(</span><span class="n">ax</span><span class="p">,</span> <span class="n">forecasts</span><span class="p">,</span> <span class="n">fts</span><span class="o">.</span><span class="n">order</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">lbl</span><span class="p">,</span> <span class="n">typeonlegend</span><span class="o">=</span><span class="n">typeonlegend</span><span class="p">,</span>
<span class="n">color</span><span class="o">=</span><span class="n">colors</span><span class="p">[</span><span class="n">count</span><span class="p">],</span> <span class="n">ls</span><span class="o">=</span><span class="n">ls</span><span class="p">,</span> <span class="n">linewidth</span><span class="o">=</span><span class="n">linewidth</span><span class="p">)</span>
<span class="n">mi</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">tmpmi</span><span class="p">)</span>
<span class="n">ma</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">tmpma</span><span class="p">)</span>
@ -974,15 +832,7 @@
<span class="c1">#Util.show_and_save_image(fig, file, save, lgd=legends)</span>
<div class="viewcode-block" id="plot_probability_distributions"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.plot_probability_distributions">[docs]</a><span class="k">def</span> <span class="nf">plot_probability_distributions</span><span class="p">(</span><span class="n">pmfs</span><span class="p">,</span> <span class="n">lcolors</span><span class="p">,</span> <span class="n">tam</span><span class="o">=</span><span class="p">[</span><span class="mi">15</span><span class="p">,</span> <span class="mi">7</span><span class="p">]):</span>
<span class="n">fig</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="n">tam</span><span class="p">)</span>
<span class="n">ax</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_subplot</span><span class="p">(</span><span class="mi">111</span><span class="p">)</span>
<span class="k">for</span> <span class="n">k</span><span class="p">,</span><span class="n">m</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">pmfs</span><span class="p">,</span><span class="n">start</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
<span class="n">m</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="n">lcolors</span><span class="p">[</span><span class="n">k</span><span class="p">])</span>
<span class="n">handles0</span><span class="p">,</span> <span class="n">labels0</span> <span class="o">=</span> <span class="n">ax</span><span class="o">.</span><span class="n">get_legend_handles_labels</span><span class="p">()</span>
<span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">handles0</span><span class="p">,</span> <span class="n">labels0</span><span class="p">)</span></div>

View File

@ -80,9 +80,199 @@
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="kn">import</span> <span class="nn">dill</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">matplotlib.cm</span> <span class="k">as</span> <span class="nn">cmx</span>
<span class="kn">import</span> <span class="nn">matplotlib.colors</span> <span class="k">as</span> <span class="nn">pltcolors</span>
<span class="kn">from</span> <span class="nn">pyFTS.probabilistic</span> <span class="k">import</span> <span class="n">ProbabilityDistribution</span>
<span class="kn">from</span> <span class="nn">pyFTS.common</span> <span class="k">import</span> <span class="n">Transformations</span>
<div class="viewcode-block" id="plot_compared_intervals_ahead"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.Util.plot_compared_intervals_ahead">[docs]</a><span class="k">def</span> <span class="nf">plot_compared_intervals_ahead</span><span class="p">(</span><span class="n">original</span><span class="p">,</span> <span class="n">models</span><span class="p">,</span> <span class="n">colors</span><span class="p">,</span> <span class="n">distributions</span><span class="p">,</span> <span class="n">time_from</span><span class="p">,</span> <span class="n">time_to</span><span class="p">,</span> <span class="n">intervals</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
<span class="n">save</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">file</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">tam</span><span class="o">=</span><span class="p">[</span><span class="mi">20</span><span class="p">,</span> <span class="mi">5</span><span class="p">],</span> <span class="n">resolution</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">cmap</span><span class="o">=</span><span class="s1">&#39;Blues&#39;</span><span class="p">,</span> <span class="n">linewidth</span><span class="o">=</span><span class="mf">1.5</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Plot the forecasts of several one step ahead models, by point or by interval</span>
<span class="sd"> :param original: Original time series data (list)</span>
<span class="sd"> :param models: List of models to compare</span>
<span class="sd"> :param colors: List of models colors</span>
<span class="sd"> :param distributions: True to plot a distribution</span>
<span class="sd"> :param time_from: index of data poit to start the ahead forecasting</span>
<span class="sd"> :param time_to: number of steps ahead to forecast</span>
<span class="sd"> :param interpol: Fill space between distribution plots</span>
<span class="sd"> :param save: Save the picture on file</span>
<span class="sd"> :param file: Filename to save the picture</span>
<span class="sd"> :param tam: Size of the picture</span>
<span class="sd"> :param resolution:</span>
<span class="sd"> :param cmap: Color map to be used on distribution plot</span>
<span class="sd"> :param option: Distribution type to be passed for models</span>
<span class="sd"> :return:</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">fig</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="n">tam</span><span class="p">)</span>
<span class="n">ax</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_subplot</span><span class="p">(</span><span class="mi">111</span><span class="p">)</span>
<span class="n">cm</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="n">cmap</span><span class="p">)</span>
<span class="n">cNorm</span> <span class="o">=</span> <span class="n">pltcolors</span><span class="o">.</span><span class="n">Normalize</span><span class="p">(</span><span class="n">vmin</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">vmax</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">scalarMap</span> <span class="o">=</span> <span class="n">cmx</span><span class="o">.</span><span class="n">ScalarMappable</span><span class="p">(</span><span class="n">norm</span><span class="o">=</span><span class="n">cNorm</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="n">cm</span><span class="p">)</span>
<span class="k">if</span> <span class="n">resolution</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> <span class="n">resolution</span> <span class="o">=</span> <span class="p">(</span><span class="nb">max</span><span class="p">(</span><span class="n">original</span><span class="p">)</span> <span class="o">-</span> <span class="nb">min</span><span class="p">(</span><span class="n">original</span><span class="p">))</span> <span class="o">/</span> <span class="mi">100</span>
<span class="n">mi</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">ma</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">count</span><span class="p">,</span> <span class="n">fts</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">models</span><span class="p">,</span> <span class="n">start</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
<span class="k">if</span> <span class="n">fts</span><span class="o">.</span><span class="n">has_probability_forecasting</span> <span class="ow">and</span> <span class="n">distributions</span><span class="p">[</span><span class="n">count</span><span class="p">]:</span>
<span class="n">density</span> <span class="o">=</span> <span class="n">fts</span><span class="o">.</span><span class="n">forecast_ahead_distribution</span><span class="p">(</span><span class="n">original</span><span class="p">[</span><span class="n">time_from</span> <span class="o">-</span> <span class="n">fts</span><span class="o">.</span><span class="n">order</span><span class="p">:</span><span class="n">time_from</span><span class="p">],</span> <span class="n">time_to</span><span class="p">,</span>
<span class="n">resolution</span><span class="o">=</span><span class="n">resolution</span><span class="p">)</span>
<span class="c1">#plot_density_scatter(ax, cmap, density, fig, resolution, time_from, time_to)</span>
<span class="n">plot_density_rectange</span><span class="p">(</span><span class="n">ax</span><span class="p">,</span> <span class="n">cm</span><span class="p">,</span> <span class="n">density</span><span class="p">,</span> <span class="n">fig</span><span class="p">,</span> <span class="n">resolution</span><span class="p">,</span> <span class="n">time_from</span><span class="p">,</span> <span class="n">time_to</span><span class="p">)</span>
<span class="k">if</span> <span class="n">fts</span><span class="o">.</span><span class="n">has_interval_forecasting</span> <span class="ow">and</span> <span class="n">intervals</span><span class="p">:</span>
<span class="n">forecasts</span> <span class="o">=</span> <span class="n">fts</span><span class="o">.</span><span class="n">forecast_ahead_interval</span><span class="p">(</span><span class="n">original</span><span class="p">[</span><span class="n">time_from</span> <span class="o">-</span> <span class="n">fts</span><span class="o">.</span><span class="n">order</span><span class="p">:</span><span class="n">time_from</span><span class="p">],</span> <span class="n">time_to</span><span class="p">)</span>
<span class="n">lower</span> <span class="o">=</span> <span class="p">[</span><span class="n">kk</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="k">for</span> <span class="n">kk</span> <span class="ow">in</span> <span class="n">forecasts</span><span class="p">]</span>
<span class="n">upper</span> <span class="o">=</span> <span class="p">[</span><span class="n">kk</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="k">for</span> <span class="n">kk</span> <span class="ow">in</span> <span class="n">forecasts</span><span class="p">]</span>
<span class="n">mi</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">min</span><span class="p">(</span><span class="n">lower</span><span class="p">))</span>
<span class="n">ma</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">max</span><span class="p">(</span><span class="n">upper</span><span class="p">))</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">time_from</span> <span class="o">-</span> <span class="n">fts</span><span class="o">.</span><span class="n">order</span><span class="p">):</span>
<span class="n">lower</span><span class="o">.</span><span class="n">insert</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="n">upper</span><span class="o">.</span><span class="n">insert</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">lower</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="n">colors</span><span class="p">[</span><span class="n">count</span><span class="p">],</span> <span class="n">label</span><span class="o">=</span><span class="n">fts</span><span class="o">.</span><span class="n">shortname</span><span class="p">,</span> <span class="n">linewidth</span><span class="o">=</span><span class="n">linewidth</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">upper</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="n">colors</span><span class="p">[</span><span class="n">count</span><span class="p">],</span> <span class="n">linewidth</span><span class="o">=</span><span class="n">linewidth</span><span class="o">*</span><span class="mf">1.5</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">original</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;black&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s2">&quot;Original&quot;</span><span class="p">,</span> <span class="n">linewidth</span><span class="o">=</span><span class="n">linewidth</span><span class="o">*</span><span class="mf">1.5</span><span class="p">)</span>
<span class="n">handles0</span><span class="p">,</span> <span class="n">labels0</span> <span class="o">=</span> <span class="n">ax</span><span class="o">.</span><span class="n">get_legend_handles_labels</span><span class="p">()</span>
<span class="k">if</span> <span class="kc">True</span> <span class="ow">in</span> <span class="n">distributions</span><span class="p">:</span>
<span class="n">lgd</span> <span class="o">=</span> <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">handles0</span><span class="p">,</span> <span class="n">labels0</span><span class="p">,</span> <span class="n">loc</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">lgd</span> <span class="o">=</span> <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">handles0</span><span class="p">,</span> <span class="n">labels0</span><span class="p">,</span> <span class="n">loc</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">bbox_to_anchor</span><span class="o">=</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span>
<span class="n">_mi</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">mi</span><span class="p">)</span>
<span class="k">if</span> <span class="n">_mi</span> <span class="o">&lt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">_mi</span> <span class="o">*=</span> <span class="mf">1.1</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">_mi</span> <span class="o">*=</span> <span class="mf">0.9</span>
<span class="n">_ma</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="n">ma</span><span class="p">)</span>
<span class="k">if</span> <span class="n">_ma</span> <span class="o">&lt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">_ma</span> <span class="o">*=</span> <span class="mf">0.9</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">_ma</span> <span class="o">*=</span> <span class="mf">1.1</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="n">_mi</span><span class="p">,</span> <span class="n">_ma</span><span class="p">])</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">&#39;F(T)&#39;</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">&#39;T&#39;</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">original</span><span class="p">)])</span>
<span class="n">show_and_save_image</span><span class="p">(</span><span class="n">fig</span><span class="p">,</span> <span class="n">file</span><span class="p">,</span> <span class="n">save</span><span class="p">,</span> <span class="n">lgd</span><span class="o">=</span><span class="n">lgd</span><span class="p">)</span></div>
<div class="viewcode-block" id="plot_density_rectange"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.Util.plot_density_rectange">[docs]</a><span class="k">def</span> <span class="nf">plot_density_rectange</span><span class="p">(</span><span class="n">ax</span><span class="p">,</span> <span class="n">cmap</span><span class="p">,</span> <span class="n">density</span><span class="p">,</span> <span class="n">fig</span><span class="p">,</span> <span class="n">resolution</span><span class="p">,</span> <span class="n">time_from</span><span class="p">,</span> <span class="n">time_to</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Auxiliar function to plot_compared_intervals_ahead</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="kn">from</span> <span class="nn">matplotlib.patches</span> <span class="k">import</span> <span class="n">Rectangle</span>
<span class="kn">from</span> <span class="nn">matplotlib.collections</span> <span class="k">import</span> <span class="n">PatchCollection</span>
<span class="n">patches</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">colors</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">density</span><span class="o">.</span><span class="n">index</span><span class="p">:</span>
<span class="k">for</span> <span class="n">y</span> <span class="ow">in</span> <span class="n">density</span><span class="o">.</span><span class="n">columns</span><span class="p">:</span>
<span class="n">s</span> <span class="o">=</span> <span class="n">Rectangle</span><span class="p">((</span><span class="n">time_from</span> <span class="o">+</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">),</span> <span class="mi">1</span><span class="p">,</span> <span class="n">resolution</span><span class="p">,</span> <span class="n">fill</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">lw</span> <span class="o">=</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">patches</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">s</span><span class="p">)</span>
<span class="n">colors</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">density</span><span class="p">[</span><span class="n">y</span><span class="p">][</span><span class="n">x</span><span class="p">]</span><span class="o">*</span><span class="mi">5</span><span class="p">)</span>
<span class="n">pc</span> <span class="o">=</span> <span class="n">PatchCollection</span><span class="p">(</span><span class="n">patches</span><span class="o">=</span><span class="n">patches</span><span class="p">,</span> <span class="n">match_original</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">pc</span><span class="o">.</span><span class="n">set_clim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">])</span>
<span class="n">pc</span><span class="o">.</span><span class="n">set_cmap</span><span class="p">(</span><span class="n">cmap</span><span class="p">)</span>
<span class="n">pc</span><span class="o">.</span><span class="n">set_array</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">colors</span><span class="p">))</span>
<span class="n">ax</span><span class="o">.</span><span class="n">add_collection</span><span class="p">(</span><span class="n">pc</span><span class="p">)</span>
<span class="n">cb</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">pc</span><span class="p">,</span> <span class="n">ax</span><span class="o">=</span><span class="n">ax</span><span class="p">)</span>
<span class="n">cb</span><span class="o">.</span><span class="n">set_label</span><span class="p">(</span><span class="s1">&#39;Density&#39;</span><span class="p">)</span></div>
<div class="viewcode-block" id="plot_probability_distributions"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.Util.plot_probability_distributions">[docs]</a><span class="k">def</span> <span class="nf">plot_probability_distributions</span><span class="p">(</span><span class="n">pmfs</span><span class="p">,</span> <span class="n">lcolors</span><span class="p">,</span> <span class="n">tam</span><span class="o">=</span><span class="p">[</span><span class="mi">15</span><span class="p">,</span> <span class="mi">7</span><span class="p">]):</span>
<span class="n">fig</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="n">tam</span><span class="p">)</span>
<span class="n">ax</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_subplot</span><span class="p">(</span><span class="mi">111</span><span class="p">)</span>
<span class="k">for</span> <span class="n">k</span><span class="p">,</span><span class="n">m</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">pmfs</span><span class="p">,</span><span class="n">start</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
<span class="n">m</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ax</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="n">lcolors</span><span class="p">[</span><span class="n">k</span><span class="p">])</span>
<span class="n">handles0</span><span class="p">,</span> <span class="n">labels0</span> <span class="o">=</span> <span class="n">ax</span><span class="o">.</span><span class="n">get_legend_handles_labels</span><span class="p">()</span>
<span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">handles0</span><span class="p">,</span> <span class="n">labels0</span><span class="p">)</span></div>
<div class="viewcode-block" id="plot_distribution"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.Util.plot_distribution">[docs]</a><span class="k">def</span> <span class="nf">plot_distribution</span><span class="p">(</span><span class="n">ax</span><span class="p">,</span> <span class="n">cmap</span><span class="p">,</span> <span class="n">probabilitydist</span><span class="p">,</span> <span class="n">fig</span><span class="p">,</span> <span class="n">time_from</span><span class="p">,</span> <span class="n">reference_data</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="sd">&#39;&#39;&#39;</span>
<span class="sd"> Plot forecasted ProbabilityDistribution objects on a matplotlib axis</span>
<span class="sd"> :param ax: matplotlib axis</span>
<span class="sd"> :param cmap: matplotlib colormap name</span>
<span class="sd"> :param probabilitydist: list of ProbabilityDistribution objects</span>
<span class="sd"> :param fig: matplotlib figure</span>
<span class="sd"> :param time_from: starting time (on x axis) to begin the plots</span>
<span class="sd"> :param reference_data:</span>
<span class="sd"> :return:</span>
<span class="sd"> &#39;&#39;&#39;</span>
<span class="kn">from</span> <span class="nn">matplotlib.patches</span> <span class="k">import</span> <span class="n">Rectangle</span>
<span class="kn">from</span> <span class="nn">matplotlib.collections</span> <span class="k">import</span> <span class="n">PatchCollection</span>
<span class="n">patches</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">colors</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">ct</span><span class="p">,</span> <span class="n">dt</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">probabilitydist</span><span class="p">):</span>
<span class="n">disp</span> <span class="o">=</span> <span class="mf">0.0</span>
<span class="k">if</span> <span class="n">reference_data</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">disp</span> <span class="o">=</span> <span class="n">reference_data</span><span class="p">[</span><span class="n">time_from</span><span class="o">+</span><span class="n">ct</span><span class="p">]</span>
<span class="k">for</span> <span class="n">y</span> <span class="ow">in</span> <span class="n">dt</span><span class="o">.</span><span class="n">bins</span><span class="p">:</span>
<span class="n">s</span> <span class="o">=</span> <span class="n">Rectangle</span><span class="p">((</span><span class="n">time_from</span><span class="o">+</span><span class="n">ct</span><span class="p">,</span> <span class="n">y</span><span class="o">+</span><span class="n">disp</span><span class="p">),</span> <span class="mi">1</span><span class="p">,</span> <span class="n">dt</span><span class="o">.</span><span class="n">resolution</span><span class="p">,</span> <span class="n">fill</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">lw</span> <span class="o">=</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">patches</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">s</span><span class="p">)</span>
<span class="n">colors</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">dt</span><span class="o">.</span><span class="n">density</span><span class="p">(</span><span class="n">y</span><span class="p">))</span>
<span class="n">scale</span> <span class="o">=</span> <span class="n">Transformations</span><span class="o">.</span><span class="n">Scale</span><span class="p">()</span>
<span class="n">colors</span> <span class="o">=</span> <span class="n">scale</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">colors</span><span class="p">)</span>
<span class="n">pc</span> <span class="o">=</span> <span class="n">PatchCollection</span><span class="p">(</span><span class="n">patches</span><span class="o">=</span><span class="n">patches</span><span class="p">,</span> <span class="n">match_original</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">pc</span><span class="o">.</span><span class="n">set_clim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">])</span>
<span class="n">pc</span><span class="o">.</span><span class="n">set_cmap</span><span class="p">(</span><span class="n">cmap</span><span class="p">)</span>
<span class="n">pc</span><span class="o">.</span><span class="n">set_array</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">colors</span><span class="p">))</span>
<span class="n">ax</span><span class="o">.</span><span class="n">add_collection</span><span class="p">(</span><span class="n">pc</span><span class="p">)</span>
<span class="n">cb</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">pc</span><span class="p">,</span> <span class="n">ax</span><span class="o">=</span><span class="n">ax</span><span class="p">)</span>
<span class="n">cb</span><span class="o">.</span><span class="n">set_label</span><span class="p">(</span><span class="s1">&#39;Density&#39;</span><span class="p">)</span></div>
<div class="viewcode-block" id="plot_interval"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.Util.plot_interval">[docs]</a><span class="k">def</span> <span class="nf">plot_interval</span><span class="p">(</span><span class="n">axis</span><span class="p">,</span> <span class="n">intervals</span><span class="p">,</span> <span class="n">order</span><span class="p">,</span> <span class="n">label</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;red&#39;</span><span class="p">,</span> <span class="n">typeonlegend</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">ls</span><span class="o">=</span><span class="s1">&#39;-&#39;</span><span class="p">,</span> <span class="n">linewidth</span><span class="o">=</span><span class="mi">1</span><span class="p">):</span>
<span class="sd">&#39;&#39;&#39;</span>
<span class="sd"> Plot forecasted intervals on matplotlib</span>
<span class="sd"> :param axis: matplotlib axis</span>
<span class="sd"> :param intervals: list of forecasted intervals</span>
<span class="sd"> :param order: order of the model that create the forecasts</span>
<span class="sd"> :param label: figure label</span>
<span class="sd"> :param color: matplotlib color name</span>
<span class="sd"> :param typeonlegend:</span>
<span class="sd"> :param ls: matplotlib line style</span>
<span class="sd"> :param linewidth: matplotlib width</span>
<span class="sd"> :return:</span>
<span class="sd"> &#39;&#39;&#39;</span>
<span class="n">lower</span> <span class="o">=</span> <span class="p">[</span><span class="n">kk</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="k">for</span> <span class="n">kk</span> <span class="ow">in</span> <span class="n">intervals</span><span class="p">]</span>
<span class="n">upper</span> <span class="o">=</span> <span class="p">[</span><span class="n">kk</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="k">for</span> <span class="n">kk</span> <span class="ow">in</span> <span class="n">intervals</span><span class="p">]</span>
<span class="n">mi</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">lower</span><span class="p">)</span> <span class="o">*</span> <span class="mf">0.95</span>
<span class="n">ma</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="n">upper</span><span class="p">)</span> <span class="o">*</span> <span class="mf">1.05</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">order</span><span class="p">):</span>
<span class="n">lower</span><span class="o">.</span><span class="n">insert</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="n">upper</span><span class="o">.</span><span class="n">insert</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="k">if</span> <span class="n">typeonlegend</span><span class="p">:</span> <span class="n">label</span> <span class="o">+=</span> <span class="s2">&quot; (Interval)&quot;</span>
<span class="n">axis</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">lower</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="n">color</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">label</span><span class="p">,</span> <span class="n">ls</span><span class="o">=</span><span class="n">ls</span><span class="p">,</span><span class="n">linewidth</span><span class="o">=</span><span class="n">linewidth</span><span class="p">)</span>
<span class="n">axis</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">upper</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="n">color</span><span class="p">,</span> <span class="n">ls</span><span class="o">=</span><span class="n">ls</span><span class="p">,</span><span class="n">linewidth</span><span class="o">=</span><span class="n">linewidth</span><span class="p">)</span>
<span class="k">return</span> <span class="p">[</span><span class="n">mi</span><span class="p">,</span> <span class="n">ma</span><span class="p">]</span></div>
<div class="viewcode-block" id="plot_rules"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.Util.plot_rules">[docs]</a><span class="k">def</span> <span class="nf">plot_rules</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">5</span><span class="p">],</span> <span class="n">axis</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">rules_by_axis</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">columns</span><span class="o">=</span><span class="mi">1</span><span class="p">):</span>
<span class="sd">&#39;&#39;&#39;</span>
<span class="sd"> Plot the FLRG rules of a FTS model on a matplotlib axis</span>
<span class="sd"> :param model: FTS model</span>
<span class="sd"> :param size: figure size</span>
<span class="sd"> :param axis: matplotlib axis</span>
<span class="sd"> :param rules_by_axis: number of rules plotted by column</span>
<span class="sd"> :param columns: number of columns</span>
<span class="sd"> :return:</span>
<span class="sd"> &#39;&#39;&#39;</span>
<span class="k">if</span> <span class="n">axis</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">rules_by_axis</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">rows</span> <span class="o">=</span> <span class="mi">1</span>
<span class="k">elif</span> <span class="n">axis</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">rules_by_axis</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>

View File

@ -373,7 +373,7 @@
<div class="viewcode-block" id="random_walk"><a class="viewcode-back" href="../../../pyFTS.data.html#pyFTS.data.artificial.random_walk">[docs]</a><span class="k">def</span> <span class="nf">random_walk</span><span class="p">(</span><span class="n">n</span><span class="o">=</span><span class="mi">500</span><span class="p">,</span> <span class="nb">type</span><span class="o">=</span><span class="s1">&#39;gaussian&#39;</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Simple random walk</span>
<span class="sd"> </span>
<span class="sd"> :param n: number of samples</span>
<span class="sd"> :param type: &#39;gaussian&#39; or &#39;uniform&#39;</span>
<span class="sd"> :return:</span>

View File

@ -117,10 +117,9 @@
<span class="bp">self</span><span class="o">.</span><span class="n">alpha</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;alpha&quot;</span><span class="p">,</span> <span class="mf">0.05</span><span class="p">)</span>
<span class="sd">&quot;&quot;&quot;The quantiles &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">point_method</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;point_method&#39;</span><span class="p">,</span> <span class="s1">&#39;mean&#39;</span><span class="p">)</span>
<span class="sd">&quot;&quot;&quot;The method used to mix the several model&#39;s forecasts into a unique point forecast. Options: mean, median, quantile&quot;&quot;&quot;</span>
<span class="sd">&quot;&quot;&quot;The method used to mix the several model&#39;s forecasts into a unique point forecast. Options: mean, median, quantile, exponential&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">interval_method</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;interval_method&#39;</span><span class="p">,</span> <span class="s1">&#39;quantile&#39;</span><span class="p">)</span>
<span class="sd">&quot;&quot;&quot;The method used to mix the several model&#39;s forecasts into a interval forecast. Options: quantile, extremum, normal&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">order</span> <span class="o">=</span> <span class="mi">1</span>
<div class="viewcode-block" id="EnsembleFTS.append_model"><a class="viewcode-back" href="../../../../pyFTS.models.ensemble.html#pyFTS.models.ensemble.ensemble.EnsembleFTS.append_model">[docs]</a> <span class="k">def</span> <span class="nf">append_model</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">model</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
@ -137,8 +136,12 @@
<span class="bp">self</span><span class="o">.</span><span class="n">is_multivariate</span> <span class="o">=</span> <span class="kc">True</span>
<span class="k">if</span> <span class="n">model</span><span class="o">.</span><span class="n">has_seasonality</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">has_seasonality</span> <span class="o">=</span> <span class="kc">True</span></div>
<span class="bp">self</span><span class="o">.</span><span class="n">has_seasonality</span> <span class="o">=</span> <span class="kc">True</span>
<span class="k">if</span> <span class="n">model</span><span class="o">.</span><span class="n">original_min</span> <span class="o">&lt;</span> <span class="bp">self</span><span class="o">.</span><span class="n">original_min</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">original_min</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">original_min</span>
<span class="k">elif</span> <span class="n">model</span><span class="o">.</span><span class="n">original_max</span> <span class="o">&gt;</span> <span class="bp">self</span><span class="o">.</span><span class="n">original_max</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">original_max</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">original_max</span></div>
<div class="viewcode-block" id="EnsembleFTS.train"><a class="viewcode-back" href="../../../../pyFTS.models.ensemble.html#pyFTS.models.ensemble.ensemble.EnsembleFTS.train">[docs]</a> <span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="k">pass</span></div>
@ -154,9 +157,9 @@
<span class="n">data</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">indexer</span><span class="o">.</span><span class="n">get_data</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="n">sample</span> <span class="o">=</span> <span class="n">data</span><span class="p">[</span><span class="o">-</span><span class="n">model</span><span class="o">.</span><span class="n">order</span><span class="p">:]</span>
<span class="n">forecast</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">forecast</span><span class="p">(</span><span class="n">sample</span><span class="p">)</span>
<span class="n">forecast</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">sample</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">forecast</span><span class="p">,</span> <span class="p">(</span><span class="nb">list</span><span class="p">,</span><span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">))</span> <span class="ow">and</span> <span class="nb">len</span><span class="p">(</span><span class="n">forecast</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">forecast</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="n">forecast</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span>
<span class="n">forecast</span> <span class="o">=</span> <span class="n">forecast</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">forecast</span><span class="p">,</span> <span class="p">(</span><span class="nb">list</span><span class="p">,</span><span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">))</span> <span class="ow">and</span> <span class="nb">len</span><span class="p">(</span><span class="n">forecast</span><span class="p">)</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">forecast</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">nan</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">forecast</span><span class="p">,</span> <span class="nb">list</span><span class="p">):</span>
@ -173,6 +176,13 @@
<span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">point_method</span> <span class="o">==</span> <span class="s1">&#39;quantile&#39;</span><span class="p">:</span>
<span class="n">alpha</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;alpha&quot;</span><span class="p">,</span><span class="mf">0.05</span><span class="p">)</span>
<span class="n">ret</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">percentile</span><span class="p">(</span><span class="n">forecasts</span><span class="p">,</span> <span class="n">alpha</span><span class="o">*</span><span class="mi">100</span><span class="p">)</span>
<span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">point_method</span> <span class="o">==</span> <span class="s1">&#39;exponential&#39;</span><span class="p">:</span>
<span class="n">l</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">models</span><span class="p">)</span>
<span class="k">if</span> <span class="n">l</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="k">return</span> <span class="n">forecasts</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">w</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="n">np</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="p">(</span><span class="n">l</span> <span class="o">-</span> <span class="n">k</span><span class="p">))</span> <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">l</span><span class="p">)])</span>
<span class="n">w</span> <span class="o">=</span> <span class="n">w</span> <span class="o">/</span> <span class="n">np</span><span class="o">.</span><span class="n">nansum</span><span class="p">(</span><span class="n">w</span><span class="p">)</span>
<span class="n">ret</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">nansum</span><span class="p">([</span><span class="n">w</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">*</span> <span class="n">forecasts</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">l</span><span class="p">)])</span>
<span class="k">return</span> <span class="n">ret</span></div>

View File

@ -140,8 +140,23 @@
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">w</span></div>
<div class="viewcode-block" id="WeightedHighOrderFLRG.get_midpoint"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.hofts.WeightedHighOrderFLRG.get_midpoint">[docs]</a> <span class="k">def</span> <span class="nf">get_midpoint</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sets</span><span class="p">):</span>
<span class="n">mp</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="n">sets</span><span class="p">[</span><span class="n">c</span><span class="p">]</span><span class="o">.</span><span class="n">centroid</span> <span class="k">for</span> <span class="n">c</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">RHS</span><span class="o">.</span><span class="n">keys</span><span class="p">()])</span>
<span class="k">return</span> <span class="n">mp</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">weights</span><span class="p">())</span></div>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">midpoint</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">mp</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="n">sets</span><span class="p">[</span><span class="n">c</span><span class="p">]</span><span class="o">.</span><span class="n">centroid</span> <span class="k">for</span> <span class="n">c</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">RHS</span><span class="o">.</span><span class="n">keys</span><span class="p">()])</span>
<span class="bp">self</span><span class="o">.</span><span class="n">midpoint</span> <span class="o">=</span> <span class="n">mp</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">weights</span><span class="p">())</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">midpoint</span></div>
<div class="viewcode-block" id="WeightedHighOrderFLRG.get_lower"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.hofts.WeightedHighOrderFLRG.get_lower">[docs]</a> <span class="k">def</span> <span class="nf">get_lower</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sets</span><span class="p">):</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">lower</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">lw</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="n">sets</span><span class="p">[</span><span class="n">s</span><span class="p">]</span><span class="o">.</span><span class="n">lower</span> <span class="k">for</span> <span class="n">s</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">RHS</span><span class="o">.</span><span class="n">keys</span><span class="p">()])</span>
<span class="bp">self</span><span class="o">.</span><span class="n">lower</span> <span class="o">=</span> <span class="n">lw</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">weights</span><span class="p">())</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">lower</span></div>
<div class="viewcode-block" id="WeightedHighOrderFLRG.get_upper"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.hofts.WeightedHighOrderFLRG.get_upper">[docs]</a> <span class="k">def</span> <span class="nf">get_upper</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sets</span><span class="p">):</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">upper</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">up</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="n">sets</span><span class="p">[</span><span class="n">s</span><span class="p">]</span><span class="o">.</span><span class="n">upper</span> <span class="k">for</span> <span class="n">s</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">RHS</span><span class="o">.</span><span class="n">keys</span><span class="p">()])</span>
<span class="bp">self</span><span class="o">.</span><span class="n">upper</span> <span class="o">=</span> <span class="n">up</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">weights</span><span class="p">())</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">upper</span></div>
<span class="k">def</span> <span class="nf">__str__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">_str</span> <span class="o">=</span> <span class="s2">&quot;&quot;</span>

View File

@ -87,7 +87,7 @@
<span class="kn">from</span> <span class="nn">pyFTS.models</span> <span class="k">import</span> <span class="n">hofts</span>
<div class="viewcode-block" id="IntervalFTS"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.ifts.IntervalFTS">[docs]</a><span class="k">class</span> <span class="nc">IntervalFTS</span><span class="p">(</span><span class="n">hofts</span><span class="o">.</span><span class="n">HighOrderFTS</span><span class="p">):</span>
<div class="viewcode-block" id="IntervalFTS"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.ifts.IntervalFTS">[docs]</a><span class="k">class</span> <span class="nc">IntervalFTS</span><span class="p">(</span><span class="n">hofts</span><span class="o">.</span><span class="n">WeightedHighOrderFTS</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> High Order Interval Fuzzy Time Series</span>
<span class="sd"> &quot;&quot;&quot;</span>
@ -117,9 +117,9 @@
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">flrg</span><span class="o">.</span><span class="n">LHS</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="k">if</span> <span class="n">flrg</span><span class="o">.</span><span class="n">get_key</span><span class="p">()</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">:</span>
<span class="n">tmp</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">flrg</span><span class="o">.</span><span class="n">get_key</span><span class="p">()]</span>
<span class="n">ret</span> <span class="o">=</span> <span class="n">tmp</span><span class="o">.</span><span class="n">get_lower</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">)</span>
<span class="n">ret</span> <span class="o">=</span> <span class="n">tmp</span><span class="o">.</span><span class="n">get_lower</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span><span class="o">.</span><span class="n">sets</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">ret</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">[</span><span class="n">flrg</span><span class="o">.</span><span class="n">LHS</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]]</span><span class="o">.</span><span class="n">lower</span>
<span class="n">ret</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span><span class="o">.</span><span class="n">sets</span><span class="p">[</span><span class="n">flrg</span><span class="o">.</span><span class="n">LHS</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]]</span><span class="o">.</span><span class="n">lower</span>
<span class="k">return</span> <span class="n">ret</span></div>
<div class="viewcode-block" id="IntervalFTS.get_sequence_membership"><a class="viewcode-back" href="../../../pyFTS.models.html#pyFTS.models.ifts.IntervalFTS.get_sequence_membership">[docs]</a> <span class="k">def</span> <span class="nf">get_sequence_membership</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="n">fuzzySets</span><span class="p">):</span>

View File

@ -112,9 +112,14 @@
<span class="bp">self</span><span class="o">.</span><span class="n">batch_size</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;batch_size&#39;</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
<span class="sd">&quot;&quot;&quot;The batch interval between each retraining&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_models</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;num_models&#39;</span><span class="p">,</span> <span class="mi">5</span><span class="p">)</span>
<span class="sd">&quot;&quot;&quot;The number of models to hold in the ensemble&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">point_method</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;point_method&#39;</span><span class="p">,</span> <span class="s1">&#39;exponential&#39;</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">is_high_order</span> <span class="o">=</span> <span class="kc">True</span>
<span class="bp">self</span><span class="o">.</span><span class="n">uod_clip</span> <span class="o">=</span> <span class="kc">False</span>
<span class="c1">#self.max_lag = self.window_length + self.max_lag</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_lag</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">window_length</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">order</span>
<div class="viewcode-block" id="IncrementalEnsembleFTS.train"><a class="viewcode-back" href="../../../../pyFTS.models.incremental.html#pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.train">[docs]</a> <span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
@ -123,16 +128,9 @@
<span class="k">if</span> <span class="n">model</span><span class="o">.</span><span class="n">is_high_order</span><span class="p">:</span>
<span class="n">model</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">fts_method</span><span class="p">(</span><span class="n">partitioner</span><span class="o">=</span><span class="n">partitioner</span><span class="p">,</span> <span class="n">order</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">order</span><span class="p">,</span> <span class="o">**</span><span class="bp">self</span><span class="o">.</span><span class="n">fts_params</span><span class="p">)</span>
<span class="n">model</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">models</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">models</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">models</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">model</span><span class="p">)</span></div>
<span class="k">def</span> <span class="nf">_point_smoothing</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">forecasts</span><span class="p">):</span>
<span class="n">l</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">models</span><span class="p">)</span>
<span class="n">ret</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">nansum</span><span class="p">([</span><span class="n">np</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="p">(</span><span class="n">l</span><span class="o">-</span><span class="n">k</span><span class="p">))</span> <span class="o">*</span> <span class="n">forecasts</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">l</span><span class="p">)])</span>
<span class="k">return</span> <span class="n">ret</span>
<span class="bp">self</span><span class="o">.</span><span class="n">append_model</span><span class="p">(</span><span class="n">model</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">models</span><span class="p">)</span> <span class="o">&gt;</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_models</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">models</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span></div>
<div class="viewcode-block" id="IncrementalEnsembleFTS.forecast"><a class="viewcode-back" href="../../../../pyFTS.models.incremental.html#pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.forecast">[docs]</a> <span class="k">def</span> <span class="nf">forecast</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="n">l</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
@ -143,18 +141,21 @@
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">max_lag</span><span class="p">,</span> <span class="n">l</span><span class="p">):</span>
<span class="n">data_window</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">data</span><span class="p">[</span><span class="n">k</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_lag</span><span class="p">])</span>
<span class="n">k2</span> <span class="o">=</span> <span class="n">k</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_lag</span>
<span class="k">if</span> <span class="n">k</span> <span class="o">&gt;=</span> <span class="bp">self</span><span class="o">.</span><span class="n">window_length</span><span class="p">:</span>
<span class="n">data_window</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">data</span><span class="p">[</span><span class="n">k2</span><span class="p">])</span>
<span class="k">if</span> <span class="n">k2</span> <span class="o">&gt;=</span> <span class="bp">self</span><span class="o">.</span><span class="n">window_length</span><span class="p">:</span>
<span class="n">data_window</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="k">if</span> <span class="n">k</span> <span class="o">%</span> <span class="bp">self</span><span class="o">.</span><span class="n">batch_size</span> <span class="o">==</span> <span class="mi">0</span> <span class="ow">and</span> <span class="n">k</span> <span class="o">&gt;=</span> <span class="bp">self</span><span class="o">.</span><span class="n">window_length</span><span class="p">:</span>
<span class="k">if</span> <span class="n">k</span> <span class="o">%</span> <span class="bp">self</span><span class="o">.</span><span class="n">batch_size</span> <span class="o">==</span> <span class="mi">0</span> <span class="ow">and</span> <span class="n">k2</span> <span class="o">&gt;=</span> <span class="bp">self</span><span class="o">.</span><span class="n">window_length</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">train</span><span class="p">(</span><span class="n">data_window</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="n">sample</span> <span class="o">=</span> <span class="n">data</span><span class="p">[</span><span class="n">k</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_lag</span><span class="p">:</span> <span class="n">k</span><span class="p">]</span>
<span class="n">tmp</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_models_forecasts</span><span class="p">(</span><span class="n">sample</span><span class="p">)</span>
<span class="n">point</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_point_smoothing</span><span class="p">(</span><span class="n">tmp</span><span class="p">)</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">point</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">models</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">sample</span> <span class="o">=</span> <span class="n">data</span><span class="p">[</span><span class="n">k2</span><span class="p">:</span> <span class="n">k</span><span class="p">]</span>
<span class="n">tmp</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_models_forecasts</span><span class="p">(</span><span class="n">sample</span><span class="p">)</span>
<span class="n">point</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_point</span><span class="p">(</span><span class="n">tmp</span><span class="p">)</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">point</span><span class="p">)</span>
<span class="k">return</span> <span class="n">ret</span></div></div>

View File

@ -111,6 +111,7 @@
<span class="bp">self</span><span class="o">.</span><span class="n">is_high_order</span> <span class="o">=</span> <span class="kc">True</span>
<span class="bp">self</span><span class="o">.</span><span class="n">uod_clip</span> <span class="o">=</span> <span class="kc">False</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_lag</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">window_length</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">order</span>
<span class="bp">self</span><span class="o">.</span><span class="n">is_wrapper</span> <span class="o">=</span> <span class="kc">True</span>
<div class="viewcode-block" id="Retrainer.train"><a class="viewcode-back" href="../../../../pyFTS.models.incremental.html#pyFTS.models.incremental.TimeVariant.Retrainer.train">[docs]</a> <span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">partitioner_method</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">data</span><span class="p">,</span> <span class="o">**</span><span class="bp">self</span><span class="o">.</span><span class="n">partitioner_params</span><span class="p">)</span>

View File

@ -96,7 +96,6 @@
<span class="bp">self</span><span class="o">.</span><span class="n">LHS</span><span class="p">[</span><span class="n">var</span><span class="p">]</span> <span class="o">=</span> <span class="p">[]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">LHS</span><span class="p">[</span><span class="n">var</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">fset</span><span class="p">)</span></div>
<div class="viewcode-block" id="FLRG.append_rhs"><a class="viewcode-back" href="../../../../pyFTS.models.multivariate.html#pyFTS.models.multivariate.flrg.FLRG.append_rhs">[docs]</a> <span class="k">def</span> <span class="nf">append_rhs</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">fset</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">RHS</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">fset</span><span class="p">)</span></div>
@ -108,6 +107,18 @@
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">nanmin</span><span class="p">(</span><span class="n">mvs</span><span class="p">)</span></div>
<div class="viewcode-block" id="FLRG.get_lower"><a class="viewcode-back" href="../../../../pyFTS.models.multivariate.html#pyFTS.models.multivariate.flrg.FLRG.get_lower">[docs]</a> <span class="k">def</span> <span class="nf">get_lower</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sets</span><span class="p">):</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">lower</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">lower</span> <span class="o">=</span> <span class="nb">min</span><span class="p">([</span><span class="n">sets</span><span class="p">[</span><span class="n">rhs</span><span class="p">]</span><span class="o">.</span><span class="n">lower</span> <span class="k">for</span> <span class="n">rhs</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">RHS</span><span class="p">])</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">lower</span></div>
<div class="viewcode-block" id="FLRG.get_upper"><a class="viewcode-back" href="../../../../pyFTS.models.multivariate.html#pyFTS.models.multivariate.flrg.FLRG.get_upper">[docs]</a> <span class="k">def</span> <span class="nf">get_upper</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sets</span><span class="p">):</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">upper</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">upper</span> <span class="o">=</span> <span class="nb">max</span><span class="p">([</span><span class="n">sets</span><span class="p">[</span><span class="n">rhs</span><span class="p">]</span><span class="o">.</span><span class="n">upper</span> <span class="k">for</span> <span class="n">rhs</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">RHS</span><span class="p">])</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">upper</span></div>
<span class="k">def</span> <span class="nf">__str__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">_str</span> <span class="o">=</span> <span class="s2">&quot;&quot;</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">RHS</span><span class="p">:</span>

View File

@ -219,8 +219,9 @@
<span class="n">mvs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mf">0.</span><span class="p">)</span>
<span class="n">mps</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mf">0.</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">mvs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">flrg</span><span class="o">.</span><span class="n">get_key</span><span class="p">()]</span><span class="o">.</span><span class="n">get_membership</span><span class="p">(</span><span class="n">data_point</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">explanatory_variables</span><span class="p">))</span>
<span class="n">mps</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">flrg</span><span class="o">.</span><span class="n">get_key</span><span class="p">()]</span><span class="o">.</span><span class="n">get_midpoint</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">target_variable</span><span class="o">.</span><span class="n">partitioner</span><span class="o">.</span><span class="n">sets</span><span class="p">))</span>
<span class="n">_flrg</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">flrg</span><span class="o">.</span><span class="n">get_key</span><span class="p">()]</span>
<span class="n">mvs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">_flrg</span><span class="o">.</span><span class="n">get_membership</span><span class="p">(</span><span class="n">data_point</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">explanatory_variables</span><span class="p">))</span>
<span class="n">mps</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">_flrg</span><span class="o">.</span><span class="n">get_midpoint</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">target_variable</span><span class="o">.</span><span class="n">partitioner</span><span class="o">.</span><span class="n">sets</span><span class="p">))</span>
<span class="n">mv</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">mvs</span><span class="p">)</span>
<span class="n">mp</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">mps</span><span class="p">)</span>
@ -275,6 +276,49 @@
<span class="k">return</span> <span class="n">ret</span></div>
<div class="viewcode-block" id="MVFTS.forecast_interval"><a class="viewcode-back" href="../../../../pyFTS.models.multivariate.html#pyFTS.models.multivariate.mvfts.MVFTS.forecast_interval">[docs]</a> <span class="k">def</span> <span class="nf">forecast_interval</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="n">ret</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">ndata</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">apply_transformations</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="n">c</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">for</span> <span class="n">index</span><span class="p">,</span> <span class="n">row</span> <span class="ow">in</span> <span class="n">ndata</span><span class="o">.</span><span class="n">iterrows</span><span class="p">()</span> <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">ndata</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">)</span> <span class="k">else</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">ndata</span><span class="p">):</span>
<span class="n">data_point</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">format_data</span><span class="p">(</span><span class="n">row</span><span class="p">)</span>
<span class="n">flrs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">generate_lhs_flrs</span><span class="p">(</span><span class="n">data_point</span><span class="p">)</span>
<span class="n">mvs</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">ups</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">los</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">flr</span> <span class="ow">in</span> <span class="n">flrs</span><span class="p">:</span>
<span class="n">flrg</span> <span class="o">=</span> <span class="n">mvflrg</span><span class="o">.</span><span class="n">FLRG</span><span class="p">(</span><span class="n">lhs</span><span class="o">=</span><span class="n">flr</span><span class="o">.</span><span class="n">LHS</span><span class="p">)</span>
<span class="k">if</span> <span class="n">flrg</span><span class="o">.</span><span class="n">get_key</span><span class="p">()</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">:</span>
<span class="c1">#Naïve approach is applied when no rules were found</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">target_variable</span><span class="o">.</span><span class="n">name</span> <span class="ow">in</span> <span class="n">flrg</span><span class="o">.</span><span class="n">LHS</span><span class="p">:</span>
<span class="n">fs</span> <span class="o">=</span> <span class="n">flrg</span><span class="o">.</span><span class="n">LHS</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">target_variable</span><span class="o">.</span><span class="n">name</span><span class="p">]</span>
<span class="n">fset</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">target_variable</span><span class="o">.</span><span class="n">partitioner</span><span class="o">.</span><span class="n">sets</span><span class="p">[</span><span class="n">fs</span><span class="p">]</span>
<span class="n">up</span> <span class="o">=</span> <span class="n">fset</span><span class="o">.</span><span class="n">upper</span>
<span class="n">lo</span> <span class="o">=</span> <span class="n">fset</span><span class="o">.</span><span class="n">lower</span>
<span class="n">mv</span> <span class="o">=</span> <span class="n">fset</span><span class="o">.</span><span class="n">membership</span><span class="p">(</span><span class="n">data_point</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">target_variable</span><span class="o">.</span><span class="n">name</span><span class="p">])</span>
<span class="n">mvs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">mv</span><span class="p">)</span>
<span class="n">ups</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">up</span><span class="p">)</span>
<span class="n">los</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">lo</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">mvs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mf">0.</span><span class="p">)</span>
<span class="n">ups</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mf">0.</span><span class="p">)</span>
<span class="n">los</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mf">0.</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">_flrg</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">flrg</span><span class="o">.</span><span class="n">get_key</span><span class="p">()]</span>
<span class="n">mvs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">_flrg</span><span class="o">.</span><span class="n">get_membership</span><span class="p">(</span><span class="n">data_point</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">explanatory_variables</span><span class="p">))</span>
<span class="n">ups</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">_flrg</span><span class="o">.</span><span class="n">get_upper</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">target_variable</span><span class="o">.</span><span class="n">partitioner</span><span class="o">.</span><span class="n">sets</span><span class="p">))</span>
<span class="n">los</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">_flrg</span><span class="o">.</span><span class="n">get_lower</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">target_variable</span><span class="o">.</span><span class="n">partitioner</span><span class="o">.</span><span class="n">sets</span><span class="p">))</span>
<span class="n">mv</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">mvs</span><span class="p">)</span>
<span class="n">up</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">mv</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">ups</span><span class="p">)</span><span class="o">.</span><span class="n">T</span><span class="p">)</span> <span class="o">/</span> <span class="n">np</span><span class="o">.</span><span class="n">nansum</span><span class="p">(</span><span class="n">mv</span><span class="p">)</span>
<span class="n">lo</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">mv</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">los</span><span class="p">)</span><span class="o">.</span><span class="n">T</span><span class="p">)</span> <span class="o">/</span> <span class="n">np</span><span class="o">.</span><span class="n">nansum</span><span class="p">(</span><span class="n">mv</span><span class="p">)</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">([</span><span class="n">lo</span><span class="p">,</span> <span class="n">up</span><span class="p">])</span>
<span class="n">ret</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">target_variable</span><span class="o">.</span><span class="n">apply_inverse_transformations</span><span class="p">(</span><span class="n">ret</span><span class="p">,</span>
<span class="n">params</span><span class="o">=</span><span class="n">data</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">target_variable</span><span class="o">.</span><span class="n">data_label</span><span class="p">]</span><span class="o">.</span><span class="n">values</span><span class="p">)</span>
<span class="k">return</span> <span class="n">ret</span></div>
<div class="viewcode-block" id="MVFTS.clone_parameters"><a class="viewcode-back" href="../../../../pyFTS.models.multivariate.html#pyFTS.models.multivariate.mvfts.MVFTS.clone_parameters">[docs]</a> <span class="k">def</span> <span class="nf">clone_parameters</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">model</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">MVFTS</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="n">clone_parameters</span><span class="p">(</span><span class="n">model</span><span class="p">)</span>

View File

@ -107,8 +107,23 @@
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">w</span></div>
<div class="viewcode-block" id="WeightedFLRG.get_midpoint"><a class="viewcode-back" href="../../../../pyFTS.models.multivariate.html#pyFTS.models.multivariate.wmvfts.WeightedFLRG.get_midpoint">[docs]</a> <span class="k">def</span> <span class="nf">get_midpoint</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sets</span><span class="p">):</span>
<span class="n">mp</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="n">sets</span><span class="p">[</span><span class="n">c</span><span class="p">]</span><span class="o">.</span><span class="n">centroid</span> <span class="k">for</span> <span class="n">c</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">RHS</span><span class="o">.</span><span class="n">keys</span><span class="p">()])</span>
<span class="k">return</span> <span class="n">mp</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">weights</span><span class="p">())</span></div>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">midpoint</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">mp</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="n">sets</span><span class="p">[</span><span class="n">c</span><span class="p">]</span><span class="o">.</span><span class="n">centroid</span> <span class="k">for</span> <span class="n">c</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">RHS</span><span class="o">.</span><span class="n">keys</span><span class="p">()])</span>
<span class="bp">self</span><span class="o">.</span><span class="n">midpoint</span> <span class="o">=</span> <span class="n">mp</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">weights</span><span class="p">())</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">midpoint</span></div>
<div class="viewcode-block" id="WeightedFLRG.get_lower"><a class="viewcode-back" href="../../../../pyFTS.models.multivariate.html#pyFTS.models.multivariate.wmvfts.WeightedFLRG.get_lower">[docs]</a> <span class="k">def</span> <span class="nf">get_lower</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sets</span><span class="p">):</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">lower</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">lw</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="n">sets</span><span class="p">[</span><span class="n">s</span><span class="p">]</span><span class="o">.</span><span class="n">lower</span> <span class="k">for</span> <span class="n">s</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">RHS</span><span class="o">.</span><span class="n">keys</span><span class="p">()])</span>
<span class="bp">self</span><span class="o">.</span><span class="n">lower</span> <span class="o">=</span> <span class="n">lw</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">weights</span><span class="p">())</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">lower</span></div>
<div class="viewcode-block" id="WeightedFLRG.get_upper"><a class="viewcode-back" href="../../../../pyFTS.models.multivariate.html#pyFTS.models.multivariate.wmvfts.WeightedFLRG.get_upper">[docs]</a> <span class="k">def</span> <span class="nf">get_upper</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sets</span><span class="p">):</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">upper</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">up</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="n">sets</span><span class="p">[</span><span class="n">s</span><span class="p">]</span><span class="o">.</span><span class="n">upper</span> <span class="k">for</span> <span class="n">s</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">RHS</span><span class="o">.</span><span class="n">keys</span><span class="p">()])</span>
<span class="bp">self</span><span class="o">.</span><span class="n">upper</span> <span class="o">=</span> <span class="n">up</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">weights</span><span class="p">())</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">upper</span></div>
<span class="k">def</span> <span class="nf">__str__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>

View File

@ -354,8 +354,6 @@
<li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.mvfts.MVFTS.clone_parameters">(pyFTS.models.multivariate.mvfts.MVFTS method)</a>
</li>
</ul></li>
<li><a href="pyFTS.hyperparam.html#pyFTS.hyperparam.GridSearch.cluster_method">cluster_method() (in module pyFTS.hyperparam.GridSearch)</a>
</li>
<li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS">ClusteredMVFTS (class in pyFTS.models.multivariate.cmvfts)</a>
</li>
<li><a href="pyFTS.partitioners.html#pyFTS.partitioners.CMeans.CMeansPartitioner">CMeansPartitioner (class in pyFTS.partitioners.CMeans)</a>
@ -445,8 +443,6 @@
<li><a href="pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.density">density() (pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution method)</a>
</li>
<li><a href="pyFTS.common.html#pyFTS.common.fts.FTS.detail">detail (pyFTS.common.fts.FTS attribute)</a>
</li>
<li><a href="pyFTS.hyperparam.html#pyFTS.hyperparam.GridSearch.dict_individual">dict_individual() (in module pyFTS.hyperparam.GridSearch)</a>
</li>
<li><a href="pyFTS.common.html#pyFTS.common.Transformations.Differential">Differential (class in pyFTS.common.Transformations)</a>
</li>
@ -480,12 +476,10 @@
</li>
<li><a href="pyFTS.common.html#pyFTS.common.Util.enumerate2">enumerate2() (in module pyFTS.common.Util)</a>
</li>
<li><a href="pyFTS.hyperparam.html#pyFTS.hyperparam.GridSearch.execute">execute() (in module pyFTS.hyperparam.GridSearch)</a>
<li><a href="pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.expected_value">expected_value() (pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution method)</a>
</li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.expected_value">expected_value() (pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution method)</a>
</li>
<li><a href="pyFTS.partitioners.html#pyFTS.partitioners.parallel_util.explore_partitioners">explore_partitioners() (in module pyFTS.partitioners.parallel_util)</a>
<ul>
@ -666,6 +660,8 @@
<li><a href="pyFTS.models.ensemble.html#pyFTS.models.ensemble.ensemble.EnsembleFTS.forecast_interval">(pyFTS.models.ensemble.ensemble.EnsembleFTS method)</a>
</li>
<li><a href="pyFTS.models.html#pyFTS.models.ifts.IntervalFTS.forecast_interval">(pyFTS.models.ifts.IntervalFTS method)</a>
</li>
<li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.mvfts.MVFTS.forecast_interval">(pyFTS.models.multivariate.mvfts.MVFTS method)</a>
</li>
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.forecast_interval">(pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS method)</a>
</li>
@ -971,7 +967,13 @@
<li><a href="pyFTS.common.html#pyFTS.common.flrg.FLRG.get_lower">get_lower() (pyFTS.common.flrg.FLRG method)</a>
<ul>
<li><a href="pyFTS.models.html#pyFTS.models.hofts.WeightedHighOrderFLRG.get_lower">(pyFTS.models.hofts.WeightedHighOrderFLRG method)</a>
</li>
<li><a href="pyFTS.models.html#pyFTS.models.ifts.IntervalFTS.get_lower">(pyFTS.models.ifts.IntervalFTS method)</a>
</li>
<li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.flrg.FLRG.get_lower">(pyFTS.models.multivariate.flrg.FLRG method)</a>
</li>
<li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.wmvfts.WeightedFLRG.get_lower">(pyFTS.models.multivariate.wmvfts.WeightedFLRG method)</a>
</li>
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.common.FuzzySet.get_lower">(pyFTS.models.nonstationary.common.FuzzySet method)</a>
</li>
@ -1065,7 +1067,13 @@
<li><a href="pyFTS.common.html#pyFTS.common.flrg.FLRG.get_upper">get_upper() (pyFTS.common.flrg.FLRG method)</a>
<ul>
<li><a href="pyFTS.models.html#pyFTS.models.hofts.WeightedHighOrderFLRG.get_upper">(pyFTS.models.hofts.WeightedHighOrderFLRG method)</a>
</li>
<li><a href="pyFTS.models.html#pyFTS.models.ifts.IntervalFTS.get_upper">(pyFTS.models.ifts.IntervalFTS method)</a>
</li>
<li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.flrg.FLRG.get_upper">(pyFTS.models.multivariate.flrg.FLRG method)</a>
</li>
<li><a href="pyFTS.models.multivariate.html#pyFTS.models.multivariate.wmvfts.WeightedFLRG.get_upper">(pyFTS.models.multivariate.wmvfts.WeightedFLRG method)</a>
</li>
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.common.FuzzySet.get_upper">(pyFTS.models.nonstationary.common.FuzzySet method)</a>
</li>
@ -1359,6 +1367,8 @@
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.flrg.NonStationaryFLRG">NonStationaryFLRG (class in pyFTS.models.nonstationary.flrg)</a>
</li>
<li><a href="pyFTS.models.nonstationary.html#pyFTS.models.nonstationary.nsfts.NonStationaryFTS">NonStationaryFTS (class in pyFTS.models.nonstationary.nsfts)</a>
</li>
<li><a href="pyFTS.models.incremental.html#pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.num_models">num_models (pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS attribute)</a>
</li>
</ul></td>
</tr></table>
@ -1470,7 +1480,7 @@
<li><a href="pyFTS.probabilistic.html#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.plot">(pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution method)</a>
</li>
</ul></li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.plot_compared_intervals_ahead">plot_compared_intervals_ahead() (in module pyFTS.benchmarks.benchmarks)</a>
<li><a href="pyFTS.common.html#pyFTS.common.Util.plot_compared_intervals_ahead">plot_compared_intervals_ahead() (in module pyFTS.common.Util)</a>
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.plot_compared_series">plot_compared_series() (in module pyFTS.benchmarks.benchmarks)</a>
</li>
@ -1482,17 +1492,17 @@
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.Util.plot_dataframe_probabilistic">plot_dataframe_probabilistic() (in module pyFTS.benchmarks.Util)</a>
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.plot_density_rectange">plot_density_rectange() (in module pyFTS.benchmarks.benchmarks)</a>
<li><a href="pyFTS.common.html#pyFTS.common.Util.plot_density_rectange">plot_density_rectange() (in module pyFTS.common.Util)</a>
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.plot_distribution">plot_distribution() (in module pyFTS.benchmarks.benchmarks)</a>
<li><a href="pyFTS.common.html#pyFTS.common.Util.plot_distribution">plot_distribution() (in module pyFTS.common.Util)</a>
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.plot_interval">plot_interval() (in module pyFTS.benchmarks.benchmarks)</a>
<li><a href="pyFTS.common.html#pyFTS.common.Util.plot_interval">plot_interval() (in module pyFTS.common.Util)</a>
</li>
<li><a href="pyFTS.partitioners.html#pyFTS.partitioners.Util.plot_partitioners">plot_partitioners() (in module pyFTS.partitioners.Util)</a>
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.plot_point">plot_point() (in module pyFTS.benchmarks.benchmarks)</a>
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.plot_probability_distributions">plot_probability_distributions() (in module pyFTS.benchmarks.benchmarks)</a>
<li><a href="pyFTS.common.html#pyFTS.common.Util.plot_probability_distributions">plot_probability_distributions() (in module pyFTS.common.Util)</a>
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.ResidualAnalysis.plot_residuals">plot_residuals() (in module pyFTS.benchmarks.ResidualAnalysis)</a>
</li>
@ -1559,8 +1569,6 @@
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.Util.process_common_data">process_common_data() (in module pyFTS.benchmarks.Util)</a>
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.process_interval_jobs">process_interval_jobs() (in module pyFTS.benchmarks.benchmarks)</a>
</li>
<li><a href="pyFTS.hyperparam.html#pyFTS.hyperparam.GridSearch.process_jobs">process_jobs() (in module pyFTS.hyperparam.GridSearch)</a>
</li>
<li><a href="pyFTS.benchmarks.html#pyFTS.benchmarks.benchmarks.process_point_jobs">process_point_jobs() (in module pyFTS.benchmarks.benchmarks)</a>
</li>
@ -1667,8 +1675,6 @@
<li><a href="pyFTS.distributed.html#module-pyFTS.distributed.spark">pyFTS.distributed.spark (module)</a>
</li>
<li><a href="pyFTS.hyperparam.html#module-pyFTS.hyperparam">pyFTS.hyperparam (module)</a>
</li>
<li><a href="pyFTS.hyperparam.html#module-pyFTS.hyperparam.GridSearch">pyFTS.hyperparam.GridSearch (module)</a>
</li>
<li><a href="pyFTS.hyperparam.html#module-pyFTS.hyperparam.Util">pyFTS.hyperparam.Util (module)</a>
</li>

Binary file not shown.

View File

@ -325,11 +325,6 @@
<td>&#160;&#160;&#160;
<a href="pyFTS.hyperparam.html#module-pyFTS.hyperparam"><code class="xref">pyFTS.hyperparam</code></a></td><td>
<em></em></td></tr>
<tr class="cg-1">
<td></td>
<td>&#160;&#160;&#160;
<a href="pyFTS.hyperparam.html#module-pyFTS.hyperparam.GridSearch"><code class="xref">pyFTS.hyperparam.GridSearch</code></a></td><td>
<em></em></td></tr>
<tr class="cg-1">
<td></td>
<td>&#160;&#160;&#160;

View File

@ -189,38 +189,6 @@
<code class="descclassname">pyFTS.benchmarks.benchmarks.</code><code class="descname">plotCompared</code><span class="sig-paren">(</span><em>original</em>, <em>forecasts</em>, <em>labels</em>, <em>title</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#plotCompared"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.plotCompared" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="function">
<dt id="pyFTS.benchmarks.benchmarks.plot_compared_intervals_ahead">
<code class="descclassname">pyFTS.benchmarks.benchmarks.</code><code class="descname">plot_compared_intervals_ahead</code><span class="sig-paren">(</span><em>original, models, colors, distributions, time_from, time_to, intervals=True, save=False, file=None, tam=[20, 5], resolution=None, cmap='Blues', linewidth=1.5</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#plot_compared_intervals_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.plot_compared_intervals_ahead" title="Permalink to this definition"></a></dt>
<dd><p>Plot the forecasts of several one step ahead models, by point or by interval</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>original</strong> Original time series data (list)</li>
<li><strong>models</strong> List of models to compare</li>
<li><strong>colors</strong> List of models colors</li>
<li><strong>distributions</strong> True to plot a distribution</li>
<li><strong>time_from</strong> index of data poit to start the ahead forecasting</li>
<li><strong>time_to</strong> number of steps ahead to forecast</li>
<li><strong>interpol</strong> Fill space between distribution plots</li>
<li><strong>save</strong> Save the picture on file</li>
<li><strong>file</strong> Filename to save the picture</li>
<li><strong>tam</strong> Size of the picture</li>
<li><strong>resolution</strong> </li>
<li><strong>cmap</strong> Color map to be used on distribution plot</li>
<li><strong>option</strong> Distribution type to be passed for models</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last"></p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt id="pyFTS.benchmarks.benchmarks.plot_compared_series">
<code class="descclassname">pyFTS.benchmarks.benchmarks.</code><code class="descname">plot_compared_series</code><span class="sig-paren">(</span><em>original, models, colors, typeonlegend=False, save=False, file=None, tam=[20, 5], points=True, intervals=True, linewidth=1.5</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#plot_compared_series"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.plot_compared_series" title="Permalink to this definition"></a></dt>
@ -250,32 +218,11 @@
</table>
</dd></dl>
<dl class="function">
<dt id="pyFTS.benchmarks.benchmarks.plot_density_rectange">
<code class="descclassname">pyFTS.benchmarks.benchmarks.</code><code class="descname">plot_density_rectange</code><span class="sig-paren">(</span><em>ax</em>, <em>cmap</em>, <em>density</em>, <em>fig</em>, <em>resolution</em>, <em>time_from</em>, <em>time_to</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#plot_density_rectange"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.plot_density_rectange" title="Permalink to this definition"></a></dt>
<dd><p>Auxiliar function to plot_compared_intervals_ahead</p>
</dd></dl>
<dl class="function">
<dt id="pyFTS.benchmarks.benchmarks.plot_distribution">
<code class="descclassname">pyFTS.benchmarks.benchmarks.</code><code class="descname">plot_distribution</code><span class="sig-paren">(</span><em>ax</em>, <em>cmap</em>, <em>probabilitydist</em>, <em>fig</em>, <em>time_from</em>, <em>reference_data=None</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#plot_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.plot_distribution" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="function">
<dt id="pyFTS.benchmarks.benchmarks.plot_interval">
<code class="descclassname">pyFTS.benchmarks.benchmarks.</code><code class="descname">plot_interval</code><span class="sig-paren">(</span><em>axis</em>, <em>intervals</em>, <em>order</em>, <em>label</em>, <em>color='red'</em>, <em>typeonlegend=False</em>, <em>ls='-'</em>, <em>linewidth=1</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#plot_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.plot_interval" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="function">
<dt id="pyFTS.benchmarks.benchmarks.plot_point">
<code class="descclassname">pyFTS.benchmarks.benchmarks.</code><code class="descname">plot_point</code><span class="sig-paren">(</span><em>axis</em>, <em>points</em>, <em>order</em>, <em>label</em>, <em>color='red'</em>, <em>ls='-'</em>, <em>linewidth=1</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#plot_point"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.plot_point" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="function">
<dt id="pyFTS.benchmarks.benchmarks.plot_probability_distributions">
<code class="descclassname">pyFTS.benchmarks.benchmarks.</code><code class="descname">plot_probability_distributions</code><span class="sig-paren">(</span><em>pmfs, lcolors, tam=[15, 7]</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#plot_probability_distributions"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.plot_probability_distributions" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="function">
<dt id="pyFTS.benchmarks.benchmarks.print_distribution_statistics">
<code class="descclassname">pyFTS.benchmarks.benchmarks.</code><code class="descname">print_distribution_statistics</code><span class="sig-paren">(</span><em>original</em>, <em>models</em>, <em>steps</em>, <em>resolution</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#print_distribution_statistics"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.print_distribution_statistics" title="Permalink to this definition"></a></dt>

View File

@ -1253,10 +1253,124 @@ bisect but with a simpler API and support for key functions.</p>
</table>
</dd></dl>
<dl class="function">
<dt id="pyFTS.common.Util.plot_compared_intervals_ahead">
<code class="descclassname">pyFTS.common.Util.</code><code class="descname">plot_compared_intervals_ahead</code><span class="sig-paren">(</span><em>original, models, colors, distributions, time_from, time_to, intervals=True, save=False, file=None, tam=[20, 5], resolution=None, cmap='Blues', linewidth=1.5</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/Util.html#plot_compared_intervals_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.Util.plot_compared_intervals_ahead" title="Permalink to this definition"></a></dt>
<dd><p>Plot the forecasts of several one step ahead models, by point or by interval</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>original</strong> Original time series data (list)</li>
<li><strong>models</strong> List of models to compare</li>
<li><strong>colors</strong> List of models colors</li>
<li><strong>distributions</strong> True to plot a distribution</li>
<li><strong>time_from</strong> index of data poit to start the ahead forecasting</li>
<li><strong>time_to</strong> number of steps ahead to forecast</li>
<li><strong>interpol</strong> Fill space between distribution plots</li>
<li><strong>save</strong> Save the picture on file</li>
<li><strong>file</strong> Filename to save the picture</li>
<li><strong>tam</strong> Size of the picture</li>
<li><strong>resolution</strong> </li>
<li><strong>cmap</strong> Color map to be used on distribution plot</li>
<li><strong>option</strong> Distribution type to be passed for models</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last"></p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt id="pyFTS.common.Util.plot_density_rectange">
<code class="descclassname">pyFTS.common.Util.</code><code class="descname">plot_density_rectange</code><span class="sig-paren">(</span><em>ax</em>, <em>cmap</em>, <em>density</em>, <em>fig</em>, <em>resolution</em>, <em>time_from</em>, <em>time_to</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/Util.html#plot_density_rectange"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.Util.plot_density_rectange" title="Permalink to this definition"></a></dt>
<dd><p>Auxiliar function to plot_compared_intervals_ahead</p>
</dd></dl>
<dl class="function">
<dt id="pyFTS.common.Util.plot_distribution">
<code class="descclassname">pyFTS.common.Util.</code><code class="descname">plot_distribution</code><span class="sig-paren">(</span><em>ax</em>, <em>cmap</em>, <em>probabilitydist</em>, <em>fig</em>, <em>time_from</em>, <em>reference_data=None</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/Util.html#plot_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.Util.plot_distribution" title="Permalink to this definition"></a></dt>
<dd><p>Plot forecasted ProbabilityDistribution objects on a matplotlib axis</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>ax</strong> matplotlib axis</li>
<li><strong>cmap</strong> matplotlib colormap name</li>
<li><strong>probabilitydist</strong> list of ProbabilityDistribution objects</li>
<li><strong>fig</strong> matplotlib figure</li>
<li><strong>time_from</strong> starting time (on x axis) to begin the plots</li>
<li><strong>reference_data</strong> </li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last"></p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt id="pyFTS.common.Util.plot_interval">
<code class="descclassname">pyFTS.common.Util.</code><code class="descname">plot_interval</code><span class="sig-paren">(</span><em>axis</em>, <em>intervals</em>, <em>order</em>, <em>label</em>, <em>color='red'</em>, <em>typeonlegend=False</em>, <em>ls='-'</em>, <em>linewidth=1</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/Util.html#plot_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.Util.plot_interval" title="Permalink to this definition"></a></dt>
<dd><p>Plot forecasted intervals on matplotlib</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>axis</strong> matplotlib axis</li>
<li><strong>intervals</strong> list of forecasted intervals</li>
<li><strong>order</strong> order of the model that create the forecasts</li>
<li><strong>label</strong> figure label</li>
<li><strong>color</strong> matplotlib color name</li>
<li><strong>typeonlegend</strong> </li>
<li><strong>ls</strong> matplotlib line style</li>
<li><strong>linewidth</strong> matplotlib width</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last"></p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt id="pyFTS.common.Util.plot_probability_distributions">
<code class="descclassname">pyFTS.common.Util.</code><code class="descname">plot_probability_distributions</code><span class="sig-paren">(</span><em>pmfs, lcolors, tam=[15, 7]</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/Util.html#plot_probability_distributions"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.Util.plot_probability_distributions" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="function">
<dt id="pyFTS.common.Util.plot_rules">
<code class="descclassname">pyFTS.common.Util.</code><code class="descname">plot_rules</code><span class="sig-paren">(</span><em>model, size=[5, 5], axis=None, rules_by_axis=None, columns=1</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/common/Util.html#plot_rules"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.common.Util.plot_rules" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dd><p>Plot the FLRG rules of a FTS model on a matplotlib axis</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>model</strong> FTS model</li>
<li><strong>size</strong> figure size</li>
<li><strong>axis</strong> matplotlib axis</li>
<li><strong>rules_by_axis</strong> number of rules plotted by column</li>
<li><strong>columns</strong> number of columns</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last"></p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="function">
<dt id="pyFTS.common.Util.show_and_save_image">

View File

@ -176,7 +176,7 @@
<li class="toctree-l2"><a class="reference internal" href="pyFTS.hyperparam.html#module-pyFTS.hyperparam">Module contents</a></li>
<li class="toctree-l2"><a class="reference internal" href="pyFTS.hyperparam.html#submodules">Submodules</a></li>
<li class="toctree-l2"><a class="reference internal" href="pyFTS.hyperparam.html#module-pyFTS.hyperparam.Util">pyFTS.hyperparam.Util module</a></li>
<li class="toctree-l2"><a class="reference internal" href="pyFTS.hyperparam.html#module-pyFTS.hyperparam.GridSearch">pyFTS.hyperparam.GridSearch module</a></li>
<li class="toctree-l2"><a class="reference internal" href="pyFTS.hyperparam.html#pyfts-hyperparam-gridsearch-module">pyFTS.hyperparam.GridSearch module</a></li>
<li class="toctree-l2"><a class="reference internal" href="pyFTS.hyperparam.html#pyfts-hyperparam-evolutionary-module">pyFTS.hyperparam.Evolutionary module</a></li>
</ul>
</li>

View File

@ -66,7 +66,7 @@
<li><a class="reference internal" href="#module-pyFTS.hyperparam">Module contents</a></li>
<li><a class="reference internal" href="#submodules">Submodules</a></li>
<li><a class="reference internal" href="#module-pyFTS.hyperparam.Util">pyFTS.hyperparam.Util module</a></li>
<li><a class="reference internal" href="#module-pyFTS.hyperparam.GridSearch">pyFTS.hyperparam.GridSearch module</a></li>
<li><a class="reference internal" href="#pyfts-hyperparam-gridsearch-module">pyFTS.hyperparam.GridSearch module</a></li>
<li><a class="reference internal" href="#pyfts-hyperparam-evolutionary-module">pyFTS.hyperparam.Evolutionary module</a></li>
</ul>
</li>
@ -183,28 +183,8 @@ Value: the measure value</p>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.hyperparam.GridSearch">
<span id="pyfts-hyperparam-gridsearch-module"></span><h2>pyFTS.hyperparam.GridSearch module<a class="headerlink" href="#module-pyFTS.hyperparam.GridSearch" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt id="pyFTS.hyperparam.GridSearch.cluster_method">
<code class="descclassname">pyFTS.hyperparam.GridSearch.</code><code class="descname">cluster_method</code><span class="sig-paren">(</span><em>individual</em>, <em>train</em>, <em>test</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/hyperparam/GridSearch.html#cluster_method"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.hyperparam.GridSearch.cluster_method" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="function">
<dt id="pyFTS.hyperparam.GridSearch.dict_individual">
<code class="descclassname">pyFTS.hyperparam.GridSearch.</code><code class="descname">dict_individual</code><span class="sig-paren">(</span><em>mf</em>, <em>partitioner</em>, <em>partitions</em>, <em>order</em>, <em>lags</em>, <em>alpha_cut</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/hyperparam/GridSearch.html#dict_individual"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.hyperparam.GridSearch.dict_individual" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="function">
<dt id="pyFTS.hyperparam.GridSearch.execute">
<code class="descclassname">pyFTS.hyperparam.GridSearch.</code><code class="descname">execute</code><span class="sig-paren">(</span><em>hyperparams</em>, <em>datasetname</em>, <em>train</em>, <em>test</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/hyperparam/GridSearch.html#execute"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.hyperparam.GridSearch.execute" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="function">
<dt id="pyFTS.hyperparam.GridSearch.process_jobs">
<code class="descclassname">pyFTS.hyperparam.GridSearch.</code><code class="descname">process_jobs</code><span class="sig-paren">(</span><em>jobs</em>, <em>datasetname</em>, <em>conn</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/hyperparam/GridSearch.html#process_jobs"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.hyperparam.GridSearch.process_jobs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<div class="section" id="pyfts-hyperparam-gridsearch-module">
<h2>pyFTS.hyperparam.GridSearch module<a class="headerlink" href="#pyfts-hyperparam-gridsearch-module" title="Permalink to this headline"></a></h2>
</div>
<div class="section" id="pyfts-hyperparam-evolutionary-module">
<h2>pyFTS.hyperparam.Evolutionary module<a class="headerlink" href="#pyfts-hyperparam-evolutionary-module" title="Permalink to this headline"></a></h2>

View File

@ -319,7 +319,7 @@ XIII Brazilian Congress on Computational Intelligence, 2017. Rio de Janeiro, Bra
<dl class="attribute">
<dt id="pyFTS.models.ensemble.ensemble.EnsembleFTS.point_method">
<code class="descname">point_method</code><em class="property"> = None</em><a class="headerlink" href="#pyFTS.models.ensemble.ensemble.EnsembleFTS.point_method" title="Permalink to this definition"></a></dt>
<dd><p>The method used to mix the several models forecasts into a unique point forecast. Options: mean, median, quantile</p>
<dd><p>The method used to mix the several models forecasts into a unique point forecast. Options: mean, median, quantile, exponential</p>
</dd></dl>
<dl class="method">

View File

@ -528,6 +528,22 @@ using Fuzzy Time Series. 2017 IEEE International Conference on Fuzzy Systems. DO
<code class="descname">append_rhs</code><span class="sig-paren">(</span><em>fset</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/hofts.html#WeightedHighOrderFLRG.append_rhs"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.hofts.WeightedHighOrderFLRG.append_rhs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.hofts.WeightedHighOrderFLRG.get_lower">
<code class="descname">get_lower</code><span class="sig-paren">(</span><em>sets</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/hofts.html#WeightedHighOrderFLRG.get_lower"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.hofts.WeightedHighOrderFLRG.get_lower" title="Permalink to this definition"></a></dt>
<dd><p>Returns the lower bound value for the RHS fuzzy sets</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>sets</strong> fuzzy sets</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">lower bound value</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.hofts.WeightedHighOrderFLRG.get_midpoint">
<code class="descname">get_midpoint</code><span class="sig-paren">(</span><em>sets</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/hofts.html#WeightedHighOrderFLRG.get_midpoint"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.hofts.WeightedHighOrderFLRG.get_midpoint" title="Permalink to this definition"></a></dt>
@ -544,6 +560,22 @@ using Fuzzy Time Series. 2017 IEEE International Conference on Fuzzy Systems. DO
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.hofts.WeightedHighOrderFLRG.get_upper">
<code class="descname">get_upper</code><span class="sig-paren">(</span><em>sets</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/hofts.html#WeightedHighOrderFLRG.get_upper"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.hofts.WeightedHighOrderFLRG.get_upper" title="Permalink to this definition"></a></dt>
<dd><p>Returns the upper bound value for the RHS fuzzy sets</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>sets</strong> fuzzy sets</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">upper bound value</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.hofts.WeightedHighOrderFLRG.weights">
<code class="descname">weights</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/hofts.html#WeightedHighOrderFLRG.weights"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.hofts.WeightedHighOrderFLRG.weights" title="Permalink to this definition"></a></dt>
@ -628,7 +660,7 @@ In: Computational Intelligence (SSCI), 2016 IEEE Symposium Series on. IEEE, 2016
<dl class="class">
<dt id="pyFTS.models.ifts.IntervalFTS">
<em class="property">class </em><code class="descclassname">pyFTS.models.ifts.</code><code class="descname">IntervalFTS</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/ifts.html#IntervalFTS"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.ifts.IntervalFTS" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#pyFTS.models.hofts.HighOrderFTS" title="pyFTS.models.hofts.HighOrderFTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.hofts.HighOrderFTS</span></code></a></p>
<dd><p>Bases: <a class="reference internal" href="#pyFTS.models.hofts.WeightedHighOrderFTS" title="pyFTS.models.hofts.WeightedHighOrderFTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.hofts.WeightedHighOrderFTS</span></code></a></p>
<p>High Order Interval Fuzzy Time Series</p>
<dl class="method">
<dt id="pyFTS.models.ifts.IntervalFTS.forecast_interval">

View File

@ -265,6 +265,12 @@
<dd><p>The FTS method specific parameters</p>
</dd></dl>
<dl class="attribute">
<dt id="pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.num_models">
<code class="descname">num_models</code><em class="property"> = None</em><a class="headerlink" href="#pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.num_models" title="Permalink to this definition"></a></dt>
<dd><p>The number of models to hold in the ensemble</p>
</dd></dl>
<dl class="attribute">
<dt id="pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.partitioner_method">
<code class="descname">partitioner_method</code><em class="property"> = None</em><a class="headerlink" href="#pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.partitioner_method" title="Permalink to this definition"></a></dt>

View File

@ -294,6 +294,22 @@ transformations and partitioners.</p>
<code class="descname">append_rhs</code><span class="sig-paren">(</span><em>fset</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/flrg.html#FLRG.append_rhs"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.flrg.FLRG.append_rhs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.flrg.FLRG.get_lower">
<code class="descname">get_lower</code><span class="sig-paren">(</span><em>sets</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/flrg.html#FLRG.get_lower"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.flrg.FLRG.get_lower" title="Permalink to this definition"></a></dt>
<dd><p>Returns the lower bound value for the RHS fuzzy sets</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>sets</strong> fuzzy sets</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">lower bound value</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.flrg.FLRG.get_membership">
<code class="descname">get_membership</code><span class="sig-paren">(</span><em>data</em>, <em>variables</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/flrg.html#FLRG.get_membership"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.flrg.FLRG.get_membership" title="Permalink to this definition"></a></dt>
@ -315,6 +331,22 @@ transformations and partitioners.</p>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.flrg.FLRG.get_upper">
<code class="descname">get_upper</code><span class="sig-paren">(</span><em>sets</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/flrg.html#FLRG.get_upper"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.flrg.FLRG.get_upper" title="Permalink to this definition"></a></dt>
<dd><p>Returns the upper bound value for the RHS fuzzy sets</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>sets</strong> fuzzy sets</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">upper bound value</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.flrg.FLRG.set_lhs">
<code class="descname">set_lhs</code><span class="sig-paren">(</span><em>var</em>, <em>fset</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/flrg.html#FLRG.set_lhs"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.flrg.FLRG.set_lhs" title="Permalink to this definition"></a></dt>
@ -426,6 +458,27 @@ transformations and partitioners.</p>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.mvfts.MVFTS.forecast_interval">
<code class="descname">forecast_interval</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/mvfts.html#MVFTS.forecast_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.forecast_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast one step ahead</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</li>
<li><strong>kwargs</strong> model specific parameters</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the prediction intervals</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.mvfts.MVFTS.format_data">
<code class="descname">format_data</code><span class="sig-paren">(</span><em>data</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/mvfts.html#MVFTS.format_data"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.format_data" title="Permalink to this definition"></a></dt>
@ -487,6 +540,22 @@ transformations and partitioners.</p>
<code class="descname">append_rhs</code><span class="sig-paren">(</span><em>fset</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/wmvfts.html#WeightedFLRG.append_rhs"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedFLRG.append_rhs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.wmvfts.WeightedFLRG.get_lower">
<code class="descname">get_lower</code><span class="sig-paren">(</span><em>sets</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/wmvfts.html#WeightedFLRG.get_lower"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedFLRG.get_lower" title="Permalink to this definition"></a></dt>
<dd><p>Returns the lower bound value for the RHS fuzzy sets</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>sets</strong> fuzzy sets</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">lower bound value</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.wmvfts.WeightedFLRG.get_midpoint">
<code class="descname">get_midpoint</code><span class="sig-paren">(</span><em>sets</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/wmvfts.html#WeightedFLRG.get_midpoint"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedFLRG.get_midpoint" title="Permalink to this definition"></a></dt>
@ -503,6 +572,22 @@ transformations and partitioners.</p>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.wmvfts.WeightedFLRG.get_upper">
<code class="descname">get_upper</code><span class="sig-paren">(</span><em>sets</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/wmvfts.html#WeightedFLRG.get_upper"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedFLRG.get_upper" title="Permalink to this definition"></a></dt>
<dd><p>Returns the upper bound value for the RHS fuzzy sets</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>sets</strong> fuzzy sets</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">upper bound value</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.wmvfts.WeightedFLRG.weights">
<code class="descname">weights</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/wmvfts.html#WeightedFLRG.weights"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedFLRG.weights" title="Permalink to this definition"></a></dt>

File diff suppressed because one or more lines are too long

View File

@ -12,6 +12,8 @@ from pyFTS.probabilistic import ProbabilityDistribution
from pyFTS.common import Transformations
def plot_compared_intervals_ahead(original, models, colors, distributions, time_from, time_to, intervals = True,
save=False, file=None, tam=[20, 5], resolution=None,
cmap='Blues', linewidth=1.5):
@ -124,6 +126,17 @@ def plot_probability_distributions(pmfs, lcolors, tam=[15, 7]):
ax.legend(handles0, labels0)
def plot_distribution(ax, cmap, probabilitydist, fig, time_from, reference_data=None):
'''
Plot forecasted ProbabilityDistribution objects on a matplotlib axis
:param ax: matplotlib axis
:param cmap: matplotlib colormap name
:param probabilitydist: list of ProbabilityDistribution objects
:param fig: matplotlib figure
:param time_from: starting time (on x axis) to begin the plots
:param reference_data:
:return:
'''
from matplotlib.patches import Rectangle
from matplotlib.collections import PatchCollection
patches = []
@ -149,6 +162,19 @@ def plot_distribution(ax, cmap, probabilitydist, fig, time_from, reference_data=
def plot_interval(axis, intervals, order, label, color='red', typeonlegend=False, ls='-', linewidth=1):
'''
Plot forecasted intervals on matplotlib
:param axis: matplotlib axis
:param intervals: list of forecasted intervals
:param order: order of the model that create the forecasts
:param label: figure label
:param color: matplotlib color name
:param typeonlegend:
:param ls: matplotlib line style
:param linewidth: matplotlib width
:return:
'''
lower = [kk[0] for kk in intervals]
upper = [kk[1] for kk in intervals]
mi = min(lower) * 0.95
@ -163,6 +189,16 @@ def plot_interval(axis, intervals, order, label, color='red', typeonlegend=False
def plot_rules(model, size=[5, 5], axis=None, rules_by_axis=None, columns=1):
'''
Plot the FLRG rules of a FTS model on a matplotlib axis
:param model: FTS model
:param size: figure size
:param axis: matplotlib axis
:param rules_by_axis: number of rules plotted by column
:param columns: number of columns
:return:
'''
if axis is None and rules_by_axis is None:
rows = 1
elif axis is None and rules_by_axis is not None: