diff --git a/docs/build/doctrees/environment.pickle b/docs/build/doctrees/environment.pickle index 7378702..f7e04f0 100644 Binary files a/docs/build/doctrees/environment.pickle and b/docs/build/doctrees/environment.pickle differ diff --git a/docs/build/doctrees/pyFTS.benchmarks.doctree b/docs/build/doctrees/pyFTS.benchmarks.doctree index 5eebedf..4f4aec8 100644 Binary files a/docs/build/doctrees/pyFTS.benchmarks.doctree and b/docs/build/doctrees/pyFTS.benchmarks.doctree differ diff --git a/docs/build/doctrees/pyFTS.common.doctree b/docs/build/doctrees/pyFTS.common.doctree index dcefe67..c2780e4 100644 Binary files a/docs/build/doctrees/pyFTS.common.doctree and b/docs/build/doctrees/pyFTS.common.doctree differ diff --git a/docs/build/doctrees/pyFTS.hyperparam.doctree b/docs/build/doctrees/pyFTS.hyperparam.doctree index 8a7a957..08ce869 100644 Binary files a/docs/build/doctrees/pyFTS.hyperparam.doctree and b/docs/build/doctrees/pyFTS.hyperparam.doctree differ diff --git a/docs/build/doctrees/pyFTS.models.doctree b/docs/build/doctrees/pyFTS.models.doctree index c59f07d..80db4fe 100644 Binary files a/docs/build/doctrees/pyFTS.models.doctree and b/docs/build/doctrees/pyFTS.models.doctree differ diff --git a/docs/build/doctrees/pyFTS.models.ensemble.doctree b/docs/build/doctrees/pyFTS.models.ensemble.doctree index 608253f..ec5eada 100644 Binary files a/docs/build/doctrees/pyFTS.models.ensemble.doctree and b/docs/build/doctrees/pyFTS.models.ensemble.doctree differ diff --git a/docs/build/doctrees/pyFTS.models.incremental.doctree b/docs/build/doctrees/pyFTS.models.incremental.doctree index 124e213..59c84bc 100644 Binary files a/docs/build/doctrees/pyFTS.models.incremental.doctree and b/docs/build/doctrees/pyFTS.models.incremental.doctree differ diff --git a/docs/build/doctrees/pyFTS.models.multivariate.doctree b/docs/build/doctrees/pyFTS.models.multivariate.doctree index 366c79c..bb8bf09 100644 Binary files a/docs/build/doctrees/pyFTS.models.multivariate.doctree and b/docs/build/doctrees/pyFTS.models.multivariate.doctree differ diff --git a/docs/build/html/_modules/pyFTS/benchmarks/benchmarks.html b/docs/build/html/_modules/pyFTS/benchmarks/benchmarks.html index 12e4d83..60c966c 100644 --- a/docs/build/html/_modules/pyFTS/benchmarks/benchmarks.html +++ b/docs/build/html/_modules/pyFTS/benchmarks/benchmarks.html @@ -84,13 +84,11 @@ import traceback import matplotlib as plt -import matplotlib.cm as cmx -import matplotlib.colors as pltcolors + import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D -from pyFTS.probabilistic import ProbabilityDistribution from pyFTS.common import Transformations from pyFTS.models import song, chen, yu, ismailefendi, sadaei, hofts, pwfts, ifts, cheng, hwang from pyFTS.models.multivariate import mvfts, wmvfts, cmvfts @@ -100,12 +98,6 @@ from pyFTS.common import Util as cUtil # from sklearn.cross_validation import KFold from pyFTS.partitioners import Grid -from matplotlib import rc - -#rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']}) -## for Palatino and other serif fonts use: -#rc('font',**{'family':'serif','serif':['Palatino']}) -#rc('text', usetex=True) colors = ['grey', 'darkgrey', 'rosybrown', 'maroon', 'red','orange', 'gold', 'yellow', 'olive', 'green', 'darkgreen', 'cyan', 'lightblue','blue', 'darkblue', 'purple', 'darkviolet' ] @@ -292,10 +284,10 @@ raise ValueError("Type parameter has a unkown value!") if distributed: - import dispy, dispy.httpd + import pyFTS.distributed.dispy as dispy nodes = kwargs.get("nodes", ['127.0.0.1']) - cluster, http_server = cUtil.start_dispy_cluster(experiment_method, nodes) + cluster, http_server = dispy.start_dispy_cluster(experiment_method, nodes) jobs = [] @@ -380,7 +372,7 @@ if progress: progressbar.update(1) job() - if job.status == dispy.DispyJob.Finished and job is not None: + if job.status == dispy.dispy.DispyJob.Finished and job is not None: tmp = job.result synthesis_method(dataset, tag, tmp, conn) else: @@ -391,7 +383,7 @@ cluster.wait() # wait for all jobs to finish - cUtil.stop_dispy_cluster(cluster, http_server) + dispy.stop_dispy_cluster(cluster, http_server) conn.close() @@ -755,145 +747,11 @@ -
[docs]def plot_compared_intervals_ahead(original, models, colors, distributions, time_from, time_to, intervals = True, - save=False, file=None, tam=[20, 5], resolution=None, - cmap='Blues', linewidth=1.5): - """ - Plot the forecasts of several one step ahead models, by point or by interval - - :param original: Original time series data (list) - :param models: List of models to compare - :param colors: List of models colors - :param distributions: True to plot a distribution - :param time_from: index of data poit to start the ahead forecasting - :param time_to: number of steps ahead to forecast - :param interpol: Fill space between distribution plots - :param save: Save the picture on file - :param file: Filename to save the picture - :param tam: Size of the picture - :param resolution: - :param cmap: Color map to be used on distribution plot - :param option: Distribution type to be passed for models - :return: - """ - fig = plt.figure(figsize=tam) - ax = fig.add_subplot(111) - - cm = plt.get_cmap(cmap) - cNorm = pltcolors.Normalize(vmin=0, vmax=1) - scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cm) - - if resolution is None: resolution = (max(original) - min(original)) / 100 - - mi = [] - ma = [] - - for count, fts in enumerate(models, start=0): - if fts.has_probability_forecasting and distributions[count]: - density = fts.forecast_ahead_distribution(original[time_from - fts.order:time_from], time_to, - resolution=resolution) - - #plot_density_scatter(ax, cmap, density, fig, resolution, time_from, time_to) - plot_density_rectange(ax, cm, density, fig, resolution, time_from, time_to) - - if fts.has_interval_forecasting and intervals: - forecasts = fts.forecast_ahead_interval(original[time_from - fts.order:time_from], time_to) - lower = [kk[0] for kk in forecasts] - upper = [kk[1] for kk in forecasts] - mi.append(min(lower)) - ma.append(max(upper)) - for k in np.arange(0, time_from - fts.order): - lower.insert(0, None) - upper.insert(0, None) - ax.plot(lower, color=colors[count], label=fts.shortname, linewidth=linewidth) - ax.plot(upper, color=colors[count], linewidth=linewidth*1.5) - - ax.plot(original, color='black', label="Original", linewidth=linewidth*1.5) - handles0, labels0 = ax.get_legend_handles_labels() - if True in distributions: - lgd = ax.legend(handles0, labels0, loc=2) - else: - lgd = ax.legend(handles0, labels0, loc=2, bbox_to_anchor=(1, 1)) - _mi = min(mi) - if _mi < 0: - _mi *= 1.1 - else: - _mi *= 0.9 - _ma = max(ma) - if _ma < 0: - _ma *= 0.9 - else: - _ma *= 1.1 - - ax.set_ylim([_mi, _ma]) - ax.set_ylabel('F(T)') - ax.set_xlabel('T') - ax.set_xlim([0, len(original)]) - - cUtil.show_and_save_image(fig, file, save, lgd=lgd)
-
[docs]def plot_density_rectange(ax, cmap, density, fig, resolution, time_from, time_to): - """ - Auxiliar function to plot_compared_intervals_ahead - """ - from matplotlib.patches import Rectangle - from matplotlib.collections import PatchCollection - patches = [] - colors = [] - for x in density.index: - for y in density.columns: - s = Rectangle((time_from + x, y), 1, resolution, fill=True, lw = 0) - patches.append(s) - colors.append(density[y][x]*5) - pc = PatchCollection(patches=patches, match_original=True) - pc.set_clim([0, 1]) - pc.set_cmap(cmap) - pc.set_array(np.array(colors)) - ax.add_collection(pc) - cb = fig.colorbar(pc, ax=ax) - cb.set_label('Density')
-
[docs]def plot_distribution(ax, cmap, probabilitydist, fig, time_from, reference_data=None): - from matplotlib.patches import Rectangle - from matplotlib.collections import PatchCollection - patches = [] - colors = [] - for ct, dt in enumerate(probabilitydist): - disp = 0.0 - if reference_data is not None: - disp = reference_data[time_from+ct] - - for y in dt.bins: - s = Rectangle((time_from+ct, y+disp), 1, dt.resolution, fill=True, lw = 0) - patches.append(s) - colors.append(dt.density(y)) - scale = Transformations.Scale() - colors = scale.apply(colors) - pc = PatchCollection(patches=patches, match_original=True) - pc.set_clim([0, 1]) - pc.set_cmap(cmap) - pc.set_array(np.array(colors)) - ax.add_collection(pc) - cb = fig.colorbar(pc, ax=ax) - cb.set_label('Density')
- - -
[docs]def plot_interval(axis, intervals, order, label, color='red', typeonlegend=False, ls='-', linewidth=1): - lower = [kk[0] for kk in intervals] - upper = [kk[1] for kk in intervals] - mi = min(lower) * 0.95 - ma = max(upper) * 1.05 - for k in np.arange(0, order): - lower.insert(0, None) - upper.insert(0, None) - if typeonlegend: label += " (Interval)" - axis.plot(lower, color=color, label=label, ls=ls,linewidth=linewidth) - axis.plot(upper, color=color, ls=ls,linewidth=linewidth) - return [mi, ma]
-
[docs]def plot_point(axis, points, order, label, color='red', ls='-', linewidth=1): mi = min(points) * 0.95 @@ -954,7 +812,7 @@ ls = "-" else: ls = "--" - tmpmi, tmpma = plot_interval(ax, forecasts, fts.order, label=lbl, typeonlegend=typeonlegend, + tmpmi, tmpma = Util.plot_interval(ax, forecasts, fts.order, label=lbl, typeonlegend=typeonlegend, color=colors[count], ls=ls, linewidth=linewidth) mi.append(tmpmi) ma.append(tmpma) @@ -974,15 +832,7 @@ #Util.show_and_save_image(fig, file, save, lgd=legends) -
[docs]def plot_probability_distributions(pmfs, lcolors, tam=[15, 7]): - fig = plt.figure(figsize=tam) - ax = fig.add_subplot(111) - for k,m in enumerate(pmfs,start=0): - m.plot(ax, color=lcolors[k]) - - handles0, labels0 = ax.get_legend_handles_labels() - ax.legend(handles0, labels0)
diff --git a/docs/build/html/_modules/pyFTS/common/Util.html b/docs/build/html/_modules/pyFTS/common/Util.html index c506c4d..b58221c 100644 --- a/docs/build/html/_modules/pyFTS/common/Util.html +++ b/docs/build/html/_modules/pyFTS/common/Util.html @@ -80,9 +80,199 @@ import matplotlib.pyplot as plt import dill import numpy as np +import matplotlib.cm as cmx +import matplotlib.colors as pltcolors +from pyFTS.probabilistic import ProbabilityDistribution +from pyFTS.common import Transformations + + + + +
[docs]def plot_compared_intervals_ahead(original, models, colors, distributions, time_from, time_to, intervals = True, + save=False, file=None, tam=[20, 5], resolution=None, + cmap='Blues', linewidth=1.5): + """ + Plot the forecasts of several one step ahead models, by point or by interval + + :param original: Original time series data (list) + :param models: List of models to compare + :param colors: List of models colors + :param distributions: True to plot a distribution + :param time_from: index of data poit to start the ahead forecasting + :param time_to: number of steps ahead to forecast + :param interpol: Fill space between distribution plots + :param save: Save the picture on file + :param file: Filename to save the picture + :param tam: Size of the picture + :param resolution: + :param cmap: Color map to be used on distribution plot + :param option: Distribution type to be passed for models + :return: + """ + fig = plt.figure(figsize=tam) + ax = fig.add_subplot(111) + + cm = plt.get_cmap(cmap) + cNorm = pltcolors.Normalize(vmin=0, vmax=1) + scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cm) + + if resolution is None: resolution = (max(original) - min(original)) / 100 + + mi = [] + ma = [] + + for count, fts in enumerate(models, start=0): + if fts.has_probability_forecasting and distributions[count]: + density = fts.forecast_ahead_distribution(original[time_from - fts.order:time_from], time_to, + resolution=resolution) + + #plot_density_scatter(ax, cmap, density, fig, resolution, time_from, time_to) + plot_density_rectange(ax, cm, density, fig, resolution, time_from, time_to) + + if fts.has_interval_forecasting and intervals: + forecasts = fts.forecast_ahead_interval(original[time_from - fts.order:time_from], time_to) + lower = [kk[0] for kk in forecasts] + upper = [kk[1] for kk in forecasts] + mi.append(min(lower)) + ma.append(max(upper)) + for k in np.arange(0, time_from - fts.order): + lower.insert(0, None) + upper.insert(0, None) + ax.plot(lower, color=colors[count], label=fts.shortname, linewidth=linewidth) + ax.plot(upper, color=colors[count], linewidth=linewidth*1.5) + + ax.plot(original, color='black', label="Original", linewidth=linewidth*1.5) + handles0, labels0 = ax.get_legend_handles_labels() + if True in distributions: + lgd = ax.legend(handles0, labels0, loc=2) + else: + lgd = ax.legend(handles0, labels0, loc=2, bbox_to_anchor=(1, 1)) + _mi = min(mi) + if _mi < 0: + _mi *= 1.1 + else: + _mi *= 0.9 + _ma = max(ma) + if _ma < 0: + _ma *= 0.9 + else: + _ma *= 1.1 + + ax.set_ylim([_mi, _ma]) + ax.set_ylabel('F(T)') + ax.set_xlabel('T') + ax.set_xlim([0, len(original)]) + + show_and_save_image(fig, file, save, lgd=lgd)
+ + + +
[docs]def plot_density_rectange(ax, cmap, density, fig, resolution, time_from, time_to): + """ + Auxiliar function to plot_compared_intervals_ahead + """ + from matplotlib.patches import Rectangle + from matplotlib.collections import PatchCollection + patches = [] + colors = [] + for x in density.index: + for y in density.columns: + s = Rectangle((time_from + x, y), 1, resolution, fill=True, lw = 0) + patches.append(s) + colors.append(density[y][x]*5) + pc = PatchCollection(patches=patches, match_original=True) + pc.set_clim([0, 1]) + pc.set_cmap(cmap) + pc.set_array(np.array(colors)) + ax.add_collection(pc) + cb = fig.colorbar(pc, ax=ax) + cb.set_label('Density')
+ + +
[docs]def plot_probability_distributions(pmfs, lcolors, tam=[15, 7]): + fig = plt.figure(figsize=tam) + ax = fig.add_subplot(111) + + for k,m in enumerate(pmfs,start=0): + m.plot(ax, color=lcolors[k]) + + handles0, labels0 = ax.get_legend_handles_labels() + ax.legend(handles0, labels0)
+ +
[docs]def plot_distribution(ax, cmap, probabilitydist, fig, time_from, reference_data=None): + ''' + Plot forecasted ProbabilityDistribution objects on a matplotlib axis + + :param ax: matplotlib axis + :param cmap: matplotlib colormap name + :param probabilitydist: list of ProbabilityDistribution objects + :param fig: matplotlib figure + :param time_from: starting time (on x axis) to begin the plots + :param reference_data: + :return: + ''' + from matplotlib.patches import Rectangle + from matplotlib.collections import PatchCollection + patches = [] + colors = [] + for ct, dt in enumerate(probabilitydist): + disp = 0.0 + if reference_data is not None: + disp = reference_data[time_from+ct] + + for y in dt.bins: + s = Rectangle((time_from+ct, y+disp), 1, dt.resolution, fill=True, lw = 0) + patches.append(s) + colors.append(dt.density(y)) + scale = Transformations.Scale() + colors = scale.apply(colors) + pc = PatchCollection(patches=patches, match_original=True) + pc.set_clim([0, 1]) + pc.set_cmap(cmap) + pc.set_array(np.array(colors)) + ax.add_collection(pc) + cb = fig.colorbar(pc, ax=ax) + cb.set_label('Density')
+ + +
[docs]def plot_interval(axis, intervals, order, label, color='red', typeonlegend=False, ls='-', linewidth=1): + ''' + Plot forecasted intervals on matplotlib + + :param axis: matplotlib axis + :param intervals: list of forecasted intervals + :param order: order of the model that create the forecasts + :param label: figure label + :param color: matplotlib color name + :param typeonlegend: + :param ls: matplotlib line style + :param linewidth: matplotlib width + :return: + ''' + lower = [kk[0] for kk in intervals] + upper = [kk[1] for kk in intervals] + mi = min(lower) * 0.95 + ma = max(upper) * 1.05 + for k in np.arange(0, order): + lower.insert(0, None) + upper.insert(0, None) + if typeonlegend: label += " (Interval)" + axis.plot(lower, color=color, label=label, ls=ls,linewidth=linewidth) + axis.plot(upper, color=color, ls=ls,linewidth=linewidth) + return [mi, ma]
[docs]def plot_rules(model, size=[5, 5], axis=None, rules_by_axis=None, columns=1): + ''' + Plot the FLRG rules of a FTS model on a matplotlib axis + + :param model: FTS model + :param size: figure size + :param axis: matplotlib axis + :param rules_by_axis: number of rules plotted by column + :param columns: number of columns + :return: + ''' if axis is None and rules_by_axis is None: rows = 1 elif axis is None and rules_by_axis is not None: diff --git a/docs/build/html/_modules/pyFTS/data/artificial.html b/docs/build/html/_modules/pyFTS/data/artificial.html index 9f8755f..f0fa2f3 100644 --- a/docs/build/html/_modules/pyFTS/data/artificial.html +++ b/docs/build/html/_modules/pyFTS/data/artificial.html @@ -373,7 +373,7 @@
[docs]def random_walk(n=500, type='gaussian'): """ Simple random walk - + :param n: number of samples :param type: 'gaussian' or 'uniform' :return: diff --git a/docs/build/html/_modules/pyFTS/models/ensemble/ensemble.html b/docs/build/html/_modules/pyFTS/models/ensemble/ensemble.html index ccd49ac..1f7587e 100644 --- a/docs/build/html/_modules/pyFTS/models/ensemble/ensemble.html +++ b/docs/build/html/_modules/pyFTS/models/ensemble/ensemble.html @@ -117,10 +117,9 @@ self.alpha = kwargs.get("alpha", 0.05) """The quantiles """ self.point_method = kwargs.get('point_method', 'mean') - """The method used to mix the several model's forecasts into a unique point forecast. Options: mean, median, quantile""" + """The method used to mix the several model's forecasts into a unique point forecast. Options: mean, median, quantile, exponential""" self.interval_method = kwargs.get('interval_method', 'quantile') """The method used to mix the several model's forecasts into a interval forecast. Options: quantile, extremum, normal""" - self.order = 1
[docs] def append_model(self, model): """ @@ -137,8 +136,12 @@ self.is_multivariate = True if model.has_seasonality: - self.has_seasonality = True
+ self.has_seasonality = True + if model.original_min < self.original_min: + self.original_min = model.original_min + elif model.original_max > self.original_max: + self.original_max = model.original_max
[docs] def train(self, data, **kwargs): pass
@@ -154,9 +157,9 @@ data = self.indexer.get_data(data) sample = data[-model.order:] - forecast = model.forecast(sample) + forecast = model.predict(sample) if isinstance(forecast, (list,np.ndarray)) and len(forecast) > 0: - forecast = int(forecast[-1]) + forecast = forecast[-1] elif isinstance(forecast, (list,np.ndarray)) and len(forecast) == 0: forecast = np.nan if isinstance(forecast, list): @@ -173,6 +176,13 @@ elif self.point_method == 'quantile': alpha = kwargs.get("alpha",0.05) ret = np.percentile(forecasts, alpha*100) + elif self.point_method == 'exponential': + l = len(self.models) + if l == 1: + return forecasts[0] + w = np.array([np.exp(-(l - k)) for k in range(l)]) + w = w / np.nansum(w) + ret = np.nansum([w[k] * forecasts[k] for k in range(l)]) return ret
diff --git a/docs/build/html/_modules/pyFTS/models/hofts.html b/docs/build/html/_modules/pyFTS/models/hofts.html index cc14f55..28585bb 100644 --- a/docs/build/html/_modules/pyFTS/models/hofts.html +++ b/docs/build/html/_modules/pyFTS/models/hofts.html @@ -140,8 +140,23 @@ return self.w
[docs] def get_midpoint(self, sets): - mp = np.array([sets[c].centroid for c in self.RHS.keys()]) - return mp.dot(self.weights())
+ if self.midpoint is None: + mp = np.array([sets[c].centroid for c in self.RHS.keys()]) + self.midpoint = mp.dot(self.weights()) + + return self.midpoint + +
[docs] def get_lower(self, sets): + if self.lower is None: + lw = np.array([sets[s].lower for s in self.RHS.keys()]) + self.lower = lw.dot(self.weights()) + return self.lower
+ +
[docs] def get_upper(self, sets): + if self.upper is None: + up = np.array([sets[s].upper for s in self.RHS.keys()]) + self.upper = up.dot(self.weights()) + return self.upper
def __str__(self): _str = "" diff --git a/docs/build/html/_modules/pyFTS/models/ifts.html b/docs/build/html/_modules/pyFTS/models/ifts.html index 90b8359..32ce37c 100644 --- a/docs/build/html/_modules/pyFTS/models/ifts.html +++ b/docs/build/html/_modules/pyFTS/models/ifts.html @@ -87,7 +87,7 @@ from pyFTS.models import hofts -
[docs]class IntervalFTS(hofts.HighOrderFTS): +
[docs]class IntervalFTS(hofts.WeightedHighOrderFTS): """ High Order Interval Fuzzy Time Series """ @@ -117,9 +117,9 @@ if len(flrg.LHS) > 0: if flrg.get_key() in self.flrgs: tmp = self.flrgs[flrg.get_key()] - ret = tmp.get_lower(self.sets) + ret = tmp.get_lower(self.partitioner.sets) else: - ret = self.sets[flrg.LHS[-1]].lower + ret = self.partitioner.sets[flrg.LHS[-1]].lower return ret
[docs] def get_sequence_membership(self, data, fuzzySets): diff --git a/docs/build/html/_modules/pyFTS/models/incremental/IncrementalEnsemble.html b/docs/build/html/_modules/pyFTS/models/incremental/IncrementalEnsemble.html index 2d34de9..30a7ccd 100644 --- a/docs/build/html/_modules/pyFTS/models/incremental/IncrementalEnsemble.html +++ b/docs/build/html/_modules/pyFTS/models/incremental/IncrementalEnsemble.html @@ -112,9 +112,14 @@ self.batch_size = kwargs.get('batch_size', 10) """The batch interval between each retraining""" + self.num_models = kwargs.get('num_models', 5) + """The number of models to hold in the ensemble""" + + self.point_method = kwargs.get('point_method', 'exponential') + self.is_high_order = True self.uod_clip = False - #self.max_lag = self.window_length + self.max_lag + self.max_lag = self.window_length + self.order
[docs] def train(self, data, **kwargs): @@ -123,16 +128,9 @@ if model.is_high_order: model = self.fts_method(partitioner=partitioner, order=self.order, **self.fts_params) model.fit(data, **kwargs) - if len(self.models) > 0: - self.models.pop(0) - self.models.append(model)
- - def _point_smoothing(self, forecasts): - l = len(self.models) - - ret = np.nansum([np.exp(-(l-k)) * forecasts[k] for k in range(l)]) - - return ret + self.append_model(model) + if len(self.models) > self.num_models: + self.models.pop(0)
[docs] def forecast(self, data, **kwargs): l = len(data) @@ -143,18 +141,21 @@ for k in np.arange(self.max_lag, l): - data_window.append(data[k - self.max_lag]) + k2 = k - self.max_lag - if k >= self.window_length: + data_window.append(data[k2]) + + if k2 >= self.window_length: data_window.pop(0) - if k % self.batch_size == 0 and k >= self.window_length: + if k % self.batch_size == 0 and k2 >= self.window_length: self.train(data_window, **kwargs) - sample = data[k - self.max_lag: k] - tmp = self.get_models_forecasts(sample) - point = self._point_smoothing(tmp) - ret.append(point) + if len(self.models) > 0: + sample = data[k2: k] + tmp = self.get_models_forecasts(sample) + point = self.get_point(tmp) + ret.append(point) return ret
diff --git a/docs/build/html/_modules/pyFTS/models/incremental/TimeVariant.html b/docs/build/html/_modules/pyFTS/models/incremental/TimeVariant.html index 529e7d9..799339e 100644 --- a/docs/build/html/_modules/pyFTS/models/incremental/TimeVariant.html +++ b/docs/build/html/_modules/pyFTS/models/incremental/TimeVariant.html @@ -111,6 +111,7 @@ self.is_high_order = True self.uod_clip = False self.max_lag = self.window_length + self.order + self.is_wrapper = True
[docs] def train(self, data, **kwargs): self.partitioner = self.partitioner_method(data=data, **self.partitioner_params) diff --git a/docs/build/html/_modules/pyFTS/models/multivariate/flrg.html b/docs/build/html/_modules/pyFTS/models/multivariate/flrg.html index 7767f05..0c8292c 100644 --- a/docs/build/html/_modules/pyFTS/models/multivariate/flrg.html +++ b/docs/build/html/_modules/pyFTS/models/multivariate/flrg.html @@ -96,7 +96,6 @@ self.LHS[var] = [] self.LHS[var].append(fset)
-
[docs] def append_rhs(self, fset, **kwargs): self.RHS.add(fset)
@@ -108,6 +107,18 @@ return np.nanmin(mvs) +
[docs] def get_lower(self, sets): + if self.lower is None: + self.lower = min([sets[rhs].lower for rhs in self.RHS]) + + return self.lower
+ +
[docs] def get_upper(self, sets): + if self.upper is None: + self.upper = max([sets[rhs].upper for rhs in self.RHS]) + + return self.upper
+ def __str__(self): _str = "" for k in self.RHS: diff --git a/docs/build/html/_modules/pyFTS/models/multivariate/mvfts.html b/docs/build/html/_modules/pyFTS/models/multivariate/mvfts.html index bb11981..4ed62a7 100644 --- a/docs/build/html/_modules/pyFTS/models/multivariate/mvfts.html +++ b/docs/build/html/_modules/pyFTS/models/multivariate/mvfts.html @@ -219,8 +219,9 @@ mvs.append(0.) mps.append(0.) else: - mvs.append(self.flrgs[flrg.get_key()].get_membership(data_point, self.explanatory_variables)) - mps.append(self.flrgs[flrg.get_key()].get_midpoint(self.target_variable.partitioner.sets)) + _flrg = self.flrgs[flrg.get_key()] + mvs.append(_flrg.get_membership(data_point, self.explanatory_variables)) + mps.append(_flrg.get_midpoint(self.target_variable.partitioner.sets)) mv = np.array(mvs) mp = np.array(mps) @@ -275,6 +276,49 @@ return ret +
[docs] def forecast_interval(self, data, **kwargs): + ret = [] + ndata = self.apply_transformations(data) + c = 0 + for index, row in ndata.iterrows() if isinstance(ndata, pd.DataFrame) else enumerate(ndata): + data_point = self.format_data(row) + flrs = self.generate_lhs_flrs(data_point) + mvs = [] + ups = [] + los = [] + for flr in flrs: + flrg = mvflrg.FLRG(lhs=flr.LHS) + if flrg.get_key() not in self.flrgs: + #Naïve approach is applied when no rules were found + if self.target_variable.name in flrg.LHS: + fs = flrg.LHS[self.target_variable.name] + fset = self.target_variable.partitioner.sets[fs] + up = fset.upper + lo = fset.lower + mv = fset.membership(data_point[self.target_variable.name]) + mvs.append(mv) + ups.append(up) + los.append(lo) + else: + mvs.append(0.) + ups.append(0.) + los.append(0.) + else: + _flrg = self.flrgs[flrg.get_key()] + mvs.append(_flrg.get_membership(data_point, self.explanatory_variables)) + ups.append(_flrg.get_upper(self.target_variable.partitioner.sets)) + los.append(_flrg.get_lower(self.target_variable.partitioner.sets)) + + mv = np.array(mvs) + up = np.dot(mv, np.array(ups).T) / np.nansum(mv) + lo = np.dot(mv, np.array(los).T) / np.nansum(mv) + + ret.append([lo, up]) + + ret = self.target_variable.apply_inverse_transformations(ret, + params=data[self.target_variable.data_label].values) + return ret
+
[docs] def clone_parameters(self, model): super(MVFTS, self).clone_parameters(model) diff --git a/docs/build/html/_modules/pyFTS/models/multivariate/wmvfts.html b/docs/build/html/_modules/pyFTS/models/multivariate/wmvfts.html index 753ea68..8c28d39 100644 --- a/docs/build/html/_modules/pyFTS/models/multivariate/wmvfts.html +++ b/docs/build/html/_modules/pyFTS/models/multivariate/wmvfts.html @@ -107,8 +107,23 @@ return self.w
[docs] def get_midpoint(self, sets): - mp = np.array([sets[c].centroid for c in self.RHS.keys()]) - return mp.dot(self.weights())
+ if self.midpoint is None: + mp = np.array([sets[c].centroid for c in self.RHS.keys()]) + self.midpoint = mp.dot(self.weights()) + + return self.midpoint + +
[docs] def get_lower(self, sets): + if self.lower is None: + lw = np.array([sets[s].lower for s in self.RHS.keys()]) + self.lower = lw.dot(self.weights()) + return self.lower
+ +
[docs] def get_upper(self, sets): + if self.upper is None: + up = np.array([sets[s].upper for s in self.RHS.keys()]) + self.upper = up.dot(self.weights()) + return self.upper
def __str__(self): diff --git a/docs/build/html/genindex.html b/docs/build/html/genindex.html index 4470ab1..9cb0b93 100644 --- a/docs/build/html/genindex.html +++ b/docs/build/html/genindex.html @@ -354,8 +354,6 @@
  • (pyFTS.models.multivariate.mvfts.MVFTS method)
  • -
  • cluster_method() (in module pyFTS.hyperparam.GridSearch) -
  • ClusteredMVFTS (class in pyFTS.models.multivariate.cmvfts)
  • CMeansPartitioner (class in pyFTS.partitioners.CMeans) @@ -445,8 +443,6 @@
  • density() (pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution method)
  • detail (pyFTS.common.fts.FTS attribute) -
  • -
  • dict_individual() (in module pyFTS.hyperparam.GridSearch)
  • Differential (class in pyFTS.common.Transformations)
  • @@ -480,12 +476,10 @@
  • enumerate2() (in module pyFTS.common.Util)
  • -
  • execute() (in module pyFTS.hyperparam.GridSearch) +
  • expected_value() (pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution method)
  • @@ -183,28 +183,8 @@ Value: the measure value

    -
    -

    pyFTS.hyperparam.GridSearch module¶

    -
    -
    -pyFTS.hyperparam.GridSearch.cluster_method(individual, train, test)[source]¶
    -
    - -
    -
    -pyFTS.hyperparam.GridSearch.dict_individual(mf, partitioner, partitions, order, lags, alpha_cut)[source]¶
    -
    - -
    -
    -pyFTS.hyperparam.GridSearch.execute(hyperparams, datasetname, train, test, **kwargs)[source]¶
    -
    - -
    -
    -pyFTS.hyperparam.GridSearch.process_jobs(jobs, datasetname, conn)[source]¶
    -
    - +
    +

    pyFTS.hyperparam.GridSearch module¶

    pyFTS.hyperparam.Evolutionary module¶

    diff --git a/docs/build/html/pyFTS.models.ensemble.html b/docs/build/html/pyFTS.models.ensemble.html index 9abd414..8f0ebac 100644 --- a/docs/build/html/pyFTS.models.ensemble.html +++ b/docs/build/html/pyFTS.models.ensemble.html @@ -319,7 +319,7 @@ XIII Brazilian Congress on Computational Intelligence, 2017. Rio de Janeiro, Bra
    point_method = None¶
    -

    The method used to mix the several model’s forecasts into a unique point forecast. Options: mean, median, quantile

    +

    The method used to mix the several model’s forecasts into a unique point forecast. Options: mean, median, quantile, exponential

    diff --git a/docs/build/html/pyFTS.models.html b/docs/build/html/pyFTS.models.html index ec67bc3..c0df496 100644 --- a/docs/build/html/pyFTS.models.html +++ b/docs/build/html/pyFTS.models.html @@ -528,6 +528,22 @@ using Fuzzy Time Series. 2017 IEEE International Conference on Fuzzy Systems. DO append_rhs(fset, **kwargs)[source]¶
    +
    +
    +get_lower(sets)[source]¶
    +

    Returns the lower bound value for the RHS fuzzy sets

    + +++ + + + + + +
    Parameters:sets – fuzzy sets
    Returns:lower bound value
    +
    +
    get_midpoint(sets)[source]¶
    @@ -544,6 +560,22 @@ using Fuzzy Time Series. 2017 IEEE International Conference on Fuzzy Systems. DO
    +
    +
    +get_upper(sets)[source]¶
    +

    Returns the upper bound value for the RHS fuzzy sets

    + +++ + + + + + +
    Parameters:sets – fuzzy sets
    Returns:upper bound value
    +
    +
    weights()[source]¶
    @@ -628,7 +660,7 @@ In: Computational Intelligence (SSCI), 2016 IEEE Symposium Series on. IEEE, 2016
    class pyFTS.models.ifts.IntervalFTS(**kwargs)[source]¶
    -

    Bases: pyFTS.models.hofts.HighOrderFTS

    +

    Bases: pyFTS.models.hofts.WeightedHighOrderFTS

    High Order Interval Fuzzy Time Series

    diff --git a/docs/build/html/pyFTS.models.incremental.html b/docs/build/html/pyFTS.models.incremental.html index 442b491..b937e0c 100644 --- a/docs/build/html/pyFTS.models.incremental.html +++ b/docs/build/html/pyFTS.models.incremental.html @@ -265,6 +265,12 @@

    The FTS method specific parameters

    +
    +
    +num_models = None¶
    +

    The number of models to hold in the ensemble

    +
    +
    partitioner_method = None¶
    diff --git a/docs/build/html/pyFTS.models.multivariate.html b/docs/build/html/pyFTS.models.multivariate.html index 58ebfdd..7e3e818 100644 --- a/docs/build/html/pyFTS.models.multivariate.html +++ b/docs/build/html/pyFTS.models.multivariate.html @@ -294,6 +294,22 @@ transformations and partitioners.

    append_rhs(fset, **kwargs)[source]¶
    +
    +
    +get_lower(sets)[source]¶
    +

    Returns the lower bound value for the RHS fuzzy sets

    + +++ + + + + + +
    Parameters:sets – fuzzy sets
    Returns:lower bound value
    +
    +
    get_membership(data, variables)[source]¶
    @@ -315,6 +331,22 @@ transformations and partitioners.

    +
    +
    +get_upper(sets)[source]¶
    +

    Returns the upper bound value for the RHS fuzzy sets

    + +++ + + + + + +
    Parameters:sets – fuzzy sets
    Returns:upper bound value
    +
    +
    set_lhs(var, fset)[source]¶
    @@ -426,6 +458,27 @@ transformations and partitioners.

    +
    +
    +forecast_interval(data, **kwargs)[source]¶
    +

    Interval forecast one step ahead

    + +++ + + + + + +
    Parameters:
      +
    • data – time series data with the minimal length equal to the max_lag of the model
    • +
    • kwargs – model specific parameters
    • +
    +
    Returns:

    a list with the prediction intervals

    +
    +
    +
    format_data(data)[source]¶
    @@ -487,6 +540,22 @@ transformations and partitioners.

    append_rhs(fset, **kwargs)[source]¶
    +
    +
    +get_lower(sets)[source]¶
    +

    Returns the lower bound value for the RHS fuzzy sets

    + +++ + + + + + +
    Parameters:sets – fuzzy sets
    Returns:lower bound value
    +
    +
    get_midpoint(sets)[source]¶
    @@ -503,6 +572,22 @@ transformations and partitioners.

    +
    +
    +get_upper(sets)[source]¶
    +

    Returns the upper bound value for the RHS fuzzy sets

    + +++ + + + + + +
    Parameters:sets – fuzzy sets
    Returns:upper bound value
    +
    +
    weights()[source]¶
    diff --git a/docs/build/html/searchindex.js b/docs/build/html/searchindex.js index 71738b6..dbc2952 100644 --- a/docs/build/html/searchindex.js +++ b/docs/build/html/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["index","modules","pyFTS","pyFTS.benchmarks","pyFTS.common","pyFTS.data","pyFTS.distributed","pyFTS.hyperparam","pyFTS.models","pyFTS.models.ensemble","pyFTS.models.incremental","pyFTS.models.multivariate","pyFTS.models.nonstationary","pyFTS.models.seasonal","pyFTS.partitioners","pyFTS.probabilistic","quickstart"],envversion:53,filenames:["index.rst","modules.rst","pyFTS.rst","pyFTS.benchmarks.rst","pyFTS.common.rst","pyFTS.data.rst","pyFTS.distributed.rst","pyFTS.hyperparam.rst","pyFTS.models.rst","pyFTS.models.ensemble.rst","pyFTS.models.incremental.rst","pyFTS.models.multivariate.rst","pyFTS.models.nonstationary.rst","pyFTS.models.seasonal.rst","pyFTS.partitioners.rst","pyFTS.probabilistic.rst","quickstart.rst"],objects:{"":{pyFTS:[2,0,0,"-"]},"pyFTS.benchmarks":{Measures:[3,0,0,"-"],ResidualAnalysis:[3,0,0,"-"],Util:[3,0,0,"-"],arima:[3,0,0,"-"],benchmarks:[3,0,0,"-"],knn:[3,0,0,"-"],naive:[3,0,0,"-"],quantreg:[3,0,0,"-"]},"pyFTS.benchmarks.Measures":{BoxLjungStatistic:[3,1,1,""],BoxPierceStatistic:[3,1,1,""],TheilsInequality:[3,1,1,""],UStatistic:[3,1,1,""],acf:[3,1,1,""],brier_score:[3,1,1,""],coverage:[3,1,1,""],crps:[3,1,1,""],get_distribution_statistics:[3,1,1,""],get_interval_statistics:[3,1,1,""],get_point_statistics:[3,1,1,""],heavyside:[3,1,1,""],heavyside_cdf:[3,1,1,""],mape:[3,1,1,""],mape_interval:[3,1,1,""],pinball:[3,1,1,""],pinball_mean:[3,1,1,""],pmf_to_cdf:[3,1,1,""],resolution:[3,1,1,""],rmse:[3,1,1,""],rmse_interval:[3,1,1,""],sharpness:[3,1,1,""],smape:[3,1,1,""],winkler_mean:[3,1,1,""],winkler_score:[3,1,1,""]},"pyFTS.benchmarks.ResidualAnalysis":{chi_squared:[3,1,1,""],compare_residuals:[3,1,1,""],plotResiduals:[3,1,1,""],plot_residuals:[3,1,1,""],residuals:[3,1,1,""],single_plot_residuals:[3,1,1,""]},"pyFTS.benchmarks.Util":{analytic_tabular_dataframe:[3,1,1,""],analytical_data_columns:[3,1,1,""],base_dataframe_columns:[3,1,1,""],cast_dataframe_to_synthetic:[3,1,1,""],cast_dataframe_to_synthetic_interval:[3,1,1,""],cast_dataframe_to_synthetic_point:[3,1,1,""],cast_dataframe_to_synthetic_probabilistic:[3,1,1,""],check_ignore_list:[3,1,1,""],check_replace_list:[3,1,1,""],create_benchmark_tables:[3,1,1,""],extract_measure:[3,1,1,""],find_best:[3,1,1,""],get_dataframe_from_bd:[3,1,1,""],insert_benchmark:[3,1,1,""],interval_dataframe_analytic_columns:[3,1,1,""],interval_dataframe_synthetic_columns:[3,1,1,""],open_benchmark_db:[3,1,1,""],plot_dataframe_interval:[3,1,1,""],plot_dataframe_interval_pinball:[3,1,1,""],plot_dataframe_point:[3,1,1,""],plot_dataframe_probabilistic:[3,1,1,""],point_dataframe_analytic_columns:[3,1,1,""],point_dataframe_synthetic_columns:[3,1,1,""],probabilistic_dataframe_analytic_columns:[3,1,1,""],probabilistic_dataframe_synthetic_columns:[3,1,1,""],process_common_data:[3,1,1,""],save_dataframe_interval:[3,1,1,""],save_dataframe_point:[3,1,1,""],save_dataframe_probabilistic:[3,1,1,""],scale:[3,1,1,""],scale_params:[3,1,1,""],stats:[3,1,1,""],tabular_dataframe_columns:[3,1,1,""],unified_scaled_interval:[3,1,1,""],unified_scaled_interval_pinball:[3,1,1,""],unified_scaled_point:[3,1,1,""],unified_scaled_probabilistic:[3,1,1,""]},"pyFTS.benchmarks.arima":{ARIMA:[3,2,1,""]},"pyFTS.benchmarks.arima.ARIMA":{ar:[3,3,1,""],forecast:[3,3,1,""],forecast_ahead_distribution:[3,3,1,""],forecast_ahead_interval:[3,3,1,""],forecast_distribution:[3,3,1,""],forecast_interval:[3,3,1,""],ma:[3,3,1,""],train:[3,3,1,""]},"pyFTS.benchmarks.benchmarks":{SelecaoSimples_MenorRMSE:[3,1,1,""],compareModelsPlot:[3,1,1,""],compareModelsTable:[3,1,1,""],get_benchmark_interval_methods:[3,1,1,""],get_benchmark_point_methods:[3,1,1,""],get_benchmark_probabilistic_methods:[3,1,1,""],get_interval_methods:[3,1,1,""],get_point_methods:[3,1,1,""],get_point_multivariate_methods:[3,1,1,""],get_probabilistic_methods:[3,1,1,""],pftsExploreOrderAndPartitions:[3,1,1,""],plotCompared:[3,1,1,""],plot_compared_intervals_ahead:[3,1,1,""],plot_compared_series:[3,1,1,""],plot_density_rectange:[3,1,1,""],plot_distribution:[3,1,1,""],plot_interval:[3,1,1,""],plot_point:[3,1,1,""],plot_probability_distributions:[3,1,1,""],print_distribution_statistics:[3,1,1,""],print_interval_statistics:[3,1,1,""],print_point_statistics:[3,1,1,""],process_interval_jobs:[3,1,1,""],process_point_jobs:[3,1,1,""],process_probabilistic_jobs:[3,1,1,""],run_interval:[3,1,1,""],run_point:[3,1,1,""],run_probabilistic:[3,1,1,""],simpleSearch_RMSE:[3,1,1,""],sliding_window_benchmarks:[3,1,1,""]},"pyFTS.benchmarks.knn":{KNearestNeighbors:[3,2,1,""]},"pyFTS.benchmarks.knn.KNearestNeighbors":{forecast_distribution:[3,3,1,""],knn:[3,3,1,""],train:[3,3,1,""]},"pyFTS.benchmarks.naive":{Naive:[3,2,1,""]},"pyFTS.benchmarks.naive.Naive":{forecast:[3,3,1,""]},"pyFTS.benchmarks.quantreg":{QuantileRegression:[3,2,1,""]},"pyFTS.benchmarks.quantreg.QuantileRegression":{forecast:[3,3,1,""],forecast_ahead_distribution:[3,3,1,""],forecast_ahead_interval:[3,3,1,""],forecast_distribution:[3,3,1,""],forecast_interval:[3,3,1,""],interval_to_interval:[3,3,1,""],linearmodel:[3,3,1,""],point_to_interval:[3,3,1,""],train:[3,3,1,""]},"pyFTS.common":{Composite:[4,0,0,"-"],FLR:[4,0,0,"-"],FuzzySet:[4,0,0,"-"],Membership:[4,0,0,"-"],SortedCollection:[4,0,0,"-"],Transformations:[4,0,0,"-"],Util:[4,0,0,"-"],flrg:[4,0,0,"-"],fts:[4,0,0,"-"],tree:[4,0,0,"-"]},"pyFTS.common.Composite":{FuzzySet:[4,2,1,""]},"pyFTS.common.Composite.FuzzySet":{append:[4,3,1,""],append_set:[4,3,1,""],membership:[4,3,1,""],transform:[4,3,1,""]},"pyFTS.common.FLR":{FLR:[4,2,1,""],IndexedFLR:[4,2,1,""],generate_high_order_recurrent_flr:[4,1,1,""],generate_indexed_flrs:[4,1,1,""],generate_non_recurrent_flrs:[4,1,1,""],generate_recurrent_flrs:[4,1,1,""]},"pyFTS.common.FLR.FLR":{LHS:[4,4,1,""],RHS:[4,4,1,""]},"pyFTS.common.FLR.IndexedFLR":{index:[4,4,1,""]},"pyFTS.common.FuzzySet":{FuzzySet:[4,2,1,""],check_bounds:[4,1,1,""],check_bounds_index:[4,1,1,""],fuzzyfy:[4,1,1,""],fuzzyfy_instance:[4,1,1,""],fuzzyfy_instances:[4,1,1,""],fuzzyfy_series:[4,1,1,""],fuzzyfy_series_old:[4,1,1,""],get_fuzzysets:[4,1,1,""],get_maximum_membership_fuzzyset:[4,1,1,""],get_maximum_membership_fuzzyset_index:[4,1,1,""],grant_bounds:[4,1,1,""],set_ordered:[4,1,1,""]},"pyFTS.common.FuzzySet.FuzzySet":{Z:[4,4,1,""],alpha:[4,4,1,""],centroid:[4,4,1,""],membership:[4,3,1,""],mf:[4,4,1,""],name:[4,4,1,""],parameters:[4,4,1,""],partition_function:[4,3,1,""],transform:[4,3,1,""],type:[4,4,1,""],variable:[4,4,1,""]},"pyFTS.common.Membership":{bellmf:[4,1,1,""],gaussmf:[4,1,1,""],sigmf:[4,1,1,""],singleton:[4,1,1,""],trapmf:[4,1,1,""],trimf:[4,1,1,""]},"pyFTS.common.SortedCollection":{SortedCollection:[4,2,1,""]},"pyFTS.common.SortedCollection.SortedCollection":{around:[4,3,1,""],between:[4,3,1,""],clear:[4,3,1,""],copy:[4,3,1,""],count:[4,3,1,""],find:[4,3,1,""],find_ge:[4,3,1,""],find_gt:[4,3,1,""],find_le:[4,3,1,""],find_lt:[4,3,1,""],index:[4,3,1,""],insert:[4,3,1,""],insert_right:[4,3,1,""],inside:[4,3,1,""],key:[4,4,1,""],remove:[4,3,1,""]},"pyFTS.common.Transformations":{AdaptiveExpectation:[4,2,1,""],BoxCox:[4,2,1,""],Differential:[4,2,1,""],Scale:[4,2,1,""],Transformation:[4,2,1,""],Z:[4,1,1,""],aggregate:[4,1,1,""],roi:[4,1,1,""],smoothing:[4,1,1,""]},"pyFTS.common.Transformations.AdaptiveExpectation":{apply:[4,3,1,""],inverse:[4,3,1,""],parameters:[4,4,1,""]},"pyFTS.common.Transformations.BoxCox":{apply:[4,3,1,""],inverse:[4,3,1,""],parameters:[4,4,1,""]},"pyFTS.common.Transformations.Differential":{apply:[4,3,1,""],inverse:[4,3,1,""],parameters:[4,4,1,""]},"pyFTS.common.Transformations.Scale":{apply:[4,3,1,""],inverse:[4,3,1,""],parameters:[4,4,1,""]},"pyFTS.common.Transformations.Transformation":{apply:[4,3,1,""],inverse:[4,3,1,""]},"pyFTS.common.Util":{current_milli_time:[4,1,1,""],draw_sets_on_axis:[4,1,1,""],enumerate2:[4,1,1,""],load_env:[4,1,1,""],load_obj:[4,1,1,""],persist_env:[4,1,1,""],persist_obj:[4,1,1,""],plot_rules:[4,1,1,""],show_and_save_image:[4,1,1,""],sliding_window:[4,1,1,""],uniquefilename:[4,1,1,""]},"pyFTS.common.flrg":{FLRG:[4,2,1,""]},"pyFTS.common.flrg.FLRG":{LHS:[4,4,1,""],RHS:[4,4,1,""],append_rhs:[4,3,1,""],get_key:[4,3,1,""],get_lower:[4,3,1,""],get_membership:[4,3,1,""],get_midpoint:[4,3,1,""],get_midpoints:[4,3,1,""],get_upper:[4,3,1,""],order:[4,4,1,""],reset_calculated_values:[4,3,1,""]},"pyFTS.common.fts":{FTS:[4,2,1,""]},"pyFTS.common.fts.FTS":{alpha_cut:[4,4,1,""],append_rule:[4,3,1,""],append_transformation:[4,3,1,""],apply_inverse_transformations:[4,3,1,""],apply_transformations:[4,3,1,""],auto_update:[4,4,1,""],benchmark_only:[4,4,1,""],clone_parameters:[4,3,1,""],detail:[4,4,1,""],fit:[4,3,1,""],flrgs:[4,4,1,""],forecast:[4,3,1,""],forecast_ahead:[4,3,1,""],forecast_ahead_distribution:[4,3,1,""],forecast_ahead_interval:[4,3,1,""],forecast_ahead_multivariate:[4,3,1,""],forecast_distribution:[4,3,1,""],forecast_interval:[4,3,1,""],forecast_multivariate:[4,3,1,""],fuzzy:[4,3,1,""],get_UoD:[4,3,1,""],has_interval_forecasting:[4,4,1,""],has_point_forecasting:[4,4,1,""],has_probability_forecasting:[4,4,1,""],has_seasonality:[4,4,1,""],indexer:[4,4,1,""],is_clustered:[4,4,1,""],is_high_order:[4,4,1,""],is_multivariate:[4,4,1,""],is_wrapper:[4,4,1,""],lags:[4,4,1,""],len_total:[4,3,1,""],max_lag:[4,4,1,""],merge:[4,3,1,""],min_order:[4,4,1,""],name:[4,4,1,""],order:[4,4,1,""],original_max:[4,4,1,""],original_min:[4,4,1,""],partitioner:[4,4,1,""],predict:[4,3,1,""],reset_calculated_values:[4,3,1,""],sets:[4,4,1,""],shortname:[4,4,1,""],train:[4,3,1,""],transformations:[4,4,1,""],transformations_param:[4,4,1,""],uod_clip:[4,4,1,""]},"pyFTS.common.tree":{FLRGTree:[4,2,1,""],FLRGTreeNode:[4,2,1,""],build_tree_without_order:[4,1,1,""],flat:[4,1,1,""]},"pyFTS.common.tree.FLRGTreeNode":{appendChild:[4,3,1,""],getChildren:[4,3,1,""],getStr:[4,3,1,""],paths:[4,3,1,""]},"pyFTS.data":{AirPassengers:[5,0,0,"-"],Bitcoin:[5,0,0,"-"],DowJones:[5,0,0,"-"],EURGBP:[5,0,0,"-"],EURUSD:[5,0,0,"-"],Enrollments:[5,0,0,"-"],Ethereum:[5,0,0,"-"],GBPUSD:[5,0,0,"-"],INMET:[5,0,0,"-"],Malaysia:[5,0,0,"-"],NASDAQ:[5,0,0,"-"],SONDA:[5,0,0,"-"],SP500:[5,0,0,"-"],TAIEX:[5,0,0,"-"],artificial:[5,0,0,"-"],common:[5,0,0,"-"],henon:[5,0,0,"-"],logistic_map:[5,0,0,"-"],lorentz:[5,0,0,"-"],mackey_glass:[5,0,0,"-"],rossler:[5,0,0,"-"],sunspots:[5,0,0,"-"]},"pyFTS.data.AirPassengers":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.Bitcoin":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.DowJones":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.EURGBP":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.EURUSD":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.Enrollments":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.Ethereum":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.GBPUSD":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.INMET":{get_dataframe:[5,1,1,""]},"pyFTS.data.Malaysia":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.NASDAQ":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.SONDA":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.SP500":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.TAIEX":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.artificial":{SignalEmulator:[5,2,1,""],generate_gaussian_linear:[5,1,1,""],generate_linear_periodic_gaussian:[5,1,1,""],generate_sinoidal_periodic_gaussian:[5,1,1,""],generate_uniform_linear:[5,1,1,""],random_walk:[5,1,1,""],white_noise:[5,1,1,""]},"pyFTS.data.artificial.SignalEmulator":{blip:[5,3,1,""],components:[5,4,1,""],incremental_gaussian:[5,3,1,""],periodic_gaussian:[5,3,1,""],run:[5,3,1,""],stationary_gaussian:[5,3,1,""]},"pyFTS.data.common":{get_dataframe:[5,1,1,""]},"pyFTS.data.henon":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.logistic_map":{get_data:[5,1,1,""]},"pyFTS.data.lorentz":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.mackey_glass":{get_data:[5,1,1,""]},"pyFTS.data.rossler":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.sunspots":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.distributed":{spark:[6,0,0,"-"]},"pyFTS.distributed.spark":{create_multivariate_model:[6,1,1,""],create_spark_conf:[6,1,1,""],create_univariate_model:[6,1,1,""],distributed_predict:[6,1,1,""],distributed_train:[6,1,1,""],get_clustered_partitioner:[6,1,1,""],get_partitioner:[6,1,1,""],get_variables:[6,1,1,""],share_parameters:[6,1,1,""],slave_forecast_multivariate:[6,1,1,""],slave_forecast_univariate:[6,1,1,""],slave_train_multivariate:[6,1,1,""],slave_train_univariate:[6,1,1,""]},"pyFTS.hyperparam":{GridSearch:[7,0,0,"-"],Util:[7,0,0,"-"]},"pyFTS.hyperparam.GridSearch":{cluster_method:[7,1,1,""],dict_individual:[7,1,1,""],execute:[7,1,1,""],process_jobs:[7,1,1,""]},"pyFTS.hyperparam.Util":{create_hyperparam_tables:[7,1,1,""],insert_hyperparam:[7,1,1,""],open_hyperparam_db:[7,1,1,""]},"pyFTS.models":{chen:[8,0,0,"-"],cheng:[8,0,0,"-"],ensemble:[9,0,0,"-"],hofts:[8,0,0,"-"],hwang:[8,0,0,"-"],ifts:[8,0,0,"-"],incremental:[10,0,0,"-"],ismailefendi:[8,0,0,"-"],multivariate:[11,0,0,"-"],nonstationary:[12,0,0,"-"],pwfts:[8,0,0,"-"],sadaei:[8,0,0,"-"],seasonal:[13,0,0,"-"],song:[8,0,0,"-"],yu:[8,0,0,"-"]},"pyFTS.models.chen":{ConventionalFLRG:[8,2,1,""],ConventionalFTS:[8,2,1,""]},"pyFTS.models.chen.ConventionalFLRG":{append_rhs:[8,3,1,""],get_key:[8,3,1,""]},"pyFTS.models.chen.ConventionalFTS":{forecast:[8,3,1,""],generate_flrg:[8,3,1,""],train:[8,3,1,""]},"pyFTS.models.cheng":{TrendWeightedFLRG:[8,2,1,""],TrendWeightedFTS:[8,2,1,""]},"pyFTS.models.cheng.TrendWeightedFLRG":{weights:[8,3,1,""]},"pyFTS.models.cheng.TrendWeightedFTS":{generate_FLRG:[8,3,1,""]},"pyFTS.models.ensemble":{ensemble:[9,0,0,"-"],multiseasonal:[9,0,0,"-"]},"pyFTS.models.ensemble.ensemble":{AllMethodEnsembleFTS:[9,2,1,""],EnsembleFTS:[9,2,1,""],sampler:[9,1,1,""]},"pyFTS.models.ensemble.ensemble.AllMethodEnsembleFTS":{set_transformations:[9,3,1,""],train:[9,3,1,""]},"pyFTS.models.ensemble.ensemble.EnsembleFTS":{alpha:[9,4,1,""],append_model:[9,3,1,""],forecast:[9,3,1,""],forecast_ahead_distribution:[9,3,1,""],forecast_ahead_interval:[9,3,1,""],forecast_distribution:[9,3,1,""],forecast_interval:[9,3,1,""],get_distribution_interquantile:[9,3,1,""],get_interval:[9,3,1,""],get_models_forecasts:[9,3,1,""],get_point:[9,3,1,""],interval_method:[9,4,1,""],models:[9,4,1,""],parameters:[9,4,1,""],point_method:[9,4,1,""],train:[9,3,1,""]},"pyFTS.models.ensemble.multiseasonal":{SeasonalEnsembleFTS:[9,2,1,""],train_individual_model:[9,1,1,""]},"pyFTS.models.ensemble.multiseasonal.SeasonalEnsembleFTS":{forecast_distribution:[9,3,1,""],train:[9,3,1,""],update_uod:[9,3,1,""]},"pyFTS.models.hofts":{HighOrderFLRG:[8,2,1,""],HighOrderFTS:[8,2,1,""],WeightedHighOrderFLRG:[8,2,1,""],WeightedHighOrderFTS:[8,2,1,""]},"pyFTS.models.hofts.HighOrderFLRG":{append_lhs:[8,3,1,""],append_rhs:[8,3,1,""]},"pyFTS.models.hofts.HighOrderFTS":{configure_lags:[8,3,1,""],forecast:[8,3,1,""],generate_flrg:[8,3,1,""],generate_flrg_fuzzyfied:[8,3,1,""],generate_lhs_flrg:[8,3,1,""],generate_lhs_flrg_fuzzyfied:[8,3,1,""],train:[8,3,1,""]},"pyFTS.models.hofts.WeightedHighOrderFLRG":{append_lhs:[8,3,1,""],append_rhs:[8,3,1,""],get_midpoint:[8,3,1,""],weights:[8,3,1,""]},"pyFTS.models.hofts.WeightedHighOrderFTS":{generate_lhs_flrg_fuzzyfied:[8,3,1,""]},"pyFTS.models.hwang":{HighOrderFTS:[8,2,1,""]},"pyFTS.models.hwang.HighOrderFTS":{configure_lags:[8,3,1,""],forecast:[8,3,1,""],train:[8,3,1,""]},"pyFTS.models.ifts":{IntervalFTS:[8,2,1,""]},"pyFTS.models.ifts.IntervalFTS":{forecast_interval:[8,3,1,""],get_lower:[8,3,1,""],get_sequence_membership:[8,3,1,""],get_upper:[8,3,1,""]},"pyFTS.models.incremental":{IncrementalEnsemble:[10,0,0,"-"],TimeVariant:[10,0,0,"-"]},"pyFTS.models.incremental.IncrementalEnsemble":{IncrementalEnsembleFTS:[10,2,1,""]},"pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS":{batch_size:[10,4,1,""],forecast:[10,3,1,""],fts_method:[10,4,1,""],fts_params:[10,4,1,""],partitioner_method:[10,4,1,""],partitioner_params:[10,4,1,""],train:[10,3,1,""],window_length:[10,4,1,""]},"pyFTS.models.incremental.TimeVariant":{Retrainer:[10,2,1,""]},"pyFTS.models.incremental.TimeVariant.Retrainer":{auto_update:[10,4,1,""],batch_size:[10,4,1,""],forecast:[10,3,1,""],fts_method:[10,4,1,""],fts_params:[10,4,1,""],model:[10,4,1,""],partitioner:[10,4,1,""],partitioner_method:[10,4,1,""],partitioner_params:[10,4,1,""],train:[10,3,1,""],window_length:[10,4,1,""]},"pyFTS.models.ismailefendi":{ImprovedWeightedFLRG:[8,2,1,""],ImprovedWeightedFTS:[8,2,1,""]},"pyFTS.models.ismailefendi.ImprovedWeightedFLRG":{append_rhs:[8,3,1,""],weights:[8,3,1,""]},"pyFTS.models.ismailefendi.ImprovedWeightedFTS":{forecast:[8,3,1,""],generate_flrg:[8,3,1,""],train:[8,3,1,""]},"pyFTS.models.multivariate":{FLR:[11,0,0,"-"],cmvfts:[11,0,0,"-"],common:[11,0,0,"-"],flrg:[11,0,0,"-"],mvfts:[11,0,0,"-"],variable:[11,0,0,"-"],wmvfts:[11,0,0,"-"]},"pyFTS.models.multivariate.FLR":{FLR:[11,2,1,""]},"pyFTS.models.multivariate.FLR.FLR":{set_lhs:[11,3,1,""],set_rhs:[11,3,1,""]},"pyFTS.models.multivariate.cmvfts":{ClusteredMVFTS:[11,2,1,""]},"pyFTS.models.multivariate.cmvfts.ClusteredMVFTS":{check_data:[11,3,1,""],forecast:[11,3,1,""],forecast_multivariate:[11,3,1,""],fts_method:[11,4,1,""],fts_params:[11,4,1,""],fuzzyfy:[11,3,1,""],model:[11,4,1,""],train:[11,3,1,""]},"pyFTS.models.multivariate.common":{MultivariateFuzzySet:[11,2,1,""],fuzzyfy_instance:[11,1,1,""],fuzzyfy_instance_clustered:[11,1,1,""]},"pyFTS.models.multivariate.common.MultivariateFuzzySet":{append_set:[11,3,1,""],membership:[11,3,1,""],set_target_variable:[11,3,1,""]},"pyFTS.models.multivariate.flrg":{FLRG:[11,2,1,""]},"pyFTS.models.multivariate.flrg.FLRG":{append_rhs:[11,3,1,""],get_membership:[11,3,1,""],set_lhs:[11,3,1,""]},"pyFTS.models.multivariate.mvfts":{MVFTS:[11,2,1,""],product_dict:[11,1,1,""]},"pyFTS.models.multivariate.mvfts.MVFTS":{append_variable:[11,3,1,""],apply_transformations:[11,3,1,""],clone_parameters:[11,3,1,""],forecast:[11,3,1,""],forecast_ahead:[11,3,1,""],format_data:[11,3,1,""],generate_flrg:[11,3,1,""],generate_flrs:[11,3,1,""],generate_lhs_flrs:[11,3,1,""],train:[11,3,1,""]},"pyFTS.models.multivariate.variable":{Variable:[11,2,1,""]},"pyFTS.models.multivariate.variable.Variable":{alias:[11,4,1,""],alpha_cut:[11,4,1,""],apply_inverse_transformations:[11,3,1,""],apply_transformations:[11,3,1,""],build:[11,3,1,""],data_label:[11,4,1,""],data_type:[11,4,1,""],mask:[11,4,1,""],name:[11,4,1,""],partitioner:[11,4,1,""],transformation:[11,4,1,""]},"pyFTS.models.multivariate.wmvfts":{WeightedFLRG:[11,2,1,""],WeightedMVFTS:[11,2,1,""]},"pyFTS.models.multivariate.wmvfts.WeightedFLRG":{append_rhs:[11,3,1,""],get_midpoint:[11,3,1,""],weights:[11,3,1,""]},"pyFTS.models.multivariate.wmvfts.WeightedMVFTS":{generate_flrg:[11,3,1,""]},"pyFTS.models.nonstationary":{common:[12,0,0,"-"],cvfts:[12,0,0,"-"],flrg:[12,0,0,"-"],honsfts:[12,0,0,"-"],nsfts:[12,0,0,"-"],partitioners:[12,0,0,"-"],perturbation:[12,0,0,"-"],util:[12,0,0,"-"]},"pyFTS.models.nonstationary.common":{FuzzySet:[12,2,1,""],check_bounds:[12,1,1,""],check_bounds_index:[12,1,1,""],fuzzify:[12,1,1,""],fuzzySeries:[12,1,1,""],window_index:[12,1,1,""]},"pyFTS.models.nonstationary.common.FuzzySet":{get_lower:[12,3,1,""],get_midpoint:[12,3,1,""],get_upper:[12,3,1,""],location:[12,4,1,""],location_params:[12,4,1,""],membership:[12,3,1,""],noise:[12,4,1,""],noise_params:[12,4,1,""],perform_location:[12,3,1,""],perform_width:[12,3,1,""],perturbate_parameters:[12,3,1,""],width:[12,4,1,""],width_params:[12,4,1,""]},"pyFTS.models.nonstationary.cvfts":{ConditionalVarianceFTS:[12,2,1,""],HighOrderNonstationaryFLRG:[12,2,1,""]},"pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS":{forecast:[12,3,1,""],forecast_interval:[12,3,1,""],generate_flrg:[12,3,1,""],perturbation_factors:[12,3,1,""],perturbation_factors__old:[12,3,1,""],train:[12,3,1,""]},"pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG":{append_lhs:[12,3,1,""],append_rhs:[12,3,1,""]},"pyFTS.models.nonstationary.flrg":{NonStationaryFLRG:[12,2,1,""]},"pyFTS.models.nonstationary.flrg.NonStationaryFLRG":{get_key:[12,3,1,""],get_lower:[12,3,1,""],get_membership:[12,3,1,""],get_midpoint:[12,3,1,""],get_upper:[12,3,1,""],unpack_args:[12,3,1,""]},"pyFTS.models.nonstationary.honsfts":{HighOrderNonStationaryFLRG:[12,2,1,""],HighOrderNonStationaryFTS:[12,2,1,""]},"pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG":{append_lhs:[12,3,1,""],append_rhs:[12,3,1,""]},"pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS":{forecast:[12,3,1,""],forecast_interval:[12,3,1,""],generate_flrg:[12,3,1,""],train:[12,3,1,""]},"pyFTS.models.nonstationary.nsfts":{ConventionalNonStationaryFLRG:[12,2,1,""],NonStationaryFTS:[12,2,1,""]},"pyFTS.models.nonstationary.nsfts.ConventionalNonStationaryFLRG":{append_rhs:[12,3,1,""],get_key:[12,3,1,""]},"pyFTS.models.nonstationary.nsfts.NonStationaryFTS":{conditional_perturbation_factors:[12,3,1,""],forecast:[12,3,1,""],forecast_interval:[12,3,1,""],generate_flrg:[12,3,1,""],train:[12,3,1,""]},"pyFTS.models.nonstationary.partitioners":{PolynomialNonStationaryPartitioner:[12,2,1,""],SimpleNonStationaryPartitioner:[12,2,1,""],simplenonstationary_gridpartitioner_builder:[12,1,1,""]},"pyFTS.models.nonstationary.partitioners.PolynomialNonStationaryPartitioner":{build:[12,3,1,""],get_polynomial_perturbations:[12,3,1,""],poly_width:[12,3,1,""],scale_down:[12,3,1,""],scale_up:[12,3,1,""]},"pyFTS.models.nonstationary.partitioners.SimpleNonStationaryPartitioner":{build:[12,3,1,""]},"pyFTS.models.nonstationary.perturbation":{exponential:[12,1,1,""],linear:[12,1,1,""],periodic:[12,1,1,""],polynomial:[12,1,1,""]},"pyFTS.models.nonstationary.util":{plot_sets:[12,1,1,""],plot_sets_conditional:[12,1,1,""]},"pyFTS.models.pwfts":{ProbabilisticWeightedFLRG:[8,2,1,""],ProbabilisticWeightedFTS:[8,2,1,""],visualize_distributions:[8,1,1,""]},"pyFTS.models.pwfts.ProbabilisticWeightedFLRG":{append_rhs:[8,3,1,""],get_lower:[8,3,1,""],get_membership:[8,3,1,""],get_midpoint:[8,3,1,""],get_upper:[8,3,1,""],lhs_conditional_probability:[8,3,1,""],partition_function:[8,3,1,""],rhs_conditional_probability:[8,3,1,""],rhs_unconditional_probability:[8,3,1,""]},"pyFTS.models.pwfts.ProbabilisticWeightedFTS":{add_new_PWFLGR:[8,3,1,""],flrg_lhs_conditional_probability:[8,3,1,""],flrg_lhs_unconditional_probability:[8,3,1,""],flrg_rhs_conditional_probability:[8,3,1,""],forecast:[8,3,1,""],forecast_ahead:[8,3,1,""],forecast_ahead_distribution:[8,3,1,""],forecast_ahead_interval:[8,3,1,""],forecast_distribution:[8,3,1,""],forecast_interval:[8,3,1,""],generate_flrg:[8,3,1,""],generate_lhs_flrg:[8,3,1,""],generate_lhs_flrg_fuzzyfied:[8,3,1,""],get_lower:[8,3,1,""],get_midpoint:[8,3,1,""],get_upper:[8,3,1,""],interval_heuristic:[8,3,1,""],interval_quantile:[8,3,1,""],point_expected_value:[8,3,1,""],point_heuristic:[8,3,1,""],train:[8,3,1,""],update_model:[8,3,1,""]},"pyFTS.models.sadaei":{ExponentialyWeightedFLRG:[8,2,1,""],ExponentialyWeightedFTS:[8,2,1,""]},"pyFTS.models.sadaei.ExponentialyWeightedFLRG":{append_rhs:[8,3,1,""],weights:[8,3,1,""]},"pyFTS.models.sadaei.ExponentialyWeightedFTS":{forecast:[8,3,1,""],generate_flrg:[8,3,1,""],train:[8,3,1,""]},"pyFTS.models.seasonal":{SeasonalIndexer:[13,0,0,"-"],cmsfts:[13,0,0,"-"],common:[13,0,0,"-"],msfts:[13,0,0,"-"],partitioner:[13,0,0,"-"],sfts:[13,0,0,"-"]},"pyFTS.models.seasonal.SeasonalIndexer":{DataFrameSeasonalIndexer:[13,2,1,""],DateTimeSeasonalIndexer:[13,2,1,""],LinearSeasonalIndexer:[13,2,1,""],SeasonalIndexer:[13,2,1,""]},"pyFTS.models.seasonal.SeasonalIndexer.DataFrameSeasonalIndexer":{get_data:[13,3,1,""],get_data_by_season:[13,3,1,""],get_index_by_season:[13,3,1,""],get_season_by_index:[13,3,1,""],get_season_of_data:[13,3,1,""],set_data:[13,3,1,""]},"pyFTS.models.seasonal.SeasonalIndexer.DateTimeSeasonalIndexer":{get_data:[13,3,1,""],get_data_by_season:[13,3,1,""],get_index:[13,3,1,""],get_index_by_season:[13,3,1,""],get_season_by_index:[13,3,1,""],get_season_of_data:[13,3,1,""],set_data:[13,3,1,""]},"pyFTS.models.seasonal.SeasonalIndexer.LinearSeasonalIndexer":{get_data:[13,3,1,""],get_index_by_season:[13,3,1,""],get_season_by_index:[13,3,1,""],get_season_of_data:[13,3,1,""]},"pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer":{get_data:[13,3,1,""],get_data_by_season:[13,3,1,""],get_index:[13,3,1,""],get_index_by_season:[13,3,1,""],get_season_by_index:[13,3,1,""],get_season_of_data:[13,3,1,""]},"pyFTS.models.seasonal.cmsfts":{ContextualMultiSeasonalFTS:[13,2,1,""],ContextualSeasonalFLRG:[13,2,1,""]},"pyFTS.models.seasonal.cmsfts.ContextualMultiSeasonalFTS":{forecast:[13,3,1,""],forecast_ahead:[13,3,1,""],generate_flrg:[13,3,1,""],get_midpoints:[13,3,1,""],train:[13,3,1,""]},"pyFTS.models.seasonal.cmsfts.ContextualSeasonalFLRG":{append_rhs:[13,3,1,""]},"pyFTS.models.seasonal.common":{DateTime:[13,2,1,""],FuzzySet:[13,2,1,""],strip_datepart:[13,1,1,""]},"pyFTS.models.seasonal.common.DateTime":{day_of_month:[13,4,1,""],day_of_week:[13,4,1,""],day_of_year:[13,4,1,""],half:[13,4,1,""],hour_of_day:[13,4,1,""],hour_of_month:[13,4,1,""],hour_of_week:[13,4,1,""],hour_of_year:[13,4,1,""],minute_of_day:[13,4,1,""],minute_of_hour:[13,4,1,""],minute_of_month:[13,4,1,""],minute_of_week:[13,4,1,""],minute_of_year:[13,4,1,""],month:[13,4,1,""],quarter:[13,4,1,""],second:[13,4,1,""],second_of_day:[13,4,1,""],second_of_hour:[13,4,1,""],second_of_minute:[13,4,1,""],sixth:[13,4,1,""],third:[13,4,1,""],year:[13,4,1,""]},"pyFTS.models.seasonal.common.FuzzySet":{transform:[13,3,1,""]},"pyFTS.models.seasonal.msfts":{MultiSeasonalFTS:[13,2,1,""]},"pyFTS.models.seasonal.msfts.MultiSeasonalFTS":{forecast:[13,3,1,""],forecast_ahead:[13,3,1,""],generate_flrg:[13,3,1,""],train:[13,3,1,""]},"pyFTS.models.seasonal.partitioner":{TimeGridPartitioner:[13,2,1,""]},"pyFTS.models.seasonal.partitioner.TimeGridPartitioner":{build:[13,3,1,""],mask:[13,4,1,""],plot:[13,3,1,""],season:[13,4,1,""]},"pyFTS.models.seasonal.sfts":{SeasonalFLRG:[13,2,1,""],SeasonalFTS:[13,2,1,""]},"pyFTS.models.seasonal.sfts.SeasonalFLRG":{append_rhs:[13,3,1,""],get_key:[13,3,1,""]},"pyFTS.models.seasonal.sfts.SeasonalFTS":{forecast:[13,3,1,""],generate_flrg:[13,3,1,""],get_midpoints:[13,3,1,""],train:[13,3,1,""]},"pyFTS.models.song":{ConventionalFTS:[8,2,1,""]},"pyFTS.models.song.ConventionalFTS":{flr_membership_matrix:[8,3,1,""],forecast:[8,3,1,""],operation_matrix:[8,3,1,""],train:[8,3,1,""]},"pyFTS.models.yu":{WeightedFLRG:[8,2,1,""],WeightedFTS:[8,2,1,""]},"pyFTS.models.yu.WeightedFLRG":{append_rhs:[8,3,1,""],weights:[8,3,1,""]},"pyFTS.models.yu.WeightedFTS":{forecast:[8,3,1,""],generate_FLRG:[8,3,1,""],train:[8,3,1,""]},"pyFTS.partitioners":{CMeans:[14,0,0,"-"],Entropy:[14,0,0,"-"],FCM:[14,0,0,"-"],Grid:[14,0,0,"-"],Huarng:[14,0,0,"-"],Simple:[14,0,0,"-"],Singleton:[14,0,0,"-"],Util:[14,0,0,"-"],parallel_util:[14,0,0,"-"],partitioner:[14,0,0,"-"]},"pyFTS.partitioners.CMeans":{CMeansPartitioner:[14,2,1,""],c_means:[14,1,1,""],distance:[14,1,1,""]},"pyFTS.partitioners.CMeans.CMeansPartitioner":{build:[14,3,1,""]},"pyFTS.partitioners.Entropy":{EntropyPartitioner:[14,2,1,""],PMF:[14,1,1,""],bestSplit:[14,1,1,""],entropy:[14,1,1,""],informationGain:[14,1,1,""],splitAbove:[14,1,1,""],splitBelow:[14,1,1,""]},"pyFTS.partitioners.Entropy.EntropyPartitioner":{build:[14,3,1,""]},"pyFTS.partitioners.FCM":{FCMPartitioner:[14,2,1,""],fuzzy_cmeans:[14,1,1,""],fuzzy_distance:[14,1,1,""],membership:[14,1,1,""]},"pyFTS.partitioners.FCM.FCMPartitioner":{build:[14,3,1,""]},"pyFTS.partitioners.Grid":{GridPartitioner:[14,2,1,""]},"pyFTS.partitioners.Grid.GridPartitioner":{build:[14,3,1,""]},"pyFTS.partitioners.Huarng":{HuarngPartitioner:[14,2,1,""]},"pyFTS.partitioners.Huarng.HuarngPartitioner":{build:[14,3,1,""]},"pyFTS.partitioners.Simple":{SimplePartitioner:[14,2,1,""]},"pyFTS.partitioners.Simple.SimplePartitioner":{append:[14,3,1,""],append_complex:[14,3,1,""]},"pyFTS.partitioners.Singleton":{SingletonPartitioner:[14,2,1,""]},"pyFTS.partitioners.Singleton.SingletonPartitioner":{build:[14,3,1,""]},"pyFTS.partitioners.Util":{explore_partitioners:[14,1,1,""],plot_partitioners:[14,1,1,""],plot_sets:[14,1,1,""]},"pyFTS.partitioners.parallel_util":{explore_partitioners:[14,1,1,""]},"pyFTS.partitioners.partitioner":{Partitioner:[14,2,1,""]},"pyFTS.partitioners.partitioner.Partitioner":{build:[14,3,1,""],extractor:[14,4,1,""],fuzzyfy:[14,3,1,""],get_name:[14,3,1,""],lower_set:[14,3,1,""],membership_function:[14,4,1,""],name:[14,4,1,""],ordered_sets:[14,4,1,""],partitions:[14,4,1,""],plot:[14,3,1,""],plot_set:[14,3,1,""],prefix:[14,4,1,""],setnames:[14,4,1,""],transformation:[14,4,1,""],type:[14,4,1,""],upper_set:[14,3,1,""],variable:[14,4,1,""]},"pyFTS.probabilistic":{ProbabilityDistribution:[15,0,0,"-"],kde:[15,0,0,"-"]},"pyFTS.probabilistic.ProbabilityDistribution":{ProbabilityDistribution:[15,2,1,""]},"pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution":{append:[15,3,1,""],append_interval:[15,3,1,""],averageloglikelihood:[15,3,1,""],bins:[15,4,1,""],build_cdf_qtl:[15,3,1,""],crossentropy:[15,3,1,""],cumulative:[15,3,1,""],density:[15,3,1,""],differential_offset:[15,3,1,""],empiricalloglikelihood:[15,3,1,""],entropy:[15,3,1,""],expected_value:[15,3,1,""],kullbackleiblerdivergence:[15,3,1,""],labels:[15,4,1,""],plot:[15,3,1,""],pseudologlikelihood:[15,3,1,""],quantile:[15,3,1,""],set:[15,3,1,""],type:[15,4,1,""],uod:[15,4,1,""]},"pyFTS.probabilistic.kde":{KernelSmoothing:[15,2,1,""]},"pyFTS.probabilistic.kde.KernelSmoothing":{h:[15,4,1,""],kernel:[15,4,1,""],kernel_function:[15,3,1,""],probability:[15,3,1,""]},pyFTS:{benchmarks:[3,0,0,"-"],common:[4,0,0,"-"],conf:[2,0,0,"-"],data:[5,0,0,"-"],distributed:[6,0,0,"-"],hyperparam:[7,0,0,"-"],models:[8,0,0,"-"],partitioners:[14,0,0,"-"],probabilistic:[15,0,0,"-"]}},objnames:{"0":["py","module","Python module"],"1":["py","function","Python function"],"2":["py","class","Python class"],"3":["py","method","Python method"],"4":["py","attribute","Python attribute"]},objtypes:{"0":"py:module","1":"py:function","2":"py:class","3":"py:method","4":"py:attribute"},terms:{"261459a0":5,"57a":5,"5egspc":5,"boolean":[3,4,14],"case":4,"class":[3,4,5,8,9,10,11,12,13,14,15,16],"default":[3,4,5],"enum":13,"fa\u00e7ad":[3,4],"final":[4,5],"float":[3,4,5],"function":[3,4,7,12,14,15,16],"guimar\u00e3":[0,8],"h\u00e9non":5,"import":[4,11,16],"int":[8,16],"na\u00efv":3,"new":[4,9,10,11,14],"organiza\u00e7\u00e3o":5,"petr\u00f4nio":8,"r\u00f6ssler":5,"return":[3,4,5,6,7,8,9,10,11,12,13,14,15],"short":[4,8,16],"true":[3,4,5,10,11],"try":4,"var":[5,11],"while":4,And:3,FTS:[0,3,4,7,8,9,10,11,12,13],For:3,LHS:[4,8,12],One:14,RHS:[4,8,11,12],The:[3,4,5,7,9,10,11,14,15,16],Then:[3,16],There:16,These:[0,16],Use:13,abdullah:[8,16],acc:4,accept:4,account:15,accuraci:[3,7],acf:3,actual:[4,15],adapt:4,adaptiveexpect:4,add:[3,4,12],add_new_pwflgr:8,added:[4,5],adding:4,addit:5,address:[3,4],affect:12,after:5,age:4,aged:4,aggreg:[4,9],ahead:[3,4,8,9,10,11,12,13,16],ahed:16,airlin:5,airpasseng:[1,2],alabama:5,alia:[3,4,11],all:[3,4,9,15,16],allmethodensembleft:9,almost:16,alpha:[4,7,8,9,13],alpha_cut:[4,7,11],alreadi:5,also:[0,4,16],ambientai:5,analysi:3,analytic_tabular_datafram:3,analytical_data_column:3,angela:4,anonym:14,anoth:10,api:[0,4],app:6,append:[4,9,11,14,15],append_complex:14,append_interv:15,append_lh:[8,12],append_model:9,append_rh:[4,8,11,12,13],append_rul:4,append_set:[4,11],append_transform:4,append_vari:11,appendchild:4,appl:[8,14,16],appli:[3,4,11,14,15],apply_inverse_transform:[4,11],apply_transform:[4,11],approach:[3,14,16],arg:12,argument:[3,4,14],arima:[1,2],arima_model:3,around:4,arrai:[4,5,12,13],artifici:[1,2],ascend:3,aspx:5,assert:15,assign:[4,15],assoc:3,associ:5,ata:3,atmospher:5,atribut:3,attibut:4,attractor:5,auto:14,auto_upd:[4,10],autocorrel:3,autom:5,automat:4,auxiliar:3,auxiliari:15,averag:[3,5,15],averageloglikelihood:15,avg:5,axes:12,axi:[3,4,14,15],azim:3,bar:3,base:[3,4,5,8,9,10,11,12,13,14,15,16],base_dataframe_column:3,batch:[4,10],batch_sav:4,batch_siz:10,befor:16,being:3,bell:4,bellmf:4,belo:[0,5],belog:4,below:16,benchmark:[1,2,4,7],benchmark_method:3,benchmark_methods_paramet:3,benchmark_model:3,benchmark_onli:4,bestsplit:14,better:16,between:[3,4,10,15],bill:4,bin:[3,15],bisect:4,bitcoin:[1,2],bivari:5,black:15,blip:5,blue:3,both:4,bound:[4,5,8,12,14],box:[3,4,16],boxcox:4,boxljungstatist:3,boxpiercestatist:3,brasil:5,brasilia:5,brazil:[0,9],brazilian:[0,9],brier:3,brier_scor:3,btc:5,build:[10,11,12,13,14],build_cdf_qtl:15,build_method:3,build_tree_without_ord:4,built:[5,14],buseco:5,busi:5,c_mean:14,calcul:[4,11,12],call:[4,10,11],camwa:14,can:[3,4,16],cancel:5,capabl:3,capit:5,cast_dataframe_to_synthet:3,cast_dataframe_to_synthetic_interv:3,cast_dataframe_to_synthetic_point:3,cast_dataframe_to_synthetic_probabilist:3,ccst:5,center:4,centroid:[4,13],certain:15,chain:5,chang:[5,14,16],chao:5,chaotic:[1,2],characterist:16,cheap:0,check:[4,5,16],check_bound:[4,12],check_bounds_index:[4,12],check_data:11,check_ignore_list:3,check_replace_list:3,chen:[1,2,11,13,16],cheng:[1,2,14,16],chi:3,chi_squar:3,chia:8,child:4,chissom:[8,16],clear:4,clip:4,clone:16,clone_paramet:[4,11],cluster:[3,4,11],cluster_method:7,clusteredmvft:11,cmap:3,cmean:[1,2],cmeanspartition:[14,16],cmsft:[2,8],cmvft:[2,8],code:[11,16],coeffici:[3,5],colab:16,colabor:0,color:[3,12,15],column:[4,11],columun:4,com:[5,16],common:[1,2,3,6,7,8,9,10,14,16],commun:5,compar:3,compare_residu:3,comparemodelsplot:3,comparemodelst:3,complet:5,complex:5,complic:5,compon:[5,9],composit:[1,2,5,11],compress:5,comput:[8,9,14,16],computation:0,condens:3,condit:3,conditional_perturbation_factor:12,conditionalvarianceft:12,conf:[0,1],confer:8,configure_lag:8,congress:9,conn:[3,7],connect:[3,7],consid:[4,11],const_t:12,constant:5,contain:[3,4,11,14,16],content:[0,1],context:[6,14],contextu:13,contextualmultiseasonalft:13,contextualseasonalflrg:13,contin:[10,15],continu:[3,5,15],control:5,convent:[8,12,13],conventionalflrg:8,conventionalft:[8,11],conventionalnonstationaryflrg:12,copi:4,cost:[14,16],count:[4,15],counter:14,covavg:3,coverag:3,covstd:3,cox:[4,16],creat:[3,4,5,7,9,14,16],create_benchmark_t:3,create_hyperparam_t:7,create_multivariate_model:6,create_spark_conf:6,create_univariate_model:6,criteria:3,cross:[4,15],crossentropi:15,crp:3,crps1avg:3,crps1std:3,crps2avg:3,crps2std:3,crps_distr:3,crps_interv:3,crpsavg:3,crpsstd:3,csv:5,cumul:15,current:[3,5],current_milli_tim:4,cut:[4,7],cvft:[2,8],dado:[4,5,14],dai:5,daili:5,data:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16],data_column:3,data_field:13,data_label:11,data_point:11,data_typ:11,databas:[3,7],datafram:[3,4,5,11,13],dataframeseasonalindex:13,dataset:[1,2,3,4,7],datasetnam:7,date:[3,13],date_field:13,date_part:13,datepart:13,datetim:13,datetimeseasonalindex:13,david:4,day_of_month:13,day_of_week:13,day_of_year:13,dealer:5,dec:14,decemb:5,decis:3,decompress:5,defin:[3,7],defuzzyf:16,deg:12,delet:4,deltadist:14,demo:16,densiti:[3,15],departa:0,depend:[3,4,16],dependeci:4,deri:[8,16],design:[3,4,7],detail:4,determin:3,determinist:[5,14],develop:[0,16],deviat:3,dict:[3,4],dict_individu:7,dictionari:[3,4],differenti:[4,5,15,16],differential_offset:15,diffus:[8,16],dill:4,dimension:5,directli:[4,16],discours:[3,4,12,13,14,15,16],discret:15,disk:[4,14],dispi:[1,2,3,4],displac:12,displai:3,distanc:[3,14],distribut:[1,2,3,4,5,8,9,15],distributed_predict:6,distributed_train:6,diverg:15,dji:5,dkl:15,dnf:5,document:0,doi10:8,doi:[0,3,5,14],dollar:[8,16],don:5,dow:5,dowjon:[1,2],download:5,draw_sets_on_axi:4,dure:[3,4],dynam:5,each:[3,4,5,9,10,11,16],easi:[0,4],easier:4,edu:5,edward:5,efendi:[8,16],effect:[14,16],effici:4,electr:[0,8,16],eletr:5,elev:3,empir:[14,15],empiricalloglikelihood:15,emul:5,enayatifar:[8,16],end:12,endogen:11,energi:[8,16],engin:0,enrol:[1,2,8,13,16],ensembl:[1,2,4,8,10],ensembleft:[9,10],entir:4,entropi:[1,2,15,16],entropypartition:[14,16],enumerate2:4,environ:4,epanechnikov:15,equal:[3,4,8,9,10,11,12,13,16],equat:5,error:3,espaciai:5,esrl:5,estim:[3,15],etc:[4,16],eth:5,ethereum:[1,2],eur:[1,2],eurgbp:5,eurusd:5,even:[13,14],evolutionari:[1,2],exact:4,exampl:0,except:4,exchang:[5,8,16],execut:[3,7],exist:5,expect:[4,8,15],expected_valu:15,experi:3,expert:[0,8,16],explain:[4,8],explanatory_vari:6,exploit:0,explore_partition:14,exponenti:[8,12,16],exponentiali:8,exponentialyweightedflrg:8,exponentialyweightedft:8,express:3,extens:11,extern:[3,4],externalforecast:3,externalmodel:3,extract:[3,5,14],extract_measur:3,extractor:14,extremum:9,facil:[3,4,5,7,14],fall:3,fals:[3,4,5,8,11,12,14],fcm:[1,2],fcmpartition:[14,16],feder:0,fetch:4,field:[5,13],fig:[3,4,12],figur:4,file:[3,4,5,12,14],file_analyt:3,file_path:4,file_synthet:3,filenam:[3,4,5],filenem:[3,7],filesystem:4,fill:3,filter:3,financ:5,find:[4,13,14],find_best:3,find_g:4,find_gt:4,find_l:4,find_lt:4,first:[3,4,8,12,13],fit:[3,4,8,9,10,11,12,13],five:4,flag:4,flashquot:5,flat:4,flow:5,flr:[1,2,8,12,13],flr_membership_matrix:8,flrg:[1,2,8,13],flrg_lhs_conditional_prob:8,flrg_lhs_unconditional_prob:8,flrg_rhs_conditional_prob:8,flrgtree:4,flrgtreenod:4,foreast:3,forecast:[3,4,8,9,10,11,12,13,14,16],forecast_ahead:[4,8,11,13],forecast_ahead_distribut:[3,4,8,9],forecast_ahead_interv:[3,4,8,9],forecast_ahead_multivari:4,forecast_distribut:[3,4,8,9],forecast_interv:[3,4,8,9,12],forecast_multivari:[4,11],forex:5,fork:0,format:[3,7,11,13],format_data:11,forward:4,found:[4,16],frederico:[0,8],frequenc:15,from:[0,3,4,5,8,11,14,15,16],fset:[8,11],fts:[1,2,3,8,9,10,11,12,13],fts_method:[10,11],fts_param:[10,11],fuzz:8,fuzzi:[2,4,8,9,11,12,13,14],fuzzif:[14,16],fuzzifi:[4,12],fuzzy_cmean:14,fuzzy_dist:14,fuzzy_set:4,fuzzydata:4,fuzzyf:[4,11,16],fuzzyfi:[4,11,14],fuzzyfy_inst:[4,11],fuzzyfy_instance_clust:11,fuzzyfy_seri:4,fuzzyfy_series_old:4,fuzzyseri:12,fuzzyset:[1,2,8,11,12,13],gadelha:[0,8],gani:[8,16],garibaldi:12,gaussian:[4,5],gaussmf:4,gbp:[1,2],gbpusd:5,gcos_wgsp:5,gener:[1,2,4,14,16],generate_flr:11,generate_flrg:[8,11,12,13],generate_flrg_fuzzyfi:8,generate_gaussian_linear:5,generate_high_order_recurrent_flr:4,generate_indexed_flr:4,generate_lhs_flr:11,generate_lhs_flrg:8,generate_lhs_flrg_fuzzyfi:8,generate_linear_periodic_gaussian:5,generate_non_recurrent_flr:4,generate_recurrent_flr:4,generate_sinoidal_periodic_gaussian:5,generate_uniform_linear:5,gerai:0,get:[3,4,5],get_benchmark_interval_method:3,get_benchmark_point_method:3,get_benchmark_probabilistic_method:3,get_clustered_partition:6,get_data:[5,13],get_data_by_season:13,get_datafram:5,get_dataframe_from_bd:3,get_distribution_interquantil:9,get_distribution_statist:3,get_fuzzyset:4,get_index:13,get_index_by_season:13,get_interv:9,get_interval_method:3,get_interval_statist:3,get_kei:[4,8,12,13],get_low:[4,8,12],get_maximum_membership_fuzzyset:4,get_maximum_membership_fuzzyset_index:4,get_membership:[4,8,11,12],get_midpoint:[4,8,11,12,13],get_models_forecast:9,get_nam:14,get_partition:6,get_point:9,get_point_method:3,get_point_multivariate_method:3,get_point_statist:3,get_polynomial_perturb:12,get_probabilistic_method:3,get_season_by_index:13,get_season_of_data:13,get_sequence_membership:8,get_uod:4,get_upp:[4,8,12],get_vari:6,getchildren:4,getstr:4,git:16,github:[0,16],given:[3,4,11,12,14,15],glass:[1,2],good:16,googl:16,gov:5,grant_bound:4,granular:13,greater:[4,5],grid:[1,2,3,13],gridpartition:[3,14,16],gridsearch:[1,2],group:[3,4,8,11,12,13],half:13,hand:4,handl:[4,8],hard:4,harmoni:[8,16],has_interval_forecast:4,has_point_forecast:4,has_probability_forecast:4,has_season:4,head:0,heavysid:3,heavyside_cdf:3,height:14,henon:[1,2],here:16,heteroskedast:12,high:[3,4,8,11,12],highorderflrg:8,highorderft:[8,12],highordernonstationaryflrg:12,highordernonstationaryft:12,histogram:15,histori:5,hoang:8,hoft:[1,2,12],honsft:[2,8],horizon:[3,4],horizont:[0,5],hossein:8,hour:3,hour_of_dai:13,hour_of_month:13,hour_of_week:13,hour_of_year:13,hourli:5,http:[0,5,16],huarng:[1,2,16],huarngpartition:[14,16],human:0,hwang:[1,2],hybrid:[8,16],hyndman:5,hyperparam:[1,2],hyperparamet:7,identif:13,identifi:[3,4,7,8,12,13],ieee:[8,12],ifmg:0,ifnmg:0,ift:[1,2],ignor:[3,13],imag:[4,14],implement:[4,13,16],improv:[8,14,16],improvedweightedflrg:8,improvedweightedft:8,inc:[3,4],increment:[1,2,3,4,5,8,15],incremental_gaussian:5,incrementalensembl:[2,8],incrementalensembleft:10,ind:13,indentifi:[3,7],index:[3,4,5,8,9,11,13],index_field:13,index_season:13,index_seri:5,indexedflr:4,indic:[3,4,5],individu:7,inequ:3,infer:5,infil:3,inform:[3,4,14,15],informationgain:14,initi:[4,5],initial_valu:5,inmet:[1,2],innov:[8,16],inp:5,input:[4,8,11,12,15],insert:[3,4,5,7],insert_benchmark:3,insert_hyperparam:7,insert_right:4,insid:[3,4,13,15],inst:[4,12],instal:0,instanc:[5,11,12,14,16],instead:4,instituit:0,institut:0,instituto:5,integ:[3,4],integr:5,intel:[8,16],intellig:[8,9],intend:0,interfer:5,intern:8,internet:5,interpol:3,interpret:4,interv:[3,4,8,9,10,12,14,15,16],interval_dataframe_analytic_column:3,interval_dataframe_synthetic_column:3,interval_heurist:8,interval_method:9,interval_quantil:8,interval_to_interv:3,intervalar:16,intervalft:8,introduc:16,introspect:4,invers:[4,16],ipynb:16,is_clust:4,is_high_ord:4,is_multivari:4,is_wrapp:4,ismail:[8,16],ismailefendi:[1,2],isol:14,item:4,itemgett:4,iter:[4,5],its:[5,8,11,13,14,16],ixic:5,janeiro:9,januari:5,jaroszewski:12,javedani:8,jeng:8,job:[3,7],johnson:11,jonathan:12,jone:[4,5],journal:5,jun:[14,16],jupyt:16,kde:[1,2],kei:[3,4],kernel:15,kernel_funct:15,kernelsmooth:15,knearestneighbor:3,knn:[1,2],kullback:15,kullbackleiblerdiverg:15,kwarg:[3,4,5,6,7,8,9,10,11,12,13,14,15],lab:0,label:[3,15],lag:[4,5,7,16],lambda:4,largest:4,last:4,later:16,layman:0,lcolor:3,learn:10,lee:8,left:4,legend:[3,4],leibler:15,len_tot:4,length:[3,4,5,8,9,10,11,12,13,14,16],less:4,lett:5,level:4,lgd:4,lhs_conditional_prob:8,librari:[2,5],like:[4,16],likelihood:15,limit:4,lin:14,linear:[5,12],linearmodel:3,linearseasonalindex:13,linewidth:3,linspac:5,list:[3,4,5,8,9,10,11,12,13,14,15,16],ljung:3,lo_param:3,load:[4,5,8,16],load_env:4,load_obj:4,local:5,locat:[4,5,12],location_param:12,log:[4,15],logic:[4,8,11,12,13],logist:[4,5],logistic_map:[1,2],look:4,lookup:4,lorentz:[1,2],lorenz:5,loss:3,lower:[4,5,8,12,14],lower_set:14,mackei:[1,2],mackey_glass:5,mai:5,main:16,malaysia:[1,2,8,16],mandatori:4,mani:16,manual:14,map:[3,5],mape:3,mape_interv:3,marcin:12,market:5,mask:[11,13],mass:4,match:4,math:[5,14],mathemat:5,matplotlib:[4,14],max:4,max_inc:5,max_ini:5,max_lag:[3,4,8,9,10,11,12,13],maxim:4,maximum:[4,5,14],mean:[3,4,5,9],measur:[1,2,7],mech:[8,16],median:9,membership:[1,2,7,8,11,12,14,16],membership_funct:14,memori:[4,10],merg:4,meta:[9,10,11],meteorologia:5,method:[0,3,4,5,7,8,9,10,11,12,13,14,16],metric:3,mft:3,middl:14,midpoint:[4,8,11,12],min:[4,15],min_inc:5,min_ini:5,min_ord:4,mina:0,mind:0,ming:8,minim:[3,4,8,9,10,11,12,13],minimum:[4,5,16],minute_of_dai:13,minute_of_hour:13,minute_of_month:13,minute_of_week:13,minute_of_year:13,mix:9,mode:4,model:[0,1,2,3,4,5,6,7,14,16],modelo:3,models_fo:3,models_ho:3,modul:[0,1,16],monash:5,monovari:4,month:13,monthli:[3,5],more:16,most:[10,11,16],move:3,msft:[2,8],mu_inc:5,mu_ini:5,mu_max:5,mu_min:5,much:4,multi:[3,4,8,11,13],multiseason:[2,8],multiseasonalft:13,multivari:[1,2,3,4,5,8,14],multivariatefuzzyset:11,musikasuwan:12,mvft:[2,8],nacion:5,naiv:[1,2],name:[3,4,5,7,9,11,12,13,14],nasdaq:[1,2],nation:5,nativ:[4,13],natur:5,nbin:[4,8],nbsp:0,ndata:[3,4,8,11,12],nearest:3,need:4,neighbor:3,next:[4,16],nice:4,noaa:5,node:[3,4],nois:[5,12],noise_param:12,non:[3,4,5,12,13,16],none:[3,4,5,9,10,11,12,13,14,15],nonperiod:5,nonstationari:[1,2,4,8],nonstationaryflrg:12,nonstationaryft:12,norm:8,normal:[9,16],north:0,norton:5,notebook:16,noth:16,nov:[14,16],now:4,npart:[12,14],nsft:[2,8],num:5,num_batch:4,num_season:13,number:[3,4,5,7,8,9,11,13,14,15,16],numer:16,numpi:[4,5],obj:[3,4,14],object:[3,4,5,8,9,11,13,14,15],objectsist:3,occur:4,occurr:4,old:4,older:4,oldest:4,onc:4,one:[3,4,5,7,8,9,10,11,12,13,15,16],ones:4,onli:4,onlin:10,only_lin:12,open:[3,7],open_benchmark_db:3,open_hyperparam_db:7,oper:[4,16],operation_matrix:8,option:[3,4,9,14],order:[3,4,7,8,11,12,13,14,16],ordered_set:[4,12,14],ordin:4,org:[0,5],origin:[3,4,16],original_max:4,original_min:4,oscil:5,other:[3,4,9,11],otherwis:3,out:16,outfil:3,outlier:5,output:[14,16],over:4,overlap:16,own:11,p500:5,packag:[0,1],page:0,pair:5,panda:[3,4,5,11,13],par1:12,par2:12,parallel_util:[1,2],param:[3,4,5,11,12,13],paramet:[3,4,5,6,7,8,9,10,11,12,13,14,15,16],parametr:16,part:[6,12],partit:[3,4,7,12,13,14,16],partition:[1,2,3,4,7,8,9,10,11,16],partition_funct:[4,8],partitioner_method:10,partitioner_param:10,partitioners_method:3,partitioners_model:3,pass:3,passeng:5,past:4,path:[3,4,14],pattern:4,pct:12,pdf:15,percent:3,percentag:3,percentu:[3,4],perform:[3,7,12,13,14,16],perform_loc:12,perform_width:12,period:[5,12],periodic_gaussian:5,persist:4,persist_env:4,persist_obj:4,person:[4,5],pertub:12,perturb:[2,8],perturbate_paramet:12,perturbation_factor:12,perturbation_factors__old:12,pesquisa:5,pftsexploreorderandpartit:3,php:5,phy:[5,8,16],physiolog:5,pictur:[3,4],pierc:3,pinbal:3,pinball_mean:3,pip:16,plambda:4,plot:[3,13,14,15],plot_compared_intervals_ahead:3,plot_compared_seri:3,plot_dataframe_interv:3,plot_dataframe_interval_pinbal:3,plot_dataframe_point:3,plot_dataframe_probabilist:3,plot_density_rectang:3,plot_distribut:3,plot_interv:3,plot_partition:14,plot_point:3,plot_probability_distribut:3,plot_residu:3,plot_rul:4,plot_set:[12,14],plot_sets_condit:12,plotcompar:3,plotforecast:3,plotresidu:3,pmf:[3,14],pmf_to_cdf:3,point:[3,4,8,9,10,11,12,13,14,15,16],point_dataframe_analytic_column:3,point_dataframe_synthetic_column:3,point_expected_valu:8,point_heurist:8,point_method:9,point_to_interv:3,poit:3,poly_width:12,polynomi:12,polynomialnonstationarypartition:12,poor:5,por:3,posit:[4,13],post:4,posterior:3,postprocess:[4,16],power:[4,8,16],pprint:4,pre:[4,11],prebuilt:3,predict:[3,4,8,9,12,16],prefix:14,preprocess:[4,11,13,16],previou:5,primari:3,primit:14,print:3,print_distribution_statist:3,print_interval_statist:3,print_point_statist:3,probabil:3,probabilist:[1,2,3,4,8,9,16],probabilistic_dataframe_analytic_column:3,probabilistic_dataframe_synthetic_column:3,probabilisticweightedflrg:8,probabilisticweightedft:8,probabilitydist:3,probabilitydistribut:[1,2,3,4,8,9],probabl:[3,4,8,9,15],problem:8,procedur:[3,4],process:[3,4,5,11],process_common_data:3,process_interval_job:3,process_job:7,process_point_job:3,process_probabilistic_job:3,product:[5,8,16],product_dict:11,prof:0,progress:3,project:[14,16],propos:16,provid:[0,4,9,16],psd:5,pseudo:15,pseudologlikelihood:15,pwflrg:8,pwft:[1,2],python:[2,16],q05:3,q25:3,q75:3,q95:3,quantil:[3,9,15],quantile_regress:3,quantileregress:3,quantreg:[1,2],quarter:13,queri:3,quick:0,quot:5,quotat:5,rais:4,random:5,random_walk:5,rang:[3,16],rank:3,rate:[8,16],read:5,readabl:0,real:[4,16],recent:[10,11,16],record:4,recreat:10,recurr:[4,5],red:3,reference_data:3,refin:[8,16],regress:3,relat:15,relationship:[4,8,11,12,13],remov:4,ren:8,render:5,replac:3,repo:16,repr:4,repres:[3,4,8,9,11,15],represent:16,research:[0,16],reset:4,reset_calculated_valu:4,residu:3,residualanalysi:[1,2],resolut:3,respect:[4,15],respons:13,result:[3,4,7],retrain:10,revers:4,review:[3,16],rhs_conditional_prob:8,rhs_unconditional_prob:8,right:4,ringgit:[8,16],rio:9,rmse:3,rmse_interv:3,rmseavg:3,rmsestd:3,rng:12,robert:5,roger:4,roi:4,root:3,rossler:[1,2],round:14,rule:[3,4,11,16],rules_by_axi:4,run:[3,5],run_interv:3,run_point:3,run_probabilist:3,sadaei:[1,2,16],salang:12,same:[4,9],sampl:[3,5,8,16],sampler:9,save:[3,4,12,14],save_best:3,save_dataframe_interv:3,save_dataframe_point:3,save_dataframe_probabilist:3,save_model:4,scale:[3,4,16],scale_down:12,scale_param:3,scale_up:12,scan:4,scheme:[3,7,16],scienc:5,scientist:0,score:3,search:[0,4,8,16],season:[1,2,3,4,8,9,16],seasonalensembleft:9,seasonalflrg:13,seasonalft:13,seasonalindex:[2,8],second:13,second_of_dai:13,second_of_hour:13,second_of_minut:13,secur:5,selecaosimples_menorrms:3,select:5,sep:5,separ:5,sequenc:4,seri:[1,2,3,4,8,9,10,11,12,13,14],set:[3,4,7,8,11,12,13,14,15,16],set_data:13,set_lh:11,set_ord:4,set_rh:11,set_target_vari:11,set_transform:9,seth:11,setnam:14,sever:[3,5,9,14],severiano:8,sft:[2,8],shape:4,share:9,share_paramet:6,shared_partition:6,sharp:3,sharpavg:3,sharpstd:3,shortnam:4,show:[4,14],show_and_save_imag:4,shyi:8,side:4,sigma:5,sigma_inc:5,sigma_ini:5,sigma_max:5,sigma_min:5,sigmf:4,sigmoid:4,signal:5,signalemul:5,silva:[0,8,9],simpl:[0,1,2,5,13],simplenonstationary_gridpartitioner_build:12,simplenonstationarypartition:12,simplepartition:14,simpler:4,simplesearch_rms:3,singl:[4,14],single_plot_residu:3,singleton:[1,2,4],singletonpartition:14,sinoid:5,sistema:5,sixth:13,size:[3,4,12,14],slave_forecast_multivari:6,slave_forecast_univari:6,slave_train_multivari:6,slave_train_univari:6,slice:4,slide:[3,4],sliding_window:4,sliding_window_benchmark:3,smape:3,smith:4,smooth:[4,16],social:[14,16],solar:8,sonda:[1,2],song:[1,2,13,16],sort:[4,14],sort_ascend:3,sort_column:3,sortedcollect:[1,2],sourc:[3,4,5,6,7,8,9,10,11,12,13,14,15],sp500:5,space:3,spark:[1,2],specif:[3,4,8,9,10,11,12,13],split:[3,4,14],splitabov:14,splitbelow:14,splite:16,sql:3,sqlite3:[3,7],sqlite:[3,7],squar:3,ssci:8,standard:[3,5,16],start:[0,3,4,5,8,11,12,13],stat:[3,8,16],station:5,stationari:12,stationary_gaussian:5,statist:[0,3],statsmodel:3,step:[3,4,8,9,10,11,12,13,16],steps_ahead:[3,4],stochast:5,stock:5,store:[3,4,7],strang:5,string:[4,11,13,14],strip_datepart:13,structur:[4,13],student:0,submodul:[0,1],subpackag:[0,1],suitabl:0,sum:8,sunspot:[1,2],superset:4,support:4,symbol:5,symmetr:3,symposium:8,synthet:[1,2,3],syst:[8,13,14,16],system:[5,8,12],tabl:[3,7],tabular_dataframe_column:3,tag:[3,7],taiex:[1,2,8,16],taiwan:5,take:16,tam:[3,12,14,15],target:3,target_vari:[4,6],tau:[3,5,15],technol:[14,16],tempeatur:5,tempor:[4,13,16],term:[3,4,8,16],test:[3,4,7,16],test_data:3,than:[4,5,16],thei:4,theil:3,theilsinequ:3,theoret:3,theori:16,thi:[0,4,5,8,11,12,13,14,15,16],third:13,thoma:4,those:4,thres1:14,thres2:14,threshold:14,through:5,time:[1,2,3,4,8,9,10,11,12,13,14],time_from:3,time_to:3,timegridpartition:13,times2:3,timeseri:5,timevari:[2,8],titl:[3,14,15],tool:[0,16],total:[4,5],tradit:8,train:[3,4,7,8,9,10,11,12,13,14],train_data:[3,9],train_individual_model:9,transact:12,transform:[1,2,3,7,11,12,13,14,16],transformations_param:4,transit:[4,16],translat:16,trapezoid:[4,14,16],trapmf:4,tree:[1,2],trend:[8,16],trendweightedflrg:8,trendweightedft:8,triangular:4,trigger:4,trimf:4,tsa:3,tsdl:5,tun:7,tupl:[3,4,7,11],two:5,twse:5,type:[3,4,5,6,11,13,14,15,16],typeonlegend:3,uavg:3,ufmg:0,under:4,unified_scaled_interv:3,unified_scaled_interval_pinbal:3,unified_scaled_point:3,unified_scaled_probabilist:3,uniform:5,uniqu:[4,8,9,12,13],uniquefilenam:4,unit:13,univari:5,univers:[0,3,4,5,12,13,14,15,16],unpack_arg:12,uod:[3,4,7,8,11,15],uod_clip:4,up_param:3,updat:10,update_model:8,update_uod:9,updateuod:[4,11],upper:[4,5,8,12,14],upper_set:14,url:[0,3,5,6],usa:5,usag:0,usd:[1,2],use:[0,4],used:[3,4,7,8,9,14,16],user:[3,7],using:[4,8,10,14,16],ustatist:3,ustd:3,usual:[4,16],util:[1,2,8],val:14,valid:4,valu:[3,4,5,7,8,9,10,11,12,13,15,16],valueerror:4,variabl:[2,4,6,8,14],varianc:[4,5],variant:10,variat:5,vector:4,veri:[5,8],verif:3,visualize_distribut:8,vmax:5,vmin:5,vol:[8,13,14,16],walk:5,want:0,weather:3,weight:[5,8,11,16],weightedflrg:[8,11],weightedft:8,weightedhighorderflrg:8,weightedhighorderft:8,weightedmvft:11,when:[4,10,11],where:[3,4,8,11,13],which:[3,4,7,16],white_nois:5,whose:0,width:[12,14,15],width_param:12,window:[3,4,10],window_index:12,window_kei:3,window_length:10,window_s:12,windows:[3,4],winkler:3,winkler_mean:3,winkler_scor:3,without:4,wmvft:[2,8],word:[3,7],work:4,wrap:[3,9,10],wrapper:4,www:5,xiii:9,yahoo:5,year:13,yearli:5,yeh:[14,16],you:4,young:4,younger:4,youngest:4,zenodo:0},titles:["pyFTS - Fuzzy Time Series for Python","pyFTS","pyFTS package","pyFTS.benchmarks package","pyFTS.common package","pyFTS.data package","pyFTS.distributed package","pyFTS.hyperparam package","pyFTS.models package","pyFTS.models.ensemble package","pyFTS.models.incremental package","pyFTS.models.multivariate package","pyFTS.models.nonstationary package","pyFTS.models.seasonal package","pyFTS.partitioners package","pyFTS.probabilistic package","pyFTS Quick Start"],titleterms:{FTS:16,airpasseng:5,arima:3,artifici:5,benchmark:3,bitcoin:5,chaotic:5,chen:8,cheng:8,cmean:14,cmsft:13,cmvft:11,common:[4,5,11,12,13],composit:4,conf:2,content:[2,3,4,5,6,7,8,9,10,11,12,13,14,15],cvft:12,data:5,dataset:5,dispi:6,distribut:6,dowjon:5,enrol:5,ensembl:9,entropi:14,ethereum:5,eur:5,evolutionari:7,exampl:16,fcm:14,flr:[4,11],flrg:[4,11,12],fts:4,fuzzi:[0,16],fuzzyset:4,gbp:5,gener:5,glass:5,grid:14,gridsearch:7,henon:5,hoft:8,honsft:12,how:[0,16],huarng:14,hwang:8,hyperparam:7,ift:8,increment:10,incrementalensembl:10,index:0,inmet:5,instal:16,ismailefendi:8,kde:15,knn:3,librari:0,logistic_map:5,lorentz:5,mackei:5,malaysia:5,measur:3,membership:4,model:[8,9,10,11,12,13],modul:[2,3,4,5,6,7,8,9,10,11,12,13,14,15],msft:13,multiseason:9,multivari:11,mvft:11,naiv:3,nasdaq:5,nonstationari:12,nsft:12,packag:[2,3,4,5,6,7,8,9,10,11,12,13,14,15],parallel_util:14,partition:[12,13,14],perturb:12,probabilist:15,probabilitydistribut:15,pwft:8,pyft:[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],python:0,quantreg:3,quick:16,refer:[0,16],residualanalysi:3,rossler:5,sadaei:8,season:13,seasonalindex:13,seri:[0,5,16],sft:13,simpl:14,singleton:14,sonda:5,song:8,sortedcollect:4,spark:6,start:16,submodul:[2,3,4,5,6,7,8,9,10,11,12,13,14,15],subpackag:[2,8],sunspot:5,synthet:5,taiex:5,time:[0,5,16],timevari:10,transform:4,tree:4,usag:16,usd:5,util:[3,4,7,12,14],variabl:11,what:[0,16],wmvft:11}}) \ No newline at end of file +Search.setIndex({docnames:["index","modules","pyFTS","pyFTS.benchmarks","pyFTS.common","pyFTS.data","pyFTS.distributed","pyFTS.hyperparam","pyFTS.models","pyFTS.models.ensemble","pyFTS.models.incremental","pyFTS.models.multivariate","pyFTS.models.nonstationary","pyFTS.models.seasonal","pyFTS.partitioners","pyFTS.probabilistic","quickstart"],envversion:53,filenames:["index.rst","modules.rst","pyFTS.rst","pyFTS.benchmarks.rst","pyFTS.common.rst","pyFTS.data.rst","pyFTS.distributed.rst","pyFTS.hyperparam.rst","pyFTS.models.rst","pyFTS.models.ensemble.rst","pyFTS.models.incremental.rst","pyFTS.models.multivariate.rst","pyFTS.models.nonstationary.rst","pyFTS.models.seasonal.rst","pyFTS.partitioners.rst","pyFTS.probabilistic.rst","quickstart.rst"],objects:{"":{pyFTS:[2,0,0,"-"]},"pyFTS.benchmarks":{Measures:[3,0,0,"-"],ResidualAnalysis:[3,0,0,"-"],Util:[3,0,0,"-"],arima:[3,0,0,"-"],benchmarks:[3,0,0,"-"],knn:[3,0,0,"-"],naive:[3,0,0,"-"],quantreg:[3,0,0,"-"]},"pyFTS.benchmarks.Measures":{BoxLjungStatistic:[3,1,1,""],BoxPierceStatistic:[3,1,1,""],TheilsInequality:[3,1,1,""],UStatistic:[3,1,1,""],acf:[3,1,1,""],brier_score:[3,1,1,""],coverage:[3,1,1,""],crps:[3,1,1,""],get_distribution_statistics:[3,1,1,""],get_interval_statistics:[3,1,1,""],get_point_statistics:[3,1,1,""],heavyside:[3,1,1,""],heavyside_cdf:[3,1,1,""],mape:[3,1,1,""],mape_interval:[3,1,1,""],pinball:[3,1,1,""],pinball_mean:[3,1,1,""],pmf_to_cdf:[3,1,1,""],resolution:[3,1,1,""],rmse:[3,1,1,""],rmse_interval:[3,1,1,""],sharpness:[3,1,1,""],smape:[3,1,1,""],winkler_mean:[3,1,1,""],winkler_score:[3,1,1,""]},"pyFTS.benchmarks.ResidualAnalysis":{chi_squared:[3,1,1,""],compare_residuals:[3,1,1,""],plotResiduals:[3,1,1,""],plot_residuals:[3,1,1,""],residuals:[3,1,1,""],single_plot_residuals:[3,1,1,""]},"pyFTS.benchmarks.Util":{analytic_tabular_dataframe:[3,1,1,""],analytical_data_columns:[3,1,1,""],base_dataframe_columns:[3,1,1,""],cast_dataframe_to_synthetic:[3,1,1,""],cast_dataframe_to_synthetic_interval:[3,1,1,""],cast_dataframe_to_synthetic_point:[3,1,1,""],cast_dataframe_to_synthetic_probabilistic:[3,1,1,""],check_ignore_list:[3,1,1,""],check_replace_list:[3,1,1,""],create_benchmark_tables:[3,1,1,""],extract_measure:[3,1,1,""],find_best:[3,1,1,""],get_dataframe_from_bd:[3,1,1,""],insert_benchmark:[3,1,1,""],interval_dataframe_analytic_columns:[3,1,1,""],interval_dataframe_synthetic_columns:[3,1,1,""],open_benchmark_db:[3,1,1,""],plot_dataframe_interval:[3,1,1,""],plot_dataframe_interval_pinball:[3,1,1,""],plot_dataframe_point:[3,1,1,""],plot_dataframe_probabilistic:[3,1,1,""],point_dataframe_analytic_columns:[3,1,1,""],point_dataframe_synthetic_columns:[3,1,1,""],probabilistic_dataframe_analytic_columns:[3,1,1,""],probabilistic_dataframe_synthetic_columns:[3,1,1,""],process_common_data:[3,1,1,""],save_dataframe_interval:[3,1,1,""],save_dataframe_point:[3,1,1,""],save_dataframe_probabilistic:[3,1,1,""],scale:[3,1,1,""],scale_params:[3,1,1,""],stats:[3,1,1,""],tabular_dataframe_columns:[3,1,1,""],unified_scaled_interval:[3,1,1,""],unified_scaled_interval_pinball:[3,1,1,""],unified_scaled_point:[3,1,1,""],unified_scaled_probabilistic:[3,1,1,""]},"pyFTS.benchmarks.arima":{ARIMA:[3,2,1,""]},"pyFTS.benchmarks.arima.ARIMA":{ar:[3,3,1,""],forecast:[3,3,1,""],forecast_ahead_distribution:[3,3,1,""],forecast_ahead_interval:[3,3,1,""],forecast_distribution:[3,3,1,""],forecast_interval:[3,3,1,""],ma:[3,3,1,""],train:[3,3,1,""]},"pyFTS.benchmarks.benchmarks":{SelecaoSimples_MenorRMSE:[3,1,1,""],compareModelsPlot:[3,1,1,""],compareModelsTable:[3,1,1,""],get_benchmark_interval_methods:[3,1,1,""],get_benchmark_point_methods:[3,1,1,""],get_benchmark_probabilistic_methods:[3,1,1,""],get_interval_methods:[3,1,1,""],get_point_methods:[3,1,1,""],get_point_multivariate_methods:[3,1,1,""],get_probabilistic_methods:[3,1,1,""],pftsExploreOrderAndPartitions:[3,1,1,""],plotCompared:[3,1,1,""],plot_compared_series:[3,1,1,""],plot_point:[3,1,1,""],print_distribution_statistics:[3,1,1,""],print_interval_statistics:[3,1,1,""],print_point_statistics:[3,1,1,""],process_interval_jobs:[3,1,1,""],process_point_jobs:[3,1,1,""],process_probabilistic_jobs:[3,1,1,""],run_interval:[3,1,1,""],run_point:[3,1,1,""],run_probabilistic:[3,1,1,""],simpleSearch_RMSE:[3,1,1,""],sliding_window_benchmarks:[3,1,1,""]},"pyFTS.benchmarks.knn":{KNearestNeighbors:[3,2,1,""]},"pyFTS.benchmarks.knn.KNearestNeighbors":{forecast_distribution:[3,3,1,""],knn:[3,3,1,""],train:[3,3,1,""]},"pyFTS.benchmarks.naive":{Naive:[3,2,1,""]},"pyFTS.benchmarks.naive.Naive":{forecast:[3,3,1,""]},"pyFTS.benchmarks.quantreg":{QuantileRegression:[3,2,1,""]},"pyFTS.benchmarks.quantreg.QuantileRegression":{forecast:[3,3,1,""],forecast_ahead_distribution:[3,3,1,""],forecast_ahead_interval:[3,3,1,""],forecast_distribution:[3,3,1,""],forecast_interval:[3,3,1,""],interval_to_interval:[3,3,1,""],linearmodel:[3,3,1,""],point_to_interval:[3,3,1,""],train:[3,3,1,""]},"pyFTS.common":{Composite:[4,0,0,"-"],FLR:[4,0,0,"-"],FuzzySet:[4,0,0,"-"],Membership:[4,0,0,"-"],SortedCollection:[4,0,0,"-"],Transformations:[4,0,0,"-"],Util:[4,0,0,"-"],flrg:[4,0,0,"-"],fts:[4,0,0,"-"],tree:[4,0,0,"-"]},"pyFTS.common.Composite":{FuzzySet:[4,2,1,""]},"pyFTS.common.Composite.FuzzySet":{append:[4,3,1,""],append_set:[4,3,1,""],membership:[4,3,1,""],transform:[4,3,1,""]},"pyFTS.common.FLR":{FLR:[4,2,1,""],IndexedFLR:[4,2,1,""],generate_high_order_recurrent_flr:[4,1,1,""],generate_indexed_flrs:[4,1,1,""],generate_non_recurrent_flrs:[4,1,1,""],generate_recurrent_flrs:[4,1,1,""]},"pyFTS.common.FLR.FLR":{LHS:[4,4,1,""],RHS:[4,4,1,""]},"pyFTS.common.FLR.IndexedFLR":{index:[4,4,1,""]},"pyFTS.common.FuzzySet":{FuzzySet:[4,2,1,""],check_bounds:[4,1,1,""],check_bounds_index:[4,1,1,""],fuzzyfy:[4,1,1,""],fuzzyfy_instance:[4,1,1,""],fuzzyfy_instances:[4,1,1,""],fuzzyfy_series:[4,1,1,""],fuzzyfy_series_old:[4,1,1,""],get_fuzzysets:[4,1,1,""],get_maximum_membership_fuzzyset:[4,1,1,""],get_maximum_membership_fuzzyset_index:[4,1,1,""],grant_bounds:[4,1,1,""],set_ordered:[4,1,1,""]},"pyFTS.common.FuzzySet.FuzzySet":{Z:[4,4,1,""],alpha:[4,4,1,""],centroid:[4,4,1,""],membership:[4,3,1,""],mf:[4,4,1,""],name:[4,4,1,""],parameters:[4,4,1,""],partition_function:[4,3,1,""],transform:[4,3,1,""],type:[4,4,1,""],variable:[4,4,1,""]},"pyFTS.common.Membership":{bellmf:[4,1,1,""],gaussmf:[4,1,1,""],sigmf:[4,1,1,""],singleton:[4,1,1,""],trapmf:[4,1,1,""],trimf:[4,1,1,""]},"pyFTS.common.SortedCollection":{SortedCollection:[4,2,1,""]},"pyFTS.common.SortedCollection.SortedCollection":{around:[4,3,1,""],between:[4,3,1,""],clear:[4,3,1,""],copy:[4,3,1,""],count:[4,3,1,""],find:[4,3,1,""],find_ge:[4,3,1,""],find_gt:[4,3,1,""],find_le:[4,3,1,""],find_lt:[4,3,1,""],index:[4,3,1,""],insert:[4,3,1,""],insert_right:[4,3,1,""],inside:[4,3,1,""],key:[4,4,1,""],remove:[4,3,1,""]},"pyFTS.common.Transformations":{AdaptiveExpectation:[4,2,1,""],BoxCox:[4,2,1,""],Differential:[4,2,1,""],Scale:[4,2,1,""],Transformation:[4,2,1,""],Z:[4,1,1,""],aggregate:[4,1,1,""],roi:[4,1,1,""],smoothing:[4,1,1,""]},"pyFTS.common.Transformations.AdaptiveExpectation":{apply:[4,3,1,""],inverse:[4,3,1,""],parameters:[4,4,1,""]},"pyFTS.common.Transformations.BoxCox":{apply:[4,3,1,""],inverse:[4,3,1,""],parameters:[4,4,1,""]},"pyFTS.common.Transformations.Differential":{apply:[4,3,1,""],inverse:[4,3,1,""],parameters:[4,4,1,""]},"pyFTS.common.Transformations.Scale":{apply:[4,3,1,""],inverse:[4,3,1,""],parameters:[4,4,1,""]},"pyFTS.common.Transformations.Transformation":{apply:[4,3,1,""],inverse:[4,3,1,""]},"pyFTS.common.Util":{current_milli_time:[4,1,1,""],draw_sets_on_axis:[4,1,1,""],enumerate2:[4,1,1,""],load_env:[4,1,1,""],load_obj:[4,1,1,""],persist_env:[4,1,1,""],persist_obj:[4,1,1,""],plot_compared_intervals_ahead:[4,1,1,""],plot_density_rectange:[4,1,1,""],plot_distribution:[4,1,1,""],plot_interval:[4,1,1,""],plot_probability_distributions:[4,1,1,""],plot_rules:[4,1,1,""],show_and_save_image:[4,1,1,""],sliding_window:[4,1,1,""],uniquefilename:[4,1,1,""]},"pyFTS.common.flrg":{FLRG:[4,2,1,""]},"pyFTS.common.flrg.FLRG":{LHS:[4,4,1,""],RHS:[4,4,1,""],append_rhs:[4,3,1,""],get_key:[4,3,1,""],get_lower:[4,3,1,""],get_membership:[4,3,1,""],get_midpoint:[4,3,1,""],get_midpoints:[4,3,1,""],get_upper:[4,3,1,""],order:[4,4,1,""],reset_calculated_values:[4,3,1,""]},"pyFTS.common.fts":{FTS:[4,2,1,""]},"pyFTS.common.fts.FTS":{alpha_cut:[4,4,1,""],append_rule:[4,3,1,""],append_transformation:[4,3,1,""],apply_inverse_transformations:[4,3,1,""],apply_transformations:[4,3,1,""],auto_update:[4,4,1,""],benchmark_only:[4,4,1,""],clone_parameters:[4,3,1,""],detail:[4,4,1,""],fit:[4,3,1,""],flrgs:[4,4,1,""],forecast:[4,3,1,""],forecast_ahead:[4,3,1,""],forecast_ahead_distribution:[4,3,1,""],forecast_ahead_interval:[4,3,1,""],forecast_ahead_multivariate:[4,3,1,""],forecast_distribution:[4,3,1,""],forecast_interval:[4,3,1,""],forecast_multivariate:[4,3,1,""],fuzzy:[4,3,1,""],get_UoD:[4,3,1,""],has_interval_forecasting:[4,4,1,""],has_point_forecasting:[4,4,1,""],has_probability_forecasting:[4,4,1,""],has_seasonality:[4,4,1,""],indexer:[4,4,1,""],is_clustered:[4,4,1,""],is_high_order:[4,4,1,""],is_multivariate:[4,4,1,""],is_wrapper:[4,4,1,""],lags:[4,4,1,""],len_total:[4,3,1,""],max_lag:[4,4,1,""],merge:[4,3,1,""],min_order:[4,4,1,""],name:[4,4,1,""],order:[4,4,1,""],original_max:[4,4,1,""],original_min:[4,4,1,""],partitioner:[4,4,1,""],predict:[4,3,1,""],reset_calculated_values:[4,3,1,""],sets:[4,4,1,""],shortname:[4,4,1,""],train:[4,3,1,""],transformations:[4,4,1,""],transformations_param:[4,4,1,""],uod_clip:[4,4,1,""]},"pyFTS.common.tree":{FLRGTree:[4,2,1,""],FLRGTreeNode:[4,2,1,""],build_tree_without_order:[4,1,1,""],flat:[4,1,1,""]},"pyFTS.common.tree.FLRGTreeNode":{appendChild:[4,3,1,""],getChildren:[4,3,1,""],getStr:[4,3,1,""],paths:[4,3,1,""]},"pyFTS.data":{AirPassengers:[5,0,0,"-"],Bitcoin:[5,0,0,"-"],DowJones:[5,0,0,"-"],EURGBP:[5,0,0,"-"],EURUSD:[5,0,0,"-"],Enrollments:[5,0,0,"-"],Ethereum:[5,0,0,"-"],GBPUSD:[5,0,0,"-"],INMET:[5,0,0,"-"],Malaysia:[5,0,0,"-"],NASDAQ:[5,0,0,"-"],SONDA:[5,0,0,"-"],SP500:[5,0,0,"-"],TAIEX:[5,0,0,"-"],artificial:[5,0,0,"-"],common:[5,0,0,"-"],henon:[5,0,0,"-"],logistic_map:[5,0,0,"-"],lorentz:[5,0,0,"-"],mackey_glass:[5,0,0,"-"],rossler:[5,0,0,"-"],sunspots:[5,0,0,"-"]},"pyFTS.data.AirPassengers":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.Bitcoin":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.DowJones":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.EURGBP":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.EURUSD":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.Enrollments":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.Ethereum":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.GBPUSD":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.INMET":{get_dataframe:[5,1,1,""]},"pyFTS.data.Malaysia":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.NASDAQ":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.SONDA":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.SP500":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.TAIEX":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.artificial":{SignalEmulator:[5,2,1,""],generate_gaussian_linear:[5,1,1,""],generate_linear_periodic_gaussian:[5,1,1,""],generate_sinoidal_periodic_gaussian:[5,1,1,""],generate_uniform_linear:[5,1,1,""],random_walk:[5,1,1,""],white_noise:[5,1,1,""]},"pyFTS.data.artificial.SignalEmulator":{blip:[5,3,1,""],components:[5,4,1,""],incremental_gaussian:[5,3,1,""],periodic_gaussian:[5,3,1,""],run:[5,3,1,""],stationary_gaussian:[5,3,1,""]},"pyFTS.data.common":{get_dataframe:[5,1,1,""]},"pyFTS.data.henon":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.logistic_map":{get_data:[5,1,1,""]},"pyFTS.data.lorentz":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.mackey_glass":{get_data:[5,1,1,""]},"pyFTS.data.rossler":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.sunspots":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.distributed":{spark:[6,0,0,"-"]},"pyFTS.distributed.spark":{create_multivariate_model:[6,1,1,""],create_spark_conf:[6,1,1,""],create_univariate_model:[6,1,1,""],distributed_predict:[6,1,1,""],distributed_train:[6,1,1,""],get_clustered_partitioner:[6,1,1,""],get_partitioner:[6,1,1,""],get_variables:[6,1,1,""],share_parameters:[6,1,1,""],slave_forecast_multivariate:[6,1,1,""],slave_forecast_univariate:[6,1,1,""],slave_train_multivariate:[6,1,1,""],slave_train_univariate:[6,1,1,""]},"pyFTS.hyperparam":{Util:[7,0,0,"-"]},"pyFTS.hyperparam.Util":{create_hyperparam_tables:[7,1,1,""],insert_hyperparam:[7,1,1,""],open_hyperparam_db:[7,1,1,""]},"pyFTS.models":{chen:[8,0,0,"-"],cheng:[8,0,0,"-"],ensemble:[9,0,0,"-"],hofts:[8,0,0,"-"],hwang:[8,0,0,"-"],ifts:[8,0,0,"-"],incremental:[10,0,0,"-"],ismailefendi:[8,0,0,"-"],multivariate:[11,0,0,"-"],nonstationary:[12,0,0,"-"],pwfts:[8,0,0,"-"],sadaei:[8,0,0,"-"],seasonal:[13,0,0,"-"],song:[8,0,0,"-"],yu:[8,0,0,"-"]},"pyFTS.models.chen":{ConventionalFLRG:[8,2,1,""],ConventionalFTS:[8,2,1,""]},"pyFTS.models.chen.ConventionalFLRG":{append_rhs:[8,3,1,""],get_key:[8,3,1,""]},"pyFTS.models.chen.ConventionalFTS":{forecast:[8,3,1,""],generate_flrg:[8,3,1,""],train:[8,3,1,""]},"pyFTS.models.cheng":{TrendWeightedFLRG:[8,2,1,""],TrendWeightedFTS:[8,2,1,""]},"pyFTS.models.cheng.TrendWeightedFLRG":{weights:[8,3,1,""]},"pyFTS.models.cheng.TrendWeightedFTS":{generate_FLRG:[8,3,1,""]},"pyFTS.models.ensemble":{ensemble:[9,0,0,"-"],multiseasonal:[9,0,0,"-"]},"pyFTS.models.ensemble.ensemble":{AllMethodEnsembleFTS:[9,2,1,""],EnsembleFTS:[9,2,1,""],sampler:[9,1,1,""]},"pyFTS.models.ensemble.ensemble.AllMethodEnsembleFTS":{set_transformations:[9,3,1,""],train:[9,3,1,""]},"pyFTS.models.ensemble.ensemble.EnsembleFTS":{alpha:[9,4,1,""],append_model:[9,3,1,""],forecast:[9,3,1,""],forecast_ahead_distribution:[9,3,1,""],forecast_ahead_interval:[9,3,1,""],forecast_distribution:[9,3,1,""],forecast_interval:[9,3,1,""],get_distribution_interquantile:[9,3,1,""],get_interval:[9,3,1,""],get_models_forecasts:[9,3,1,""],get_point:[9,3,1,""],interval_method:[9,4,1,""],models:[9,4,1,""],parameters:[9,4,1,""],point_method:[9,4,1,""],train:[9,3,1,""]},"pyFTS.models.ensemble.multiseasonal":{SeasonalEnsembleFTS:[9,2,1,""],train_individual_model:[9,1,1,""]},"pyFTS.models.ensemble.multiseasonal.SeasonalEnsembleFTS":{forecast_distribution:[9,3,1,""],train:[9,3,1,""],update_uod:[9,3,1,""]},"pyFTS.models.hofts":{HighOrderFLRG:[8,2,1,""],HighOrderFTS:[8,2,1,""],WeightedHighOrderFLRG:[8,2,1,""],WeightedHighOrderFTS:[8,2,1,""]},"pyFTS.models.hofts.HighOrderFLRG":{append_lhs:[8,3,1,""],append_rhs:[8,3,1,""]},"pyFTS.models.hofts.HighOrderFTS":{configure_lags:[8,3,1,""],forecast:[8,3,1,""],generate_flrg:[8,3,1,""],generate_flrg_fuzzyfied:[8,3,1,""],generate_lhs_flrg:[8,3,1,""],generate_lhs_flrg_fuzzyfied:[8,3,1,""],train:[8,3,1,""]},"pyFTS.models.hofts.WeightedHighOrderFLRG":{append_lhs:[8,3,1,""],append_rhs:[8,3,1,""],get_lower:[8,3,1,""],get_midpoint:[8,3,1,""],get_upper:[8,3,1,""],weights:[8,3,1,""]},"pyFTS.models.hofts.WeightedHighOrderFTS":{generate_lhs_flrg_fuzzyfied:[8,3,1,""]},"pyFTS.models.hwang":{HighOrderFTS:[8,2,1,""]},"pyFTS.models.hwang.HighOrderFTS":{configure_lags:[8,3,1,""],forecast:[8,3,1,""],train:[8,3,1,""]},"pyFTS.models.ifts":{IntervalFTS:[8,2,1,""]},"pyFTS.models.ifts.IntervalFTS":{forecast_interval:[8,3,1,""],get_lower:[8,3,1,""],get_sequence_membership:[8,3,1,""],get_upper:[8,3,1,""]},"pyFTS.models.incremental":{IncrementalEnsemble:[10,0,0,"-"],TimeVariant:[10,0,0,"-"]},"pyFTS.models.incremental.IncrementalEnsemble":{IncrementalEnsembleFTS:[10,2,1,""]},"pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS":{batch_size:[10,4,1,""],forecast:[10,3,1,""],fts_method:[10,4,1,""],fts_params:[10,4,1,""],num_models:[10,4,1,""],partitioner_method:[10,4,1,""],partitioner_params:[10,4,1,""],train:[10,3,1,""],window_length:[10,4,1,""]},"pyFTS.models.incremental.TimeVariant":{Retrainer:[10,2,1,""]},"pyFTS.models.incremental.TimeVariant.Retrainer":{auto_update:[10,4,1,""],batch_size:[10,4,1,""],forecast:[10,3,1,""],fts_method:[10,4,1,""],fts_params:[10,4,1,""],model:[10,4,1,""],partitioner:[10,4,1,""],partitioner_method:[10,4,1,""],partitioner_params:[10,4,1,""],train:[10,3,1,""],window_length:[10,4,1,""]},"pyFTS.models.ismailefendi":{ImprovedWeightedFLRG:[8,2,1,""],ImprovedWeightedFTS:[8,2,1,""]},"pyFTS.models.ismailefendi.ImprovedWeightedFLRG":{append_rhs:[8,3,1,""],weights:[8,3,1,""]},"pyFTS.models.ismailefendi.ImprovedWeightedFTS":{forecast:[8,3,1,""],generate_flrg:[8,3,1,""],train:[8,3,1,""]},"pyFTS.models.multivariate":{FLR:[11,0,0,"-"],cmvfts:[11,0,0,"-"],common:[11,0,0,"-"],flrg:[11,0,0,"-"],mvfts:[11,0,0,"-"],variable:[11,0,0,"-"],wmvfts:[11,0,0,"-"]},"pyFTS.models.multivariate.FLR":{FLR:[11,2,1,""]},"pyFTS.models.multivariate.FLR.FLR":{set_lhs:[11,3,1,""],set_rhs:[11,3,1,""]},"pyFTS.models.multivariate.cmvfts":{ClusteredMVFTS:[11,2,1,""]},"pyFTS.models.multivariate.cmvfts.ClusteredMVFTS":{check_data:[11,3,1,""],forecast:[11,3,1,""],forecast_multivariate:[11,3,1,""],fts_method:[11,4,1,""],fts_params:[11,4,1,""],fuzzyfy:[11,3,1,""],model:[11,4,1,""],train:[11,3,1,""]},"pyFTS.models.multivariate.common":{MultivariateFuzzySet:[11,2,1,""],fuzzyfy_instance:[11,1,1,""],fuzzyfy_instance_clustered:[11,1,1,""]},"pyFTS.models.multivariate.common.MultivariateFuzzySet":{append_set:[11,3,1,""],membership:[11,3,1,""],set_target_variable:[11,3,1,""]},"pyFTS.models.multivariate.flrg":{FLRG:[11,2,1,""]},"pyFTS.models.multivariate.flrg.FLRG":{append_rhs:[11,3,1,""],get_lower:[11,3,1,""],get_membership:[11,3,1,""],get_upper:[11,3,1,""],set_lhs:[11,3,1,""]},"pyFTS.models.multivariate.mvfts":{MVFTS:[11,2,1,""],product_dict:[11,1,1,""]},"pyFTS.models.multivariate.mvfts.MVFTS":{append_variable:[11,3,1,""],apply_transformations:[11,3,1,""],clone_parameters:[11,3,1,""],forecast:[11,3,1,""],forecast_ahead:[11,3,1,""],forecast_interval:[11,3,1,""],format_data:[11,3,1,""],generate_flrg:[11,3,1,""],generate_flrs:[11,3,1,""],generate_lhs_flrs:[11,3,1,""],train:[11,3,1,""]},"pyFTS.models.multivariate.variable":{Variable:[11,2,1,""]},"pyFTS.models.multivariate.variable.Variable":{alias:[11,4,1,""],alpha_cut:[11,4,1,""],apply_inverse_transformations:[11,3,1,""],apply_transformations:[11,3,1,""],build:[11,3,1,""],data_label:[11,4,1,""],data_type:[11,4,1,""],mask:[11,4,1,""],name:[11,4,1,""],partitioner:[11,4,1,""],transformation:[11,4,1,""]},"pyFTS.models.multivariate.wmvfts":{WeightedFLRG:[11,2,1,""],WeightedMVFTS:[11,2,1,""]},"pyFTS.models.multivariate.wmvfts.WeightedFLRG":{append_rhs:[11,3,1,""],get_lower:[11,3,1,""],get_midpoint:[11,3,1,""],get_upper:[11,3,1,""],weights:[11,3,1,""]},"pyFTS.models.multivariate.wmvfts.WeightedMVFTS":{generate_flrg:[11,3,1,""]},"pyFTS.models.nonstationary":{common:[12,0,0,"-"],cvfts:[12,0,0,"-"],flrg:[12,0,0,"-"],honsfts:[12,0,0,"-"],nsfts:[12,0,0,"-"],partitioners:[12,0,0,"-"],perturbation:[12,0,0,"-"],util:[12,0,0,"-"]},"pyFTS.models.nonstationary.common":{FuzzySet:[12,2,1,""],check_bounds:[12,1,1,""],check_bounds_index:[12,1,1,""],fuzzify:[12,1,1,""],fuzzySeries:[12,1,1,""],window_index:[12,1,1,""]},"pyFTS.models.nonstationary.common.FuzzySet":{get_lower:[12,3,1,""],get_midpoint:[12,3,1,""],get_upper:[12,3,1,""],location:[12,4,1,""],location_params:[12,4,1,""],membership:[12,3,1,""],noise:[12,4,1,""],noise_params:[12,4,1,""],perform_location:[12,3,1,""],perform_width:[12,3,1,""],perturbate_parameters:[12,3,1,""],width:[12,4,1,""],width_params:[12,4,1,""]},"pyFTS.models.nonstationary.cvfts":{ConditionalVarianceFTS:[12,2,1,""],HighOrderNonstationaryFLRG:[12,2,1,""]},"pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS":{forecast:[12,3,1,""],forecast_interval:[12,3,1,""],generate_flrg:[12,3,1,""],perturbation_factors:[12,3,1,""],perturbation_factors__old:[12,3,1,""],train:[12,3,1,""]},"pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG":{append_lhs:[12,3,1,""],append_rhs:[12,3,1,""]},"pyFTS.models.nonstationary.flrg":{NonStationaryFLRG:[12,2,1,""]},"pyFTS.models.nonstationary.flrg.NonStationaryFLRG":{get_key:[12,3,1,""],get_lower:[12,3,1,""],get_membership:[12,3,1,""],get_midpoint:[12,3,1,""],get_upper:[12,3,1,""],unpack_args:[12,3,1,""]},"pyFTS.models.nonstationary.honsfts":{HighOrderNonStationaryFLRG:[12,2,1,""],HighOrderNonStationaryFTS:[12,2,1,""]},"pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG":{append_lhs:[12,3,1,""],append_rhs:[12,3,1,""]},"pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS":{forecast:[12,3,1,""],forecast_interval:[12,3,1,""],generate_flrg:[12,3,1,""],train:[12,3,1,""]},"pyFTS.models.nonstationary.nsfts":{ConventionalNonStationaryFLRG:[12,2,1,""],NonStationaryFTS:[12,2,1,""]},"pyFTS.models.nonstationary.nsfts.ConventionalNonStationaryFLRG":{append_rhs:[12,3,1,""],get_key:[12,3,1,""]},"pyFTS.models.nonstationary.nsfts.NonStationaryFTS":{conditional_perturbation_factors:[12,3,1,""],forecast:[12,3,1,""],forecast_interval:[12,3,1,""],generate_flrg:[12,3,1,""],train:[12,3,1,""]},"pyFTS.models.nonstationary.partitioners":{PolynomialNonStationaryPartitioner:[12,2,1,""],SimpleNonStationaryPartitioner:[12,2,1,""],simplenonstationary_gridpartitioner_builder:[12,1,1,""]},"pyFTS.models.nonstationary.partitioners.PolynomialNonStationaryPartitioner":{build:[12,3,1,""],get_polynomial_perturbations:[12,3,1,""],poly_width:[12,3,1,""],scale_down:[12,3,1,""],scale_up:[12,3,1,""]},"pyFTS.models.nonstationary.partitioners.SimpleNonStationaryPartitioner":{build:[12,3,1,""]},"pyFTS.models.nonstationary.perturbation":{exponential:[12,1,1,""],linear:[12,1,1,""],periodic:[12,1,1,""],polynomial:[12,1,1,""]},"pyFTS.models.nonstationary.util":{plot_sets:[12,1,1,""],plot_sets_conditional:[12,1,1,""]},"pyFTS.models.pwfts":{ProbabilisticWeightedFLRG:[8,2,1,""],ProbabilisticWeightedFTS:[8,2,1,""],visualize_distributions:[8,1,1,""]},"pyFTS.models.pwfts.ProbabilisticWeightedFLRG":{append_rhs:[8,3,1,""],get_lower:[8,3,1,""],get_membership:[8,3,1,""],get_midpoint:[8,3,1,""],get_upper:[8,3,1,""],lhs_conditional_probability:[8,3,1,""],partition_function:[8,3,1,""],rhs_conditional_probability:[8,3,1,""],rhs_unconditional_probability:[8,3,1,""]},"pyFTS.models.pwfts.ProbabilisticWeightedFTS":{add_new_PWFLGR:[8,3,1,""],flrg_lhs_conditional_probability:[8,3,1,""],flrg_lhs_unconditional_probability:[8,3,1,""],flrg_rhs_conditional_probability:[8,3,1,""],forecast:[8,3,1,""],forecast_ahead:[8,3,1,""],forecast_ahead_distribution:[8,3,1,""],forecast_ahead_interval:[8,3,1,""],forecast_distribution:[8,3,1,""],forecast_interval:[8,3,1,""],generate_flrg:[8,3,1,""],generate_lhs_flrg:[8,3,1,""],generate_lhs_flrg_fuzzyfied:[8,3,1,""],get_lower:[8,3,1,""],get_midpoint:[8,3,1,""],get_upper:[8,3,1,""],interval_heuristic:[8,3,1,""],interval_quantile:[8,3,1,""],point_expected_value:[8,3,1,""],point_heuristic:[8,3,1,""],train:[8,3,1,""],update_model:[8,3,1,""]},"pyFTS.models.sadaei":{ExponentialyWeightedFLRG:[8,2,1,""],ExponentialyWeightedFTS:[8,2,1,""]},"pyFTS.models.sadaei.ExponentialyWeightedFLRG":{append_rhs:[8,3,1,""],weights:[8,3,1,""]},"pyFTS.models.sadaei.ExponentialyWeightedFTS":{forecast:[8,3,1,""],generate_flrg:[8,3,1,""],train:[8,3,1,""]},"pyFTS.models.seasonal":{SeasonalIndexer:[13,0,0,"-"],cmsfts:[13,0,0,"-"],common:[13,0,0,"-"],msfts:[13,0,0,"-"],partitioner:[13,0,0,"-"],sfts:[13,0,0,"-"]},"pyFTS.models.seasonal.SeasonalIndexer":{DataFrameSeasonalIndexer:[13,2,1,""],DateTimeSeasonalIndexer:[13,2,1,""],LinearSeasonalIndexer:[13,2,1,""],SeasonalIndexer:[13,2,1,""]},"pyFTS.models.seasonal.SeasonalIndexer.DataFrameSeasonalIndexer":{get_data:[13,3,1,""],get_data_by_season:[13,3,1,""],get_index_by_season:[13,3,1,""],get_season_by_index:[13,3,1,""],get_season_of_data:[13,3,1,""],set_data:[13,3,1,""]},"pyFTS.models.seasonal.SeasonalIndexer.DateTimeSeasonalIndexer":{get_data:[13,3,1,""],get_data_by_season:[13,3,1,""],get_index:[13,3,1,""],get_index_by_season:[13,3,1,""],get_season_by_index:[13,3,1,""],get_season_of_data:[13,3,1,""],set_data:[13,3,1,""]},"pyFTS.models.seasonal.SeasonalIndexer.LinearSeasonalIndexer":{get_data:[13,3,1,""],get_index_by_season:[13,3,1,""],get_season_by_index:[13,3,1,""],get_season_of_data:[13,3,1,""]},"pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer":{get_data:[13,3,1,""],get_data_by_season:[13,3,1,""],get_index:[13,3,1,""],get_index_by_season:[13,3,1,""],get_season_by_index:[13,3,1,""],get_season_of_data:[13,3,1,""]},"pyFTS.models.seasonal.cmsfts":{ContextualMultiSeasonalFTS:[13,2,1,""],ContextualSeasonalFLRG:[13,2,1,""]},"pyFTS.models.seasonal.cmsfts.ContextualMultiSeasonalFTS":{forecast:[13,3,1,""],forecast_ahead:[13,3,1,""],generate_flrg:[13,3,1,""],get_midpoints:[13,3,1,""],train:[13,3,1,""]},"pyFTS.models.seasonal.cmsfts.ContextualSeasonalFLRG":{append_rhs:[13,3,1,""]},"pyFTS.models.seasonal.common":{DateTime:[13,2,1,""],FuzzySet:[13,2,1,""],strip_datepart:[13,1,1,""]},"pyFTS.models.seasonal.common.DateTime":{day_of_month:[13,4,1,""],day_of_week:[13,4,1,""],day_of_year:[13,4,1,""],half:[13,4,1,""],hour_of_day:[13,4,1,""],hour_of_month:[13,4,1,""],hour_of_week:[13,4,1,""],hour_of_year:[13,4,1,""],minute_of_day:[13,4,1,""],minute_of_hour:[13,4,1,""],minute_of_month:[13,4,1,""],minute_of_week:[13,4,1,""],minute_of_year:[13,4,1,""],month:[13,4,1,""],quarter:[13,4,1,""],second:[13,4,1,""],second_of_day:[13,4,1,""],second_of_hour:[13,4,1,""],second_of_minute:[13,4,1,""],sixth:[13,4,1,""],third:[13,4,1,""],year:[13,4,1,""]},"pyFTS.models.seasonal.common.FuzzySet":{transform:[13,3,1,""]},"pyFTS.models.seasonal.msfts":{MultiSeasonalFTS:[13,2,1,""]},"pyFTS.models.seasonal.msfts.MultiSeasonalFTS":{forecast:[13,3,1,""],forecast_ahead:[13,3,1,""],generate_flrg:[13,3,1,""],train:[13,3,1,""]},"pyFTS.models.seasonal.partitioner":{TimeGridPartitioner:[13,2,1,""]},"pyFTS.models.seasonal.partitioner.TimeGridPartitioner":{build:[13,3,1,""],mask:[13,4,1,""],plot:[13,3,1,""],season:[13,4,1,""]},"pyFTS.models.seasonal.sfts":{SeasonalFLRG:[13,2,1,""],SeasonalFTS:[13,2,1,""]},"pyFTS.models.seasonal.sfts.SeasonalFLRG":{append_rhs:[13,3,1,""],get_key:[13,3,1,""]},"pyFTS.models.seasonal.sfts.SeasonalFTS":{forecast:[13,3,1,""],generate_flrg:[13,3,1,""],get_midpoints:[13,3,1,""],train:[13,3,1,""]},"pyFTS.models.song":{ConventionalFTS:[8,2,1,""]},"pyFTS.models.song.ConventionalFTS":{flr_membership_matrix:[8,3,1,""],forecast:[8,3,1,""],operation_matrix:[8,3,1,""],train:[8,3,1,""]},"pyFTS.models.yu":{WeightedFLRG:[8,2,1,""],WeightedFTS:[8,2,1,""]},"pyFTS.models.yu.WeightedFLRG":{append_rhs:[8,3,1,""],weights:[8,3,1,""]},"pyFTS.models.yu.WeightedFTS":{forecast:[8,3,1,""],generate_FLRG:[8,3,1,""],train:[8,3,1,""]},"pyFTS.partitioners":{CMeans:[14,0,0,"-"],Entropy:[14,0,0,"-"],FCM:[14,0,0,"-"],Grid:[14,0,0,"-"],Huarng:[14,0,0,"-"],Simple:[14,0,0,"-"],Singleton:[14,0,0,"-"],Util:[14,0,0,"-"],parallel_util:[14,0,0,"-"],partitioner:[14,0,0,"-"]},"pyFTS.partitioners.CMeans":{CMeansPartitioner:[14,2,1,""],c_means:[14,1,1,""],distance:[14,1,1,""]},"pyFTS.partitioners.CMeans.CMeansPartitioner":{build:[14,3,1,""]},"pyFTS.partitioners.Entropy":{EntropyPartitioner:[14,2,1,""],PMF:[14,1,1,""],bestSplit:[14,1,1,""],entropy:[14,1,1,""],informationGain:[14,1,1,""],splitAbove:[14,1,1,""],splitBelow:[14,1,1,""]},"pyFTS.partitioners.Entropy.EntropyPartitioner":{build:[14,3,1,""]},"pyFTS.partitioners.FCM":{FCMPartitioner:[14,2,1,""],fuzzy_cmeans:[14,1,1,""],fuzzy_distance:[14,1,1,""],membership:[14,1,1,""]},"pyFTS.partitioners.FCM.FCMPartitioner":{build:[14,3,1,""]},"pyFTS.partitioners.Grid":{GridPartitioner:[14,2,1,""]},"pyFTS.partitioners.Grid.GridPartitioner":{build:[14,3,1,""]},"pyFTS.partitioners.Huarng":{HuarngPartitioner:[14,2,1,""]},"pyFTS.partitioners.Huarng.HuarngPartitioner":{build:[14,3,1,""]},"pyFTS.partitioners.Simple":{SimplePartitioner:[14,2,1,""]},"pyFTS.partitioners.Simple.SimplePartitioner":{append:[14,3,1,""],append_complex:[14,3,1,""]},"pyFTS.partitioners.Singleton":{SingletonPartitioner:[14,2,1,""]},"pyFTS.partitioners.Singleton.SingletonPartitioner":{build:[14,3,1,""]},"pyFTS.partitioners.Util":{explore_partitioners:[14,1,1,""],plot_partitioners:[14,1,1,""],plot_sets:[14,1,1,""]},"pyFTS.partitioners.parallel_util":{explore_partitioners:[14,1,1,""]},"pyFTS.partitioners.partitioner":{Partitioner:[14,2,1,""]},"pyFTS.partitioners.partitioner.Partitioner":{build:[14,3,1,""],extractor:[14,4,1,""],fuzzyfy:[14,3,1,""],get_name:[14,3,1,""],lower_set:[14,3,1,""],membership_function:[14,4,1,""],name:[14,4,1,""],ordered_sets:[14,4,1,""],partitions:[14,4,1,""],plot:[14,3,1,""],plot_set:[14,3,1,""],prefix:[14,4,1,""],setnames:[14,4,1,""],transformation:[14,4,1,""],type:[14,4,1,""],upper_set:[14,3,1,""],variable:[14,4,1,""]},"pyFTS.probabilistic":{ProbabilityDistribution:[15,0,0,"-"],kde:[15,0,0,"-"]},"pyFTS.probabilistic.ProbabilityDistribution":{ProbabilityDistribution:[15,2,1,""]},"pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution":{append:[15,3,1,""],append_interval:[15,3,1,""],averageloglikelihood:[15,3,1,""],bins:[15,4,1,""],build_cdf_qtl:[15,3,1,""],crossentropy:[15,3,1,""],cumulative:[15,3,1,""],density:[15,3,1,""],differential_offset:[15,3,1,""],empiricalloglikelihood:[15,3,1,""],entropy:[15,3,1,""],expected_value:[15,3,1,""],kullbackleiblerdivergence:[15,3,1,""],labels:[15,4,1,""],plot:[15,3,1,""],pseudologlikelihood:[15,3,1,""],quantile:[15,3,1,""],set:[15,3,1,""],type:[15,4,1,""],uod:[15,4,1,""]},"pyFTS.probabilistic.kde":{KernelSmoothing:[15,2,1,""]},"pyFTS.probabilistic.kde.KernelSmoothing":{h:[15,4,1,""],kernel:[15,4,1,""],kernel_function:[15,3,1,""],probability:[15,3,1,""]},pyFTS:{benchmarks:[3,0,0,"-"],common:[4,0,0,"-"],conf:[2,0,0,"-"],data:[5,0,0,"-"],distributed:[6,0,0,"-"],hyperparam:[7,0,0,"-"],models:[8,0,0,"-"],partitioners:[14,0,0,"-"],probabilistic:[15,0,0,"-"]}},objnames:{"0":["py","module","Python module"],"1":["py","function","Python function"],"2":["py","class","Python class"],"3":["py","method","Python method"],"4":["py","attribute","Python attribute"]},objtypes:{"0":"py:module","1":"py:function","2":"py:class","3":"py:method","4":"py:attribute"},terms:{"261459a0":5,"57a":5,"5egspc":5,"boolean":[3,4,14],"case":4,"class":[3,4,5,8,9,10,11,12,13,14,15,16],"default":[3,4,5],"enum":13,"fa\u00e7ad":[3,4],"final":[4,5],"float":[3,4,5],"function":[3,4,7,12,14,15,16],"guimar\u00e3":[0,8],"h\u00e9non":5,"import":[4,11,16],"int":[8,16],"na\u00efv":3,"new":[4,9,10,11,14],"organiza\u00e7\u00e3o":5,"petr\u00f4nio":8,"r\u00f6ssler":5,"return":[3,4,5,6,7,8,9,10,11,12,13,14,15],"short":[4,8,16],"true":[3,4,5,10,11],"try":4,"var":[5,11],"while":4,And:3,FTS:[0,3,4,7,8,9,10,11,12,13],For:3,LHS:[4,8,12],One:14,RHS:[4,8,11,12],The:[3,4,5,7,9,10,11,14,15,16],Then:[3,16],There:16,These:[0,16],Use:13,abdullah:[8,16],acc:4,accept:4,account:15,accuraci:[3,7],acf:3,actual:[4,15],adapt:4,adaptiveexpect:4,add:[3,4,12],add_new_pwflgr:8,added:[4,5],adding:4,addit:5,address:[3,4],affect:12,after:5,age:4,aged:4,aggreg:[4,9],ahead:[3,4,8,9,10,11,12,13,16],ahed:16,airlin:5,airpasseng:[1,2],alabama:5,alia:[3,4,11],all:[3,4,9,15,16],allmethodensembleft:9,almost:16,alpha:[4,7,8,9,13],alpha_cut:[4,11],alreadi:5,also:[0,4,16],ambientai:5,analysi:3,analytic_tabular_datafram:3,analytical_data_column:3,angela:4,anonym:14,anoth:10,api:[0,4],app:6,append:[4,9,11,14,15],append_complex:14,append_interv:15,append_lh:[8,12],append_model:9,append_rh:[4,8,11,12,13],append_rul:4,append_set:[4,11],append_transform:4,append_vari:11,appendchild:4,appl:[8,14,16],appli:[3,4,11,14,15],apply_inverse_transform:[4,11],apply_transform:[4,11],approach:[3,14,16],arg:12,argument:[3,4,14],arima:[1,2],arima_model:3,around:4,arrai:[4,5,12,13],artifici:[1,2],ascend:3,aspx:5,assert:15,assign:[4,15],assoc:3,associ:5,ata:3,atmospher:5,atribut:3,attibut:4,attractor:5,auto:14,auto_upd:[4,10],autocorrel:3,autom:5,automat:4,auxiliar:4,auxiliari:15,averag:[3,5,15],averageloglikelihood:15,avg:5,axes:12,axi:[3,4,14,15],azim:3,bar:3,base:[3,4,5,8,9,10,11,12,13,14,15,16],base_dataframe_column:3,batch:[4,10],batch_sav:4,batch_siz:10,befor:16,begin:4,being:3,bell:4,bellmf:4,belo:[0,5],belog:4,below:16,benchmark:[1,2,4,7],benchmark_method:3,benchmark_methods_paramet:3,benchmark_model:3,benchmark_onli:4,bestsplit:14,better:16,between:[4,10,15],bill:4,bin:[3,15],bisect:4,bitcoin:[1,2],bivari:5,black:15,blip:5,blue:4,both:4,bound:[4,5,8,11,12,14],box:[3,4,16],boxcox:4,boxljungstatist:3,boxpiercestatist:3,brasil:5,brasilia:5,brazil:[0,9],brazilian:[0,9],brier:3,brier_scor:3,btc:5,build:[10,11,12,13,14],build_cdf_qtl:15,build_method:3,build_tree_without_ord:4,built:[5,14],buseco:5,busi:5,c_mean:14,calcul:[4,11,12],call:[4,10,11],camwa:14,can:[3,4,16],cancel:5,capabl:3,capit:5,cast_dataframe_to_synthet:3,cast_dataframe_to_synthetic_interv:3,cast_dataframe_to_synthetic_point:3,cast_dataframe_to_synthetic_probabilist:3,ccst:5,center:4,centroid:[4,13],certain:15,chain:5,chang:[5,14,16],chao:5,chaotic:[1,2],characterist:16,cheap:0,check:[4,5,16],check_bound:[4,12],check_bounds_index:[4,12],check_data:11,check_ignore_list:3,check_replace_list:3,chen:[1,2,11,13,16],cheng:[1,2,14,16],chi:3,chi_squar:3,chia:8,child:4,chissom:[8,16],clear:4,clip:4,clone:16,clone_paramet:[4,11],cluster:[3,4,11],cluster_method:[],clusteredmvft:11,cmap:4,cmean:[1,2],cmeanspartition:[14,16],cmsft:[2,8],cmvft:[2,8],code:[11,16],coeffici:[3,5],colab:16,colabor:0,color:[3,4,12,15],colormap:4,column:[4,11],columun:4,com:[5,16],common:[1,2,3,6,7,8,9,10,14,16],commun:5,compar:[3,4],compare_residu:3,comparemodelsplot:3,comparemodelst:3,complet:5,complex:5,complic:5,compon:[5,9],composit:[1,2,5,11],compress:5,comput:[8,9,14,16],computation:0,condens:3,condit:3,conditional_perturbation_factor:12,conditionalvarianceft:12,conf:[0,1],confer:8,configure_lag:8,congress:9,conn:[3,7],connect:[3,7],consid:[4,11],const_t:12,constant:5,contain:[3,4,11,14,16],content:[0,1],context:[6,14],contextu:13,contextualmultiseasonalft:13,contextualseasonalflrg:13,contin:[10,15],continu:[3,5,15],control:5,convent:[8,12,13],conventionalflrg:8,conventionalft:[8,11],conventionalnonstationaryflrg:12,copi:4,cost:[14,16],count:[4,15],counter:14,covavg:3,coverag:3,covstd:3,cox:[4,16],creat:[3,4,5,7,9,14,16],create_benchmark_t:3,create_hyperparam_t:7,create_multivariate_model:6,create_spark_conf:6,create_univariate_model:6,criteria:3,cross:[4,15],crossentropi:15,crp:3,crps1avg:3,crps1std:3,crps2avg:3,crps2std:3,crps_distr:3,crps_interv:3,crpsavg:3,crpsstd:3,csv:5,cumul:15,current:[3,5],current_milli_tim:4,cut:[4,7],cvft:[2,8],dado:[4,5,14],dai:5,daili:5,data:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,16],data_column:3,data_field:13,data_label:11,data_point:11,data_typ:11,databas:[3,7],datafram:[3,4,5,11,13],dataframeseasonalindex:13,dataset:[1,2,3,4,7],datasetnam:[],date:[3,13],date_field:13,date_part:13,datepart:13,datetim:13,datetimeseasonalindex:13,david:4,day_of_month:13,day_of_week:13,day_of_year:13,dealer:5,dec:14,decemb:5,decis:3,decompress:5,defin:[3,7],defuzzyf:16,deg:12,delet:4,deltadist:14,demo:16,densiti:[3,4,15],departa:0,depend:[3,4,16],dependeci:4,deri:[8,16],design:[3,4,7],detail:4,determin:3,determinist:[5,14],develop:[0,16],deviat:3,dict:[3,4],dict_individu:[],dictionari:[3,4],differenti:[4,5,15,16],differential_offset:15,diffus:[8,16],dill:4,dimension:5,directli:[4,16],discours:[3,4,12,13,14,15,16],discret:15,disk:[4,14],dispi:[1,2,3,4],displac:12,displai:3,distanc:[3,14],distribut:[1,2,3,4,5,8,9,15],distributed_predict:6,distributed_train:6,diverg:15,dji:5,dkl:15,dnf:5,document:0,doi10:8,doi:[0,3,5,14],dollar:[8,16],don:5,dow:5,dowjon:[1,2],download:5,draw_sets_on_axi:4,dure:[3,4],dynam:5,each:[3,4,5,9,10,11,16],easi:[0,4],easier:4,edu:5,edward:5,efendi:[8,16],effect:[14,16],effici:4,electr:[0,8,16],eletr:5,elev:3,empir:[14,15],empiricalloglikelihood:15,emul:5,enayatifar:[8,16],end:12,endogen:11,energi:[8,16],engin:0,enrol:[1,2,8,13,16],ensembl:[1,2,4,8,10],ensembleft:[9,10],entir:4,entropi:[1,2,15,16],entropypartition:[14,16],enumerate2:4,environ:4,epanechnikov:15,equal:[3,4,8,9,10,11,12,13,16],equat:5,error:3,espaciai:5,esrl:5,estim:[3,15],etc:[4,16],eth:5,ethereum:[1,2],eur:[1,2],eurgbp:5,eurusd:5,even:[13,14],evolutionari:[1,2],exact:4,exampl:0,except:4,exchang:[5,8,16],execut:3,exist:5,expect:[4,8,15],expected_valu:15,experi:3,expert:[0,8,16],explain:[4,8],explanatory_vari:6,exploit:0,explore_partition:14,exponenti:[8,9,12,16],exponentiali:8,exponentialyweightedflrg:8,exponentialyweightedft:8,express:3,extens:11,extern:[3,4],externalforecast:3,externalmodel:3,extract:[3,5,14],extract_measur:3,extractor:14,extremum:9,facil:[3,4,5,7,14],fall:3,fals:[3,4,5,8,11,12,14],fcm:[1,2],fcmpartition:[14,16],feder:0,fetch:4,field:[5,13],fig:[4,12],figur:4,file:[3,4,5,12,14],file_analyt:3,file_path:4,file_synthet:3,filenam:[3,4,5],filenem:[3,7],filesystem:4,fill:4,filter:3,financ:5,find:[4,13,14],find_best:3,find_g:4,find_gt:4,find_l:4,find_lt:4,first:[3,4,8,12,13],fit:[3,4,8,9,10,11,12,13],five:4,flag:4,flashquot:5,flat:4,flow:5,flr:[1,2,8,12,13],flr_membership_matrix:8,flrg:[1,2,8,13],flrg_lhs_conditional_prob:8,flrg_lhs_unconditional_prob:8,flrg_rhs_conditional_prob:8,flrgtree:4,flrgtreenod:4,foreast:3,forecast:[3,4,8,9,10,11,12,13,14,16],forecast_ahead:[4,8,11,13],forecast_ahead_distribut:[3,4,8,9],forecast_ahead_interv:[3,4,8,9],forecast_ahead_multivari:4,forecast_distribut:[3,4,8,9],forecast_interv:[3,4,8,9,11,12],forecast_multivari:[4,11],forex:5,fork:0,format:[3,7,11,13],format_data:11,forward:4,found:[4,16],frederico:[0,8],frequenc:15,from:[0,3,4,5,8,11,14,15,16],fset:[8,11],fts:[1,2,3,8,9,10,11,12,13],fts_method:[10,11],fts_param:[10,11],fuzz:8,fuzzi:[2,4,8,9,11,12,13,14],fuzzif:[14,16],fuzzifi:[4,12],fuzzy_cmean:14,fuzzy_dist:14,fuzzy_set:4,fuzzydata:4,fuzzyf:[4,11,16],fuzzyfi:[4,11,14],fuzzyfy_inst:[4,11],fuzzyfy_instance_clust:11,fuzzyfy_seri:4,fuzzyfy_series_old:4,fuzzyseri:12,fuzzyset:[1,2,8,11,12,13],gadelha:[0,8],gani:[8,16],garibaldi:12,gaussian:[4,5],gaussmf:4,gbp:[1,2],gbpusd:5,gcos_wgsp:5,gener:[1,2,4,14,16],generate_flr:11,generate_flrg:[8,11,12,13],generate_flrg_fuzzyfi:8,generate_gaussian_linear:5,generate_high_order_recurrent_flr:4,generate_indexed_flr:4,generate_lhs_flr:11,generate_lhs_flrg:8,generate_lhs_flrg_fuzzyfi:8,generate_linear_periodic_gaussian:5,generate_non_recurrent_flr:4,generate_recurrent_flr:4,generate_sinoidal_periodic_gaussian:5,generate_uniform_linear:5,gerai:0,get:[3,4,5],get_benchmark_interval_method:3,get_benchmark_point_method:3,get_benchmark_probabilistic_method:3,get_clustered_partition:6,get_data:[5,13],get_data_by_season:13,get_datafram:5,get_dataframe_from_bd:3,get_distribution_interquantil:9,get_distribution_statist:3,get_fuzzyset:4,get_index:13,get_index_by_season:13,get_interv:9,get_interval_method:3,get_interval_statist:3,get_kei:[4,8,12,13],get_low:[4,8,11,12],get_maximum_membership_fuzzyset:4,get_maximum_membership_fuzzyset_index:4,get_membership:[4,8,11,12],get_midpoint:[4,8,11,12,13],get_models_forecast:9,get_nam:14,get_partition:6,get_point:9,get_point_method:3,get_point_multivariate_method:3,get_point_statist:3,get_polynomial_perturb:12,get_probabilistic_method:3,get_season_by_index:13,get_season_of_data:13,get_sequence_membership:8,get_uod:4,get_upp:[4,8,11,12],get_vari:6,getchildren:4,getstr:4,git:16,github:[0,16],given:[3,4,11,12,14,15],glass:[1,2],good:16,googl:16,gov:5,grant_bound:4,granular:13,greater:[4,5],grid:[1,2,3,13],gridpartition:[3,14,16],gridsearch:[1,2],group:[3,4,8,11,12,13],half:13,hand:4,handl:[4,8],hard:4,harmoni:[8,16],has_interval_forecast:4,has_point_forecast:4,has_probability_forecast:4,has_season:4,head:0,heavysid:3,heavyside_cdf:3,height:14,henon:[1,2],here:16,heteroskedast:12,high:[3,4,8,11,12],highorderflrg:8,highorderft:[8,12],highordernonstationaryflrg:12,highordernonstationaryft:12,histogram:15,histori:5,hoang:8,hoft:[1,2,12],hold:10,honsft:[2,8],horizon:[3,4],horizont:[0,5],hossein:8,hour:3,hour_of_dai:13,hour_of_month:13,hour_of_week:13,hour_of_year:13,hourli:5,http:[0,5,16],huarng:[1,2,16],huarngpartition:[14,16],human:0,hwang:[1,2],hybrid:[8,16],hyndman:5,hyperparam:[1,2],hyperparamet:7,identif:13,identifi:[3,4,7,8,12,13],ieee:[8,12],ifmg:0,ifnmg:0,ift:[1,2],ignor:[3,13],imag:[4,14],implement:[4,13,16],improv:[8,14,16],improvedweightedflrg:8,improvedweightedft:8,inc:[3,4],increment:[1,2,3,4,5,8,15],incremental_gaussian:5,incrementalensembl:[2,8],incrementalensembleft:10,ind:13,indentifi:[3,7],index:[3,4,5,8,9,11,13],index_field:13,index_season:13,index_seri:5,indexedflr:4,indic:[3,4,5],individu:[],inequ:3,infer:5,infil:3,inform:[3,4,14,15],informationgain:14,initi:[4,5],initial_valu:5,inmet:[1,2],innov:[8,16],inp:5,input:[4,8,11,12,15],insert:[3,4,5,7],insert_benchmark:3,insert_hyperparam:7,insert_right:4,insid:[3,4,13,15],inst:[4,12],instal:0,instanc:[5,11,12,14,16],instead:4,instituit:0,institut:0,instituto:5,integ:[3,4],integr:5,intel:[8,16],intellig:[8,9],intend:0,interfer:5,intern:8,internet:5,interpol:4,interpret:4,interv:[3,4,8,9,10,11,12,14,15,16],interval_dataframe_analytic_column:3,interval_dataframe_synthetic_column:3,interval_heurist:8,interval_method:9,interval_quantil:8,interval_to_interv:3,intervalar:16,intervalft:8,introduc:16,introspect:4,invers:[4,16],ipynb:16,is_clust:4,is_high_ord:4,is_multivari:4,is_wrapp:4,ismail:[8,16],ismailefendi:[1,2],isol:14,item:4,itemgett:4,iter:[4,5],its:[5,8,11,13,14,16],ixic:5,janeiro:9,januari:5,jaroszewski:12,javedani:8,jeng:8,job:3,johnson:11,jonathan:12,jone:[4,5],journal:5,jun:[14,16],jupyt:16,kde:[1,2],kei:[3,4],kernel:15,kernel_funct:15,kernelsmooth:15,knearestneighbor:3,knn:[1,2],kullback:15,kullbackleiblerdiverg:15,kwarg:[3,4,5,6,8,9,10,11,12,13,14,15],lab:0,label:[3,4,15],lag:[4,5,7,16],lambda:4,largest:4,last:4,later:16,layman:0,lcolor:4,learn:10,lee:8,left:4,legend:[3,4],leibler:15,len_tot:4,length:[3,4,5,8,9,10,11,12,13,14,16],less:4,lett:5,level:4,lgd:4,lhs_conditional_prob:8,librari:[2,5],like:[4,16],likelihood:15,limit:4,lin:14,line:4,linear:[5,12],linearmodel:3,linearseasonalindex:13,linewidth:[3,4],linspac:5,list:[3,4,5,8,9,10,11,12,13,14,15,16],ljung:3,lo_param:3,load:[4,5,8,16],load_env:4,load_obj:4,local:5,locat:[4,5,12],location_param:12,log:[4,15],logic:[4,8,11,12,13],logist:[4,5],logistic_map:[1,2],look:4,lookup:4,lorentz:[1,2],lorenz:5,loss:3,lower:[4,5,8,11,12,14],lower_set:14,mackei:[1,2],mackey_glass:5,mai:5,main:16,malaysia:[1,2,8,16],mandatori:4,mani:16,manual:14,map:[4,5],mape:3,mape_interv:3,marcin:12,market:5,mask:[11,13],mass:4,match:4,math:[5,14],mathemat:5,matplotlib:[4,14],max:4,max_inc:5,max_ini:5,max_lag:[3,4,8,9,10,11,12,13],maxim:4,maximum:[4,5,14],mean:[3,4,5,9],measur:[1,2,7],mech:[8,16],median:9,membership:[1,2,7,8,11,12,14,16],membership_funct:14,memori:[4,10],merg:4,meta:[9,10,11],meteorologia:5,method:[0,3,4,5,7,8,9,10,11,12,13,14,16],metric:3,mft:3,middl:14,midpoint:[4,8,11,12],min:[4,15],min_inc:5,min_ini:5,min_ord:4,mina:0,mind:0,ming:8,minim:[3,4,8,9,10,11,12,13],minimum:[4,5,16],minute_of_dai:13,minute_of_hour:13,minute_of_month:13,minute_of_week:13,minute_of_year:13,mix:9,mode:4,model:[0,1,2,3,4,5,6,7,14,16],modelo:3,models_fo:3,models_ho:3,modul:[0,1,16],monash:5,monovari:4,month:13,monthli:[3,5],more:16,most:[10,11,16],move:3,msft:[2,8],mu_inc:5,mu_ini:5,mu_max:5,mu_min:5,much:4,multi:[3,4,8,11,13],multiseason:[2,8],multiseasonalft:13,multivari:[1,2,3,4,5,8,14],multivariatefuzzyset:11,musikasuwan:12,mvft:[2,8],nacion:5,naiv:[1,2],name:[3,4,5,7,9,11,12,13,14],nasdaq:[1,2],nation:5,nativ:[4,13],natur:5,nbin:[4,8],nbsp:0,ndata:[3,4,8,11,12],nearest:3,need:4,neighbor:3,next:[4,16],nice:4,noaa:5,node:[3,4],nois:[5,12],noise_param:12,non:[3,4,5,12,13,16],none:[3,4,5,9,10,11,12,13,14,15],nonperiod:5,nonstationari:[1,2,4,8],nonstationaryflrg:12,nonstationaryft:12,norm:8,normal:[9,16],north:0,norton:5,notebook:16,noth:16,nov:[14,16],now:4,npart:[12,14],nsft:[2,8],num:5,num_batch:4,num_model:10,num_season:13,number:[3,4,5,7,8,9,10,11,13,14,15,16],numer:16,numpi:[4,5],obj:[3,4,14],object:[3,4,5,8,9,11,13,14,15],objectsist:3,occur:4,occurr:4,old:4,older:4,oldest:4,onc:4,one:[3,4,5,7,8,9,10,11,12,13,15,16],ones:4,onli:4,onlin:10,only_lin:12,open:[3,7],open_benchmark_db:3,open_hyperparam_db:7,oper:[4,16],operation_matrix:8,option:[3,4,9,14],order:[3,4,7,8,11,12,13,14,16],ordered_set:[4,12,14],ordin:4,org:[0,5],origin:[3,4,16],original_max:4,original_min:4,oscil:5,other:[3,4,9,11],otherwis:3,out:16,outfil:3,outlier:5,output:[14,16],over:4,overlap:16,own:11,p500:5,packag:[0,1],page:0,pair:5,panda:[3,4,5,11,13],par1:12,par2:12,parallel_util:[1,2],param:[3,4,5,11,12,13],paramet:[3,4,5,6,7,8,9,10,11,12,13,14,15,16],parametr:16,part:[6,12],partit:[3,4,7,12,13,14,16],partition:[1,2,3,4,7,8,9,10,11,16],partition_funct:[4,8],partitioner_method:10,partitioner_param:10,partitioners_method:3,partitioners_model:3,pass:4,passeng:5,past:4,path:[3,4,14],pattern:4,pct:12,pdf:15,percent:3,percentag:3,percentu:[3,4],perform:[3,7,12,13,14,16],perform_loc:12,perform_width:12,period:[5,12],periodic_gaussian:5,persist:4,persist_env:4,persist_obj:4,person:[4,5],pertub:12,perturb:[2,8],perturbate_paramet:12,perturbation_factor:12,perturbation_factors__old:12,pesquisa:5,pftsexploreorderandpartit:3,php:5,phy:[5,8,16],physiolog:5,pictur:[3,4],pierc:3,pinbal:3,pinball_mean:3,pip:16,plambda:4,plot:[3,4,13,14,15],plot_compared_intervals_ahead:4,plot_compared_seri:3,plot_dataframe_interv:3,plot_dataframe_interval_pinbal:3,plot_dataframe_point:3,plot_dataframe_probabilist:3,plot_density_rectang:4,plot_distribut:4,plot_interv:4,plot_partition:14,plot_point:3,plot_probability_distribut:4,plot_residu:3,plot_rul:4,plot_set:[12,14],plot_sets_condit:12,plotcompar:3,plotforecast:3,plotresidu:3,pmf:[4,14],pmf_to_cdf:3,point:[3,4,8,9,10,11,12,13,14,15,16],point_dataframe_analytic_column:3,point_dataframe_synthetic_column:3,point_expected_valu:8,point_heurist:8,point_method:9,point_to_interv:3,poit:4,poly_width:12,polynomi:12,polynomialnonstationarypartition:12,poor:5,por:3,posit:[4,13],post:4,posterior:3,postprocess:[4,16],power:[4,8,16],pprint:4,pre:[4,11],prebuilt:3,predict:[3,4,8,9,11,12,16],prefix:14,preprocess:[4,11,13,16],previou:5,primari:3,primit:14,print:3,print_distribution_statist:3,print_interval_statist:3,print_point_statist:3,probabil:3,probabilist:[1,2,3,4,8,9,16],probabilistic_dataframe_analytic_column:3,probabilistic_dataframe_synthetic_column:3,probabilisticweightedflrg:8,probabilisticweightedft:8,probabilitydist:4,probabilitydistribut:[1,2,3,4,8,9],probabl:[3,4,8,9,15],problem:8,procedur:[3,4],process:[3,4,5,11],process_common_data:3,process_interval_job:3,process_job:[],process_point_job:3,process_probabilistic_job:3,product:[5,8,16],product_dict:11,prof:0,progress:3,project:[14,16],propos:16,provid:[0,4,9,16],psd:5,pseudo:15,pseudologlikelihood:15,pwflrg:8,pwft:[1,2],python:[2,16],q05:3,q25:3,q75:3,q95:3,quantil:[3,9,15],quantile_regress:3,quantileregress:3,quantreg:[1,2],quarter:13,queri:3,quick:0,quot:5,quotat:5,rais:4,random:5,random_walk:5,rang:[3,16],rank:3,rate:[8,16],read:5,readabl:0,real:[4,16],recent:[10,11,16],record:4,recreat:10,recurr:[4,5],red:[3,4],reference_data:4,refin:[8,16],regress:3,relat:15,relationship:[4,8,11,12,13],remov:4,ren:8,render:5,replac:3,repo:16,repr:4,repres:[3,4,8,9,11,15],represent:16,research:[0,16],reset:4,reset_calculated_valu:4,residu:3,residualanalysi:[1,2],resolut:[3,4],respect:[4,15],respons:13,result:[3,4,7],retrain:10,revers:4,review:[3,16],rhs_conditional_prob:8,rhs_unconditional_prob:8,right:4,ringgit:[8,16],rio:9,rmse:3,rmse_interv:3,rmseavg:3,rmsestd:3,rng:12,robert:5,roger:4,roi:4,root:3,rossler:[1,2],round:14,rule:[3,4,11,16],rules_by_axi:4,run:[3,5],run_interv:3,run_point:3,run_probabilist:3,sadaei:[1,2,16],salang:12,same:[4,9],sampl:[3,5,8,16],sampler:9,save:[3,4,12,14],save_best:3,save_dataframe_interv:3,save_dataframe_point:3,save_dataframe_probabilist:3,save_model:4,scale:[3,4,16],scale_down:12,scale_param:3,scale_up:12,scan:4,scheme:[3,7,16],scienc:5,scientist:0,score:3,search:[0,4,8,16],season:[1,2,3,4,8,9,16],seasonalensembleft:9,seasonalflrg:13,seasonalft:13,seasonalindex:[2,8],second:13,second_of_dai:13,second_of_hour:13,second_of_minut:13,secur:5,selecaosimples_menorrms:3,select:5,sep:5,separ:5,sequenc:4,seri:[1,2,3,4,8,9,10,11,12,13,14],set:[3,4,7,8,11,12,13,14,15,16],set_data:13,set_lh:11,set_ord:4,set_rh:11,set_target_vari:11,set_transform:9,seth:11,setnam:14,sever:[3,4,5,9,14],severiano:8,sft:[2,8],shape:4,share:9,share_paramet:6,shared_partition:6,sharp:3,sharpavg:3,sharpstd:3,shortnam:4,show:[4,14],show_and_save_imag:4,shyi:8,side:4,sigma:5,sigma_inc:5,sigma_ini:5,sigma_max:5,sigma_min:5,sigmf:4,sigmoid:4,signal:5,signalemul:5,silva:[0,8,9],simpl:[0,1,2,5,13],simplenonstationary_gridpartitioner_build:12,simplenonstationarypartition:12,simplepartition:14,simpler:4,simplesearch_rms:3,singl:[4,14],single_plot_residu:3,singleton:[1,2,4],singletonpartition:14,sinoid:5,sistema:5,sixth:13,size:[3,4,12,14],slave_forecast_multivari:6,slave_forecast_univari:6,slave_train_multivari:6,slave_train_univari:6,slice:4,slide:[3,4],sliding_window:4,sliding_window_benchmark:3,smape:3,smith:4,smooth:[4,16],social:[14,16],solar:8,sonda:[1,2],song:[1,2,13,16],sort:[4,14],sort_ascend:3,sort_column:3,sortedcollect:[1,2],sourc:[3,4,5,6,7,8,9,10,11,12,13,14,15],sp500:5,space:4,spark:[1,2],specif:[3,4,8,9,10,11,12,13],split:[3,4,14],splitabov:14,splitbelow:14,splite:16,sql:3,sqlite3:[3,7],sqlite:[3,7],squar:3,ssci:8,standard:[3,5,16],start:[0,3,4,5,8,11,12,13],stat:[3,8,16],station:5,stationari:12,stationary_gaussian:5,statist:[0,3],statsmodel:3,step:[3,4,8,9,10,11,12,13,16],steps_ahead:[3,4],stochast:5,stock:5,store:[3,4,7],strang:5,string:[4,11,13,14],strip_datepart:13,structur:[4,13],student:0,style:4,submodul:[0,1],subpackag:[0,1],suitabl:0,sum:8,sunspot:[1,2],superset:4,support:4,symbol:5,symmetr:3,symposium:8,synthet:[1,2,3],syst:[8,13,14,16],system:[5,8,12],tabl:[3,7],tabular_dataframe_column:3,tag:[3,7],taiex:[1,2,8,16],taiwan:5,take:16,tam:[3,4,12,14,15],target:3,target_vari:[4,6],tau:[3,5,15],technol:[14,16],tempeatur:5,tempor:[4,13,16],term:[3,4,8,16],test:[3,4,16],test_data:3,than:[4,5,16],thei:4,theil:3,theilsinequ:3,theoret:3,theori:16,thi:[0,4,5,8,11,12,13,14,15,16],third:13,thoma:4,those:4,thres1:14,thres2:14,threshold:14,through:5,time:[1,2,3,4,8,9,10,11,12,13,14],time_from:4,time_to:4,timegridpartition:13,times2:3,timeseri:5,timevari:[2,8],titl:[3,14,15],tool:[0,16],total:[4,5],tradit:8,train:[3,4,8,9,10,11,12,13,14],train_data:[3,9],train_individual_model:9,transact:12,transform:[1,2,3,7,11,12,13,14,16],transformations_param:4,transit:[4,16],translat:16,trapezoid:[4,14,16],trapmf:4,tree:[1,2],trend:[8,16],trendweightedflrg:8,trendweightedft:8,triangular:4,trigger:4,trimf:4,tsa:3,tsdl:5,tun:7,tupl:[3,4,7,11],two:5,twse:5,type:[3,4,5,6,11,13,14,15,16],typeonlegend:[3,4],uavg:3,ufmg:0,under:4,unified_scaled_interv:3,unified_scaled_interval_pinbal:3,unified_scaled_point:3,unified_scaled_probabilist:3,uniform:5,uniqu:[4,8,9,12,13],uniquefilenam:4,unit:13,univari:5,univers:[0,3,4,5,12,13,14,15,16],unpack_arg:12,uod:[3,4,7,8,11,15],uod_clip:4,up_param:3,updat:10,update_model:8,update_uod:9,updateuod:[4,11],upper:[4,5,8,11,12,14],upper_set:14,url:[0,3,5,6],usa:5,usag:0,usd:[1,2],use:[0,4],used:[3,4,7,8,9,14,16],user:[3,7],using:[4,8,10,14,16],ustatist:3,ustd:3,usual:[4,16],util:[1,2,8],val:14,valid:4,valu:[3,4,5,7,8,9,10,11,12,13,15,16],valueerror:4,variabl:[2,4,6,8,14],varianc:[4,5],variant:10,variat:5,vector:4,veri:[5,8],verif:3,visualize_distribut:8,vmax:5,vmin:5,vol:[8,13,14,16],walk:5,want:0,weather:3,weight:[5,8,11,16],weightedflrg:[8,11],weightedft:8,weightedhighorderflrg:8,weightedhighorderft:8,weightedmvft:11,when:[4,10,11],where:[3,4,8,11,13],which:[3,4,7,16],white_nois:5,whose:0,width:[4,12,14,15],width_param:12,window:[3,4,10],window_index:12,window_kei:3,window_length:10,window_s:12,windows:[3,4],winkler:3,winkler_mean:3,winkler_scor:3,without:4,wmvft:[2,8],word:[3,7],work:4,wrap:[3,9,10],wrapper:4,www:5,xiii:9,yahoo:5,year:13,yearli:5,yeh:[14,16],you:4,young:4,younger:4,youngest:4,zenodo:0},titles:["pyFTS - Fuzzy Time Series for Python","pyFTS","pyFTS package","pyFTS.benchmarks package","pyFTS.common package","pyFTS.data package","pyFTS.distributed package","pyFTS.hyperparam package","pyFTS.models package","pyFTS.models.ensemble package","pyFTS.models.incremental package","pyFTS.models.multivariate package","pyFTS.models.nonstationary package","pyFTS.models.seasonal package","pyFTS.partitioners package","pyFTS.probabilistic package","pyFTS Quick Start"],titleterms:{FTS:16,airpasseng:5,arima:3,artifici:5,benchmark:3,bitcoin:5,chaotic:5,chen:8,cheng:8,cmean:14,cmsft:13,cmvft:11,common:[4,5,11,12,13],composit:4,conf:2,content:[2,3,4,5,6,7,8,9,10,11,12,13,14,15],cvft:12,data:5,dataset:5,dispi:6,distribut:6,dowjon:5,enrol:5,ensembl:9,entropi:14,ethereum:5,eur:5,evolutionari:7,exampl:16,fcm:14,flr:[4,11],flrg:[4,11,12],fts:4,fuzzi:[0,16],fuzzyset:4,gbp:5,gener:5,glass:5,grid:14,gridsearch:7,henon:5,hoft:8,honsft:12,how:[0,16],huarng:14,hwang:8,hyperparam:7,ift:8,increment:10,incrementalensembl:10,index:0,inmet:5,instal:16,ismailefendi:8,kde:15,knn:3,librari:0,logistic_map:5,lorentz:5,mackei:5,malaysia:5,measur:3,membership:4,model:[8,9,10,11,12,13],modul:[2,3,4,5,6,7,8,9,10,11,12,13,14,15],msft:13,multiseason:9,multivari:11,mvft:11,naiv:3,nasdaq:5,nonstationari:12,nsft:12,packag:[2,3,4,5,6,7,8,9,10,11,12,13,14,15],parallel_util:14,partition:[12,13,14],perturb:12,probabilist:15,probabilitydistribut:15,pwft:8,pyft:[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],python:0,quantreg:3,quick:16,refer:[0,16],residualanalysi:3,rossler:5,sadaei:8,season:13,seasonalindex:13,seri:[0,5,16],sft:13,simpl:14,singleton:14,sonda:5,song:8,sortedcollect:4,spark:6,start:16,submodul:[2,3,4,5,6,7,8,9,10,11,12,13,14,15],subpackag:[2,8],sunspot:5,synthet:5,taiex:5,time:[0,5,16],timevari:10,transform:4,tree:4,usag:16,usd:5,util:[3,4,7,12,14],variabl:11,what:[0,16],wmvft:11}}) \ No newline at end of file diff --git a/pyFTS/common/Util.py b/pyFTS/common/Util.py index 12524d0..842764f 100644 --- a/pyFTS/common/Util.py +++ b/pyFTS/common/Util.py @@ -12,6 +12,8 @@ from pyFTS.probabilistic import ProbabilityDistribution from pyFTS.common import Transformations + + def plot_compared_intervals_ahead(original, models, colors, distributions, time_from, time_to, intervals = True, save=False, file=None, tam=[20, 5], resolution=None, cmap='Blues', linewidth=1.5): @@ -124,6 +126,17 @@ def plot_probability_distributions(pmfs, lcolors, tam=[15, 7]): ax.legend(handles0, labels0) def plot_distribution(ax, cmap, probabilitydist, fig, time_from, reference_data=None): + ''' + Plot forecasted ProbabilityDistribution objects on a matplotlib axis + + :param ax: matplotlib axis + :param cmap: matplotlib colormap name + :param probabilitydist: list of ProbabilityDistribution objects + :param fig: matplotlib figure + :param time_from: starting time (on x axis) to begin the plots + :param reference_data: + :return: + ''' from matplotlib.patches import Rectangle from matplotlib.collections import PatchCollection patches = [] @@ -149,6 +162,19 @@ def plot_distribution(ax, cmap, probabilitydist, fig, time_from, reference_data= def plot_interval(axis, intervals, order, label, color='red', typeonlegend=False, ls='-', linewidth=1): + ''' + Plot forecasted intervals on matplotlib + + :param axis: matplotlib axis + :param intervals: list of forecasted intervals + :param order: order of the model that create the forecasts + :param label: figure label + :param color: matplotlib color name + :param typeonlegend: + :param ls: matplotlib line style + :param linewidth: matplotlib width + :return: + ''' lower = [kk[0] for kk in intervals] upper = [kk[1] for kk in intervals] mi = min(lower) * 0.95 @@ -163,6 +189,16 @@ def plot_interval(axis, intervals, order, label, color='red', typeonlegend=False def plot_rules(model, size=[5, 5], axis=None, rules_by_axis=None, columns=1): + ''' + Plot the FLRG rules of a FTS model on a matplotlib axis + + :param model: FTS model + :param size: figure size + :param axis: matplotlib axis + :param rules_by_axis: number of rules plotted by column + :param columns: number of columns + :return: + ''' if axis is None and rules_by_axis is None: rows = 1 elif axis is None and rules_by_axis is not None: