pyFTS/setup.py

25 lines
1.2 KiB
Python
Raw Normal View History

from distutils.core import setup
2018-02-26 20:11:29 +04:00
setup(
2018-02-26 20:11:29 +04:00
name='pyFTS',
2018-02-26 20:29:11 +04:00
packages=['pyFTS', 'pyFTS.benchmarks', 'pyFTS.common', 'pyFTS.data', 'pyFTS.models.ensemble',
'pyFTS.models', 'pyFTS.models.seasonal', 'pyFTS.partitioners', 'pyFTS.probabilistic',
'pyFTS.tests', 'pyFTS.models.nonstationary', 'pyFTS.models.multivariate'],
2018-02-26 22:57:59 +04:00
#package_dir={}
2018-02-26 20:29:11 +04:00
package_data={'benchmarks': ['*'], 'common': ['*'], 'data': ['*'],
'models': ['*'], 'partitioners': ['*'], 'probabilistic': ['*'], 'tests': ['*']},
2018-02-26 22:57:59 +04:00
#data_files=[('data', ['pyFTS/data/Enrollments.csv', 'pyFTS/data/AirPassengers.csv'])],
include_package_data=True,
2018-02-26 20:11:29 +04:00
version='1.1.1',
description='Fuzzy Time Series for Python',
author='Petronio Candido L. e Silva',
author_email='petronio.candido@gmail.com',
url='https://github.com/petroniocandido/pyFTS',
download_url='https://github.com/petroniocandido/pyFTS/archive/pkg1.1.1.tar.gz',
keywords=['forecasting', 'fuzzy time series', 'fuzzy', 'time series forecasting'],
classifiers=[],
2018-02-26 22:57:59 +04:00
#install_requires=[
# 'numpy','pandas','matplotlib','dill','copy','dispy','multiprocessing','joblib'
#],
)