2017-07-07 17:54:28 +04:00
|
|
|
from distutils.core import setup
|
2018-02-26 20:11:29 +04:00
|
|
|
|
2017-07-07 17:54:28 +04:00
|
|
|
setup(
|
2018-02-26 20:11:29 +04:00
|
|
|
name='pyFTS',
|
|
|
|
packages=['pyFTS', 'pyFTS.benchmarks', 'pyFTS.common', 'pyFTS.data', 'pyFTS.ensemble',
|
|
|
|
'pyFTS.models', 'pyFTS.seasonal', 'pyFTS.partitioners', 'pyFTS.probabilistic',
|
|
|
|
'pyFTS.tests', 'pyFTS.nonstationary'],
|
|
|
|
package_data={'benchmarks': ['*'], 'common': ['*'], 'data': ['*'], 'ensemble': ['*'], 'models': ['*'],
|
|
|
|
'seasonal': ['*'], 'partitioners': ['*'], 'probabilistic': ['*'], 'tests': ['*']},
|
|
|
|
version='1.1.1',
|
|
|
|
description='Fuzzy Time Series for Python',
|
|
|
|
author='Petronio Candido L. e Silva',
|
|
|
|
author_email='petronio.candido@gmail.com',
|
|
|
|
url='https://github.com/petroniocandido/pyFTS',
|
|
|
|
download_url='https://github.com/petroniocandido/pyFTS/archive/pkg1.1.1.tar.gz',
|
|
|
|
keywords=['forecasting', 'fuzzy time series', 'fuzzy', 'time series forecasting'],
|
|
|
|
classifiers=[],
|
|
|
|
install_requires=[
|
|
|
|
'numpy','pandas','matplotlib','dill','copy','dispy','multiprocessing','joblib'
|
|
|
|
],
|
2017-07-07 17:54:28 +04:00
|
|
|
)
|