pyFTS/benchmarks/Util.py

720 lines
27 KiB
Python
Raw Normal View History

"""
Benchmark utility functions
"""
import matplotlib as plt
import matplotlib.cm as cmx
import matplotlib.colors as pltcolors
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from checkbox_support.parsers.tests.test_modinfo import testMultipleModinfoParser
#from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import pandas as pd
from copy import deepcopy
from pyFTS.common import Util
def extract_measure(dataframe,measure,data_columns):
if not dataframe.empty:
df = dataframe[(dataframe.Measure == measure)][data_columns]
tmp = df.to_dict(orient="records")[0]
ret = [k for k in tmp.values() if not np.isnan(k)]
return ret
else:
return None
def find_best(dataframe, criteria, ascending):
models = dataframe.Model.unique()
orders = dataframe.Order.unique()
ret = {}
for m in models:
for o in orders:
mod = {}
df = dataframe[(dataframe.Model == m) & (dataframe.Order == o)].sort_values(by=criteria, ascending=ascending)
if not df.empty:
_key = str(m) + str(o)
best = df.loc[df.index[0]]
mod['Model'] = m
mod['Order'] = o
mod['Scheme'] = best["Scheme"]
mod['Partitions'] = best["Partitions"]
ret[_key] = mod
return ret
def point_dataframe_synthetic_columns():
return ["Model", "Order", "Scheme", "Partitions", "Size", "RMSEAVG", "RMSESTD", "SMAPEAVG", "SMAPESTD", "UAVG",
"USTD", "TIMEAVG", "TIMESTD"]
def point_dataframe_analytic_columns(experiments):
columns = [str(k) for k in np.arange(0, experiments)]
columns.insert(0, "Model")
columns.insert(1, "Order")
columns.insert(2, "Scheme")
columns.insert(3, "Partitions")
columns.insert(4, "Size")
columns.insert(5, "Measure")
return columns
def save_dataframe_point(experiments, file, objs, rmse, save, synthetic, smape, times, u):
"""
Create a dataframe to store the benchmark results
:param experiments: dictionary with the execution results
:param file:
:param objs:
:param rmse:
:param save:
:param synthetic:
:param smape:
:param times:
:param u:
:return:
"""
ret = []
if synthetic:
for k in sorted(objs.keys()):
try:
mod = []
mfts = objs[k]
mod.append(mfts.shortname)
mod.append(mfts.order)
if not mfts.benchmark_only:
mod.append(mfts.partitioner.name)
mod.append(mfts.partitioner.partitions)
mod.append(len(mfts))
else:
mod.append('-')
mod.append('-')
mod.append('-')
mod.append(np.round(np.nanmean(rmse[k]), 2))
mod.append(np.round(np.nanstd(rmse[k]), 2))
mod.append(np.round(np.nanmean(smape[k]), 2))
mod.append(np.round(np.nanstd(smape[k]), 2))
mod.append(np.round(np.nanmean(u[k]), 2))
mod.append(np.round(np.nanstd(u[k]), 2))
mod.append(np.round(np.nanmean(times[k]), 4))
mod.append(np.round(np.nanstd(times[k]), 4))
ret.append(mod)
except Exception as ex:
print("Erro ao salvar ", k)
print("Exceção ", ex)
columns = point_dataframe_synthetic_columns()
else:
for k in sorted(objs.keys()):
try:
mfts = objs[k]
n = mfts.shortname
o = mfts.order
if not mfts.benchmark_only:
s = mfts.partitioner.name
p = mfts.partitioner.partitions
l = len(mfts)
else:
s = '-'
p = '-'
l = '-'
tmp = [n, o, s, p, l, 'RMSE']
tmp.extend(rmse[k])
ret.append(deepcopy(tmp))
tmp = [n, o, s, p, l, 'SMAPE']
tmp.extend(smape[k])
ret.append(deepcopy(tmp))
tmp = [n, o, s, p, l, 'U']
tmp.extend(u[k])
ret.append(deepcopy(tmp))
tmp = [n, o, s, p, l, 'TIME']
tmp.extend(times[k])
ret.append(deepcopy(tmp))
except Exception as ex:
print("Erro ao salvar ", k)
print("Exceção ", ex)
columns = point_dataframe_analytic_columns(experiments)
try:
dat = pd.DataFrame(ret, columns=columns)
if save: dat.to_csv(Util.uniquefilename(file), sep=";", index=False)
return dat
except Exception as ex:
print(ex)
print(experiments)
print(columns)
print(ret)
def cast_dataframe_to_synthetic_point(infile, outfile, experiments):
columns = point_dataframe_analytic_columns(experiments)
dat = pd.read_csv(infile, sep=";", usecols=columns)
models = dat.Model.unique()
orders = dat.Order.unique()
schemes = dat.Scheme.unique()
partitions = dat.Partitions.unique()
data_columns = analytical_data_columns(experiments)
ret = []
for m in models:
for o in orders:
for s in schemes:
for p in partitions:
mod = []
df = dat[(dat.Model == m) & (dat.Order == o) & (dat.Scheme == s) & (dat.Partitions == p)]
if not df.empty:
rmse = extract_measure(df, 'RMSE', data_columns)
smape = extract_measure(df, 'SMAPE', data_columns)
u = extract_measure(df, 'U', data_columns)
times = extract_measure(df, 'TIME', data_columns)
mod.append(m)
mod.append(o)
mod.append(s)
mod.append(p)
mod.append(extract_measure(df, 'RMSE', ['Size'])[0])
mod.append(np.round(np.nanmean(rmse), 2))
mod.append(np.round(np.nanstd(rmse), 2))
mod.append(np.round(np.nanmean(smape), 2))
mod.append(np.round(np.nanstd(smape), 2))
mod.append(np.round(np.nanmean(u), 2))
mod.append(np.round(np.nanstd(u), 2))
mod.append(np.round(np.nanmean(times), 4))
mod.append(np.round(np.nanstd(times), 4))
ret.append(mod)
dat = pd.DataFrame(ret, columns=point_dataframe_synthetic_columns())
dat.to_csv(outfile, sep=";", index=False)
def analytical_data_columns(experiments):
data_columns = [str(k) for k in np.arange(0, experiments)]
return data_columns
def plot_dataframe_point(file_synthetic, file_analytic, experiments, tam, save=False, file=None,
sort_columns=['UAVG', 'RMSEAVG', 'USTD', 'RMSESTD'],
sort_ascend=[1, 1, 1, 1],save_best=False,
ignore=None,replace=None):
fig, axes = plt.subplots(nrows=3, ncols=1, figsize=tam)
axes[0].set_title('RMSE')
axes[1].set_title('SMAPE')
axes[2].set_title('U Statistic')
dat_syn = pd.read_csv(file_synthetic, sep=";", usecols=point_dataframe_synthetic_columns())
bests = find_best(dat_syn, sort_columns, sort_ascend)
dat_ana = pd.read_csv(file_analytic, sep=";", usecols=point_dataframe_analytic_columns(experiments))
data_columns = analytical_data_columns(experiments)
if save_best:
dat = pd.DataFrame.from_dict(bests, orient='index')
dat.to_csv(Util.uniquefilename(file_synthetic.replace("synthetic","best")), sep=";", index=False)
rmse = []
smape = []
u = []
times = []
labels = []
for b in sorted(bests.keys()):
if check_ignore_list(b, ignore):
continue
best = bests[b]
tmp = dat_ana[(dat_ana.Model == best["Model"]) & (dat_ana.Order == best["Order"])
& (dat_ana.Scheme == best["Scheme"]) & (dat_ana.Partitions == best["Partitions"])]
rmse.append( extract_measure(tmp,'RMSE',data_columns) )
smape.append(extract_measure(tmp, 'SMAPE', data_columns))
u.append(extract_measure(tmp, 'U', data_columns))
times.append(extract_measure(tmp, 'TIME', data_columns))
labels.append(check_replace_list(best["Model"] + " " + str(best["Order"]),replace))
axes[0].boxplot(rmse, labels=labels, autorange=True, showmeans=True)
axes[0].set_title("RMSE")
axes[1].boxplot(smape, labels=labels, autorange=True, showmeans=True)
axes[1].set_title("SMAPE")
axes[2].boxplot(u, labels=labels, autorange=True, showmeans=True)
axes[2].set_title("U Statistic")
plt.tight_layout()
Util.showAndSaveImage(fig, file, save)
def check_replace_list(m, replace):
if replace is not None:
for r in replace:
if r[0] in m:
return r[1]
return m
def check_ignore_list(b, ignore):
flag = False
if ignore is not None:
for i in ignore:
if i in b:
flag = True
return flag
def save_dataframe_interval(coverage, experiments, file, objs, resolution, save, sharpness, synthetic, times, q05, q25, q75, q95):
ret = []
if synthetic:
for k in sorted(objs.keys()):
mod = []
mfts = objs[k]
mod.append(mfts.shortname)
mod.append(mfts.order)
if not mfts.benchmark_only:
mod.append(mfts.partitioner.name)
mod.append(mfts.partitioner.partitions)
l = len(mfts)
else:
mod.append('-')
mod.append('-')
l = '-'
mod.append(round(np.nanmean(sharpness[k]), 2))
mod.append(round(np.nanstd(sharpness[k]), 2))
mod.append(round(np.nanmean(resolution[k]), 2))
mod.append(round(np.nanstd(resolution[k]), 2))
mod.append(round(np.nanmean(coverage[k]), 2))
mod.append(round(np.nanstd(coverage[k]), 2))
mod.append(round(np.nanmean(times[k]), 2))
mod.append(round(np.nanstd(times[k]), 2))
mod.append(round(np.nanmean(q05[k]), 2))
mod.append(round(np.nanstd(q05[k]), 2))
mod.append(round(np.nanmean(q25[k]), 2))
mod.append(round(np.nanstd(q25[k]), 2))
mod.append(round(np.nanmean(q75[k]), 2))
mod.append(round(np.nanstd(q75[k]), 2))
mod.append(round(np.nanmean(q95[k]), 2))
mod.append(round(np.nanstd(q95[k]), 2))
mod.append(l)
ret.append(mod)
columns = interval_dataframe_synthetic_columns()
else:
for k in sorted(objs.keys()):
try:
mfts = objs[k]
n = mfts.shortname
o = mfts.order
if not mfts.benchmark_only:
s = mfts.partitioner.name
p = mfts.partitioner.partitions
l = len(mfts)
else:
s = '-'
p = '-'
l = '-'
tmp = [n, o, s, p, l, 'Sharpness']
tmp.extend(sharpness[k])
ret.append(deepcopy(tmp))
tmp = [n, o, s, p, l, 'Resolution']
tmp.extend(resolution[k])
ret.append(deepcopy(tmp))
tmp = [n, o, s, p, l, 'Coverage']
tmp.extend(coverage[k])
ret.append(deepcopy(tmp))
tmp = [n, o, s, p, l, 'TIME']
tmp.extend(times[k])
ret.append(deepcopy(tmp))
tmp = [n, o, s, p, l, 'Q05']
tmp.extend(q05[k])
ret.append(deepcopy(tmp))
tmp = [n, o, s, p, l, 'Q25']
tmp.extend(q25[k])
ret.append(deepcopy(tmp))
tmp = [n, o, s, p, l, 'Q75']
tmp.extend(q75[k])
ret.append(deepcopy(tmp))
tmp = [n, o, s, p, l, 'Q95']
tmp.extend(q95[k])
ret.append(deepcopy(tmp))
except Exception as ex:
print("Erro ao salvar ", k)
print("Exceção ", ex)
columns = interval_dataframe_analytic_columns(experiments)
dat = pd.DataFrame(ret, columns=columns)
if save: dat.to_csv(Util.uniquefilename(file), sep=";")
return dat
def interval_dataframe_analytic_columns(experiments):
columns = [str(k) for k in np.arange(0, experiments)]
columns.insert(0, "Model")
columns.insert(1, "Order")
columns.insert(2, "Scheme")
columns.insert(3, "Partitions")
columns.insert(4, "Size")
columns.insert(5, "Measure")
return columns
def interval_dataframe_synthetic_columns():
columns = ["Model", "Order", "Scheme", "Partitions", "SHARPAVG", "SHARPSTD", "RESAVG", "RESSTD", "COVAVG",
"COVSTD", "TIMEAVG", "TIMESTD", "Q05AVG", "Q05STD", "Q25AVG", "Q25STD", "Q75AVG", "Q75STD", "Q95AVG", "Q95STD"]
return columns
def cast_dataframe_to_synthetic_interval(infile, outfile, experiments):
columns = interval_dataframe_analytic_columns(experiments)
dat = pd.read_csv(infile, sep=";", usecols=columns)
models = dat.Model.unique()
orders = dat.Order.unique()
schemes = dat.Scheme.unique()
partitions = dat.Partitions.unique()
data_columns = analytical_data_columns(experiments)
ret = []
for m in models:
for o in orders:
for s in schemes:
for p in partitions:
mod = []
df = dat[(dat.Model == m) & (dat.Order == o) & (dat.Scheme == s) & (dat.Partitions == p)]
if not df.empty:
sharpness = extract_measure(df, 'Sharpness', data_columns)
resolution = extract_measure(df, 'Resolution', data_columns)
coverage = extract_measure(df, 'Coverage', data_columns)
times = extract_measure(df, 'TIME', data_columns)
q05 = extract_measure(df, 'Q05', data_columns)
q25 = extract_measure(df, 'Q25', data_columns)
q75 = extract_measure(df, 'Q75', data_columns)
q95 = extract_measure(df, 'Q95', data_columns)
mod.append(m)
mod.append(o)
mod.append(s)
mod.append(p)
mod.append(np.round(np.nanmean(sharpness), 2))
mod.append(np.round(np.nanstd(sharpness), 2))
mod.append(np.round(np.nanmean(resolution), 2))
mod.append(np.round(np.nanstd(resolution), 2))
mod.append(np.round(np.nanmean(coverage), 2))
mod.append(np.round(np.nanstd(coverage), 2))
mod.append(np.round(np.nanmean(times), 4))
mod.append(np.round(np.nanstd(times), 4))
mod.append(np.round(np.nanmean(q05), 4))
mod.append(np.round(np.nanstd(q05), 4))
mod.append(np.round(np.nanmean(q25), 4))
mod.append(np.round(np.nanstd(q25), 4))
mod.append(np.round(np.nanmean(q75), 4))
mod.append(np.round(np.nanstd(q75), 4))
mod.append(np.round(np.nanmean(q95), 4))
mod.append(np.round(np.nanstd(q95), 4))
ret.append(mod)
dat = pd.DataFrame(ret, columns=interval_dataframe_synthetic_columns())
dat.to_csv(outfile, sep=";", index=False)
def plot_dataframe_interval(file_synthetic, file_analytic, experiments, tam, save=False, file=None,
sort_columns=['COVAVG', 'SHARPAVG', 'COVSTD', 'SHARPSTD'],
sort_ascend=[True, False, True, True],save_best=False,
ignore=None, replace=None):
fig, axes = plt.subplots(nrows=3, ncols=1, figsize=tam)
axes[0].set_title('Sharpness')
axes[1].set_title('Resolution')
axes[2].set_title('Coverage')
dat_syn = pd.read_csv(file_synthetic, sep=";", usecols=interval_dataframe_synthetic_columns())
bests = find_best(dat_syn, sort_columns, sort_ascend)
dat_ana = pd.read_csv(file_analytic, sep=";", usecols=interval_dataframe_analytic_columns(experiments))
data_columns = analytical_data_columns(experiments)
if save_best:
dat = pd.DataFrame.from_dict(bests, orient='index')
dat.to_csv(Util.uniquefilename(file_synthetic.replace("synthetic","best")), sep=";", index=False)
sharpness = []
resolution = []
coverage = []
times = []
labels = []
bounds_shp = []
for b in sorted(bests.keys()):
if check_ignore_list(b, ignore):
continue
best = bests[b]
df = dat_ana[(dat_ana.Model == best["Model"]) & (dat_ana.Order == best["Order"])
& (dat_ana.Scheme == best["Scheme"]) & (dat_ana.Partitions == best["Partitions"])]
sharpness.append( extract_measure(df,'Sharpness',data_columns) )
resolution.append(extract_measure(df, 'Resolution', data_columns))
coverage.append(extract_measure(df, 'Coverage', data_columns))
times.append(extract_measure(df, 'TIME', data_columns))
labels.append(check_replace_list(best["Model"] + " " + str(best["Order"]), replace))
axes[0].boxplot(sharpness, labels=labels, autorange=True, showmeans=True)
axes[0].set_title("Sharpness")
axes[1].boxplot(resolution, labels=labels, autorange=True, showmeans=True)
axes[1].set_title("Resolution")
axes[2].boxplot(coverage, labels=labels, autorange=True, showmeans=True)
axes[2].set_title("Coverage")
axes[2].set_ylim([0, 1.1])
plt.tight_layout()
Util.showAndSaveImage(fig, file, save)
def plot_dataframe_interval_pinball(file_synthetic, file_analytic, experiments, tam, save=False, file=None,
sort_columns=['COVAVG','SHARPAVG','COVSTD','SHARPSTD'],
sort_ascend=[True, False, True, True], save_best=False,
ignore=None, replace=None):
fig, axes = plt.subplots(nrows=1, ncols=4, figsize=tam)
axes[0].set_title(r'$\tau=0.05$')
axes[1].set_title(r'$\tau=0.25$')
axes[2].set_title(r'$\tau=0.75$')
axes[3].set_title(r'$\tau=0.95$')
dat_syn = pd.read_csv(file_synthetic, sep=";", usecols=interval_dataframe_synthetic_columns())
bests = find_best(dat_syn, sort_columns, sort_ascend)
dat_ana = pd.read_csv(file_analytic, sep=";", usecols=interval_dataframe_analytic_columns(experiments))
data_columns = analytical_data_columns(experiments)
if save_best:
dat = pd.DataFrame.from_dict(bests, orient='index')
dat.to_csv(Util.uniquefilename(file_synthetic.replace("synthetic","best")), sep=";", index=False)
q05 = []
q25 = []
q75 = []
q95 = []
labels = []
for b in sorted(bests.keys()):
if check_ignore_list(b, ignore):
continue
best = bests[b]
df = dat_ana[(dat_ana.Model == best["Model"]) & (dat_ana.Order == best["Order"])
& (dat_ana.Scheme == best["Scheme"]) & (dat_ana.Partitions == best["Partitions"])]
q05.append(extract_measure(df, 'Q05', data_columns))
q25.append(extract_measure(df, 'Q25', data_columns))
q75.append(extract_measure(df, 'Q75', data_columns))
q95.append(extract_measure(df, 'Q95', data_columns))
labels.append(check_replace_list(best["Model"] + " " + str(best["Order"]), replace))
axes[0].boxplot(q05, labels=labels, vert=False, autorange=True, showmeans=True)
axes[1].boxplot(q25, labels=labels, vert=False, autorange=True, showmeans=True)
axes[2].boxplot(q75, labels=labels, vert=False, autorange=True, showmeans=True)
axes[3].boxplot(q95, labels=labels, vert=False, autorange=True, showmeans=True)
plt.tight_layout()
Util.showAndSaveImage(fig, file, save)
def save_dataframe_ahead(experiments, file, objs, crps_interval, crps_distr, times1, times2, save, synthetic):
"""
Save benchmark results for m-step ahead probabilistic forecasters
:param experiments:
:param file:
:param objs:
:param crps_interval:
:param crps_distr:
:param times1:
:param times2:
:param save:
:param synthetic:
:return:
"""
ret = []
if synthetic:
for k in sorted(objs.keys()):
try:
ret = []
for k in sorted(objs.keys()):
try:
mod = []
mfts = objs[k]
mod.append(mfts.shortname)
mod.append(mfts.order)
if not mfts.benchmark_only:
mod.append(mfts.partitioner.name)
mod.append(mfts.partitioner.partitions)
l = len(mfts)
else:
mod.append('-')
mod.append('-')
l = '-'
mod.append(np.round(np.nanmean(crps_interval[k]), 2))
mod.append(np.round(np.nanstd(crps_interval[k]), 2))
mod.append(np.round(np.nanmean(crps_distr[k]), 2))
mod.append(np.round(np.nanstd(crps_distr[k]), 2))
mod.append(l)
mod.append(np.round(np.nanmean(times1[k]), 4))
mod.append(np.round(np.nanmean(times2[k]), 4))
ret.append(mod)
except Exception as e:
print('Erro: %s' % e)
except Exception as ex:
print("Erro ao salvar ", k)
print("Exceção ", ex)
columns = ahead_dataframe_synthetic_columns()
else:
for k in sorted(objs.keys()):
try:
mfts = objs[k]
n = mfts.shortname
o = mfts.order
if not mfts.benchmark_only:
s = mfts.partitioner.name
p = mfts.partitioner.partitions
l = len(mfts)
else:
s = '-'
p = '-'
l = '-'
tmp = [n, o, s, p, l, 'CRPS_Interval']
tmp.extend(crps_interval[k])
ret.append(deepcopy(tmp))
tmp = [n, o, s, p, l, 'CRPS_Distribution']
tmp.extend(crps_distr[k])
ret.append(deepcopy(tmp))
tmp = [n, o, s, p, l, 'TIME_Interval']
tmp.extend(times1[k])
ret.append(deepcopy(tmp))
tmp = [n, o, s, p, l, 'TIME_Distribution']
tmp.extend(times2[k])
ret.append(deepcopy(tmp))
except Exception as ex:
print("Erro ao salvar ", k)
print("Exceção ", ex)
columns = ahead_dataframe_analytic_columns(experiments)
dat = pd.DataFrame(ret, columns=columns)
if save: dat.to_csv(Util.uniquefilename(file), sep=";")
return dat
def ahead_dataframe_analytic_columns(experiments):
columns = [str(k) for k in np.arange(0, experiments)]
columns.insert(0, "Model")
columns.insert(1, "Order")
columns.insert(2, "Scheme")
columns.insert(3, "Partitions")
columns.insert(4, "Size")
columns.insert(5, "Measure")
return columns
def ahead_dataframe_synthetic_columns():
columns = ["Model", "Order", "Scheme", "Partitions", "CRPS1AVG", "CRPS1STD", "CRPS2AVG", "CRPS2STD",
"TIME1AVG", "TIME1STD", "TIME2AVG", "TIME2STD"]
return columns
def cast_dataframe_to_synthetic_ahead(infile, outfile, experiments):
columns = ahead_dataframe_analytic_columns(experiments)
dat = pd.read_csv(infile, sep=";", usecols=columns)
models = dat.Model.unique()
orders = dat.Order.unique()
schemes = dat.Scheme.unique()
partitions = dat.Partitions.unique()
data_columns = analytical_data_columns(experiments)
ret = []
for m in models:
for o in orders:
for s in schemes:
for p in partitions:
mod = []
df = dat[(dat.Model == m) & (dat.Order == o) & (dat.Scheme == s) & (dat.Partitions == p)]
if not df.empty:
crps1 = extract_measure(df, 'CRPS_Interval', data_columns)
crps2 = extract_measure(df, 'CRPS_Distribution', data_columns)
times1 = extract_measure(df, 'TIME_Interval', data_columns)
times2 = extract_measure(df, 'TIME_Distribution', data_columns)
mod.append(m)
mod.append(o)
mod.append(s)
mod.append(p)
mod.append(np.round(np.nanmean(crps1), 2))
mod.append(np.round(np.nanstd(crps1), 2))
mod.append(np.round(np.nanmean(crps2), 2))
mod.append(np.round(np.nanstd(crps2), 2))
mod.append(np.round(np.nanmean(times1), 2))
mod.append(np.round(np.nanstd(times1), 2))
mod.append(np.round(np.nanmean(times2), 4))
mod.append(np.round(np.nanstd(times2), 4))
ret.append(mod)
dat = pd.DataFrame(ret, columns=ahead_dataframe_synthetic_columns())
dat.to_csv(outfile, sep=";", index=False)
def plot_dataframe_ahead(file_synthetic, file_analytic, experiments, tam, save=False, file=None,
sort_columns=['CRPS1AVG', 'CRPS2AVG', 'CRPS1STD', 'CRPS2STD'],
sort_ascend=[True, True, True, True],save_best=False,
ignore=None, replace=None):
fig, axes = plt.subplots(nrows=2, ncols=1, figsize=tam)
axes[0].set_title('CRPS Interval Ahead')
axes[1].set_title('CRPS Distribution Ahead')
dat_syn = pd.read_csv(file_synthetic, sep=";", usecols=ahead_dataframe_synthetic_columns())
bests = find_best(dat_syn, sort_columns, sort_ascend)
dat_ana = pd.read_csv(file_analytic, sep=";", usecols=ahead_dataframe_analytic_columns(experiments))
data_columns = analytical_data_columns(experiments)
if save_best:
dat = pd.DataFrame.from_dict(bests, orient='index')
dat.to_csv(Util.uniquefilename(file_synthetic.replace("synthetic","best")), sep=";", index=False)
crps1 = []
crps2 = []
labels = []
for b in sorted(bests.keys()):
if check_ignore_list(b, ignore):
continue
best = bests[b]
df = dat_ana[(dat_ana.Model == best["Model"]) & (dat_ana.Order == best["Order"])
& (dat_ana.Scheme == best["Scheme"]) & (dat_ana.Partitions == best["Partitions"])]
crps1.append( extract_measure(df,'CRPS_Interval',data_columns) )
crps2.append(extract_measure(df, 'CRPS_Distribution', data_columns))
labels.append(check_replace_list(best["Model"] + " " + str(best["Order"]), replace))
axes[0].boxplot(crps1, labels=labels, autorange=True, showmeans=True)
axes[1].boxplot(crps2, labels=labels, autorange=True, showmeans=True)
plt.tight_layout()
Util.showAndSaveImage(fig, file, save)