pyFTS/tests/general.py

338 lines
13 KiB
Python
Raw Normal View History

#!/usr/bin/python
# -*- coding: utf8 -*-
import os
import numpy as np
import pandas as pd
import matplotlib as plt
import matplotlib.pyplot as plt
#from mpl_toolkits.mplot3d import Axes3D
import pandas as pd
2017-02-27 22:53:29 +04:00
from pyFTS.partitioners import Grid, Entropy, FCM, Huarng
from pyFTS.common import FLR,FuzzySet,Membership,Transformations, Util as cUtil
from pyFTS import fts,hofts,ifts,pwfts,tree, chen
#from pyFTS.benchmarks import benchmarks as bchmk
from pyFTS.benchmarks import naive, arima
from pyFTS.benchmarks import Measures
from numpy import random
2017-05-22 07:44:07 +04:00
from pyFTS.models.seasonal import SeasonalIndexer
2017-05-07 00:04:37 +04:00
os.chdir("/home/petronio/dados/Dropbox/Doutorado/Codigos/")
diff = Transformations.Differential(1)
#ix = SeasonalIndexer.LinearSeasonalIndexer([12, 24], [720, 1],[False, False])
2017-05-14 15:54:41 +04:00
"""
DATASETS
"""
2017-05-22 01:04:10 +04:00
#enrollments = pd.read_csv("DataSets/Enrollments.csv", sep=";")
#enrollments = np.array(enrollments["Enrollments"])
#passengers = pd.read_csv("DataSets/AirPassengers.csv", sep=",")
#passengers = np.array(passengers["Passengers"])
#sunspots = pd.read_csv("DataSets/sunspots.csv", sep=",")
#sunspots = np.array(sunspots["SUNACTIVITY"])
#gauss = random.normal(0,1.0,5000)
#gauss_teste = random.normal(0,1.0,400)
2017-05-22 01:04:10 +04:00
#taiexpd = pd.read_csv("DataSets/TAIEX.csv", sep=",")
#taiex = np.array(taiexpd["avg"][:5000])
#del(taiexpd)
#nasdaqpd = pd.read_csv("DataSets/NASDAQ_IXIC.csv", sep=",")
#nasdaq = np.array(nasdaqpd["avg"][0:5000])
#del(nasdaqpd)
2017-02-27 22:53:29 +04:00
#sp500pd = pd.read_csv("DataSets/S&P500.csv", sep=",")
#sp500 = np.array(sp500pd["Avg"][11000:])
#del(sp500pd)
#sondapd = pd.read_csv("DataSets/SONDA_BSB_HOURLY_AVG.csv", sep=";")
#sondapd = sondapd.dropna(axis=0, how='any')
#sonda = np.array(sondapd["glo_avg"])
#del(sondapd)
#bestpd = pd.read_csv("DataSets/BEST_TAVG.csv", sep=";")
#best = np.array(bestpd["Anomaly"])
#del(bestpd)
#print(lag)
#print(a)
sonda = pd.read_csv("DataSets/SONDA_BSB_MOD.csv", sep=";")
sonda['data'] = pd.to_datetime(sonda['data'])
sonda = sonda[:][527041:]
sonda.index = np.arange(0,len(sonda.index))
sonda_treino = sonda[:1051200]
sonda_teste = sonda[1051901:1051910]
ix_m15 = SeasonalIndexer.DateTimeSeasonalIndexer('data',[SeasonalIndexer.DateTime.minute],[15],'glo_avg', name='m15')
fs1 = Grid.GridPartitioner(sonda_treino,50,transformation=diff, indexer=ix_m15)
'''
from pyFTS.models.seasonal import SeasonalIndexer
indexers = []
for i in ["models/sonda_ix_Mhm15.pkl"]: #, "models/sonda_ix_m15.pkl", "models/sonda_ix_Mh.pkl", ]:
obj = cUtil.load_obj(i)
indexers.append( obj )
print(obj)
partitioners = []
transformations = [""] #, "_diff"]
for max_part in [30, 40, 50, 60, 70, 80, 90]:
for t in transformations:
obj = cUtil.load_obj("models/sonda_fs_grid_" + str(max_part) + t + ".pkl")
partitioners.append( obj )
print(obj)
from pyFTS.ensemble import ensemble, multiseasonal
fts = multiseasonal.SeasonalEnsembleFTS("sonda_msfts_Mhm15")
fts.indexers = indexers
fts.partitioners = partitioners
fts.indexer = indexers[0]
fts.train(sonda_treino, sets=None)
'''
#'''
#ix = cUtil.load_obj("models/sonda_ix_m15.pkl")
#ftse = cUtil.load_obj("models/msfts_Grid40_diff_Mhm15.pkl")
#ftse.indexer = ix
#ftse.update_uod(sonda_treino)
#tmp = ftse.forecastDistribution(sonda_teste,h=1)
#tmp = ftse.forecast(sonda_teste,h=1)
#tmp[5].plot()
#'''
'''
from pyFTS.benchmarks import benchmarks as bchmk
#from pyFTS.benchmarks import distributed_benchmarks as bchmk
#from pyFTS.benchmarks import parallel_benchmarks as bchmk
from pyFTS.benchmarks import Util
from pyFTS.benchmarks import arima, quantreg, Measures
#Util.cast_dataframe_to_synthetic_point("experiments/taiex_point_analitic.csv","experiments/taiex_point_sintetic.csv",11)
#Util.plot_dataframe_point("experiments/taiex_point_sintetic.csv","experiments/taiex_point_analitic.csv",11)
"""
arima100 = arima.ARIMA("", alpha=0.25)
2017-05-14 15:54:41 +04:00
#tmp.appendTransformation(diff)
arima100.train(passengers, None, order=(1,0,0))
arima101 = arima.ARIMA("", alpha=0.25)
#tmp.appendTransformation(diff)
arima101.train(passengers, None, order=(1,0,1))
arima200 = arima.ARIMA("", alpha=0.25)
#tmp.appendTransformation(diff)
arima200.train(passengers, None, order=(2,0,0))
arima201 = arima.ARIMA("", alpha=0.25)
#tmp.appendTransformation(diff)
arima201.train(passengers, None, order=(2,0,1))
#tmp = quantreg.QuantileRegression("", alpha=0.25, dist=True)
#tmp.appendTransformation(diff)
#tmp.train(sunspots[:150], None, order=1)
#teste = tmp.forecastAheadInterval(sunspots[150:155], 5)
#teste = tmp.forecastAheadDistribution(nasdaq[1600:1604], steps=5, resolution=50)
bchmk.plot_compared_series(enrollments,[tmp], ['blue','red'], points=False, intervals=True)
#print(sunspots[150:155])
#print(teste)
2017-05-14 15:54:41 +04:00
#kk = Measures.get_interval_statistics(nasdaq[1600:1605], tmp)
#print(kk)
"""
2017-05-14 15:54:41 +04:00
"""
bchmk.point_sliding_window(sonda, 9000, train=0.8, inc=0.4,#models=[yu.WeightedFTS], # #
partitioners=[Grid.GridPartitioner], #Entropy.EntropyPartitioner], # FCM.FCMPartitioner, ],
partitions= np.arange(10,200,step=10), #transformation=diff,
dump=True, save=True, file="experiments/sondaws_point_analytic.csv",
nodes=['192.168.0.103', '192.168.0.106', '192.168.0.108', '192.168.0.109']) #, depends=[hofts, ifts])
bchmk.point_sliding_window(sonda, 9000, train=0.8, inc=0.4, #models=[yu.WeightedFTS], # #
partitioners=[Grid.GridPartitioner], #Entropy.EntropyPartitioner], # FCM.FCMPartitioner, ],
partitions= np.arange(3,20,step=2), #transformation=diff,
dump=True, save=True, file="experiments/sondaws_point_analytic_diff.csv",
nodes=['192.168.0.103', '192.168.0.106', '192.168.0.108', '192.168.0.109']) #, depends=[hofts, ifts])
bchmk.interval_sliding_window(best, 5000, train=0.8, inc=0.8,#models=[yu.WeightedFTS], # #
partitioners=[Grid.GridPartitioner], #Entropy.EntropyPartitioner], # FCM.FCMPartitioner, ],
partitions= np.arange(10,200,step=10),
dump=True, save=True, file="experiments/best"
"_interval_analytic.csv",
nodes=['192.168.0.103', '192.168.0.106', '192.168.0.108', '192.168.0.109']) #, depends=[hofts, ifts])
bchmk.interval_sliding_window(taiex, 2000, train=0.8, inc=0.1, #models=[yu.WeightedFTS], # #
partitioners=[Grid.GridPartitioner], #Entropy.EntropyPartitioner], # FCM.FCMPartitioner, ],
2017-05-14 15:54:41 +04:00
partitions= np.arange(3,20,step=2), transformation=diff,
dump=True, save=True, file="experiments/taiex_interval_analytic_diff.csv",
nodes=['192.168.0.103', '192.168.0.106', '192.168.0.108', '192.168.0.109']) #, depends=[hofts, ifts])
2017-05-22 01:04:10 +04:00
bchmk.ahead_sliding_window(sonda, 10000, steps=10, resolution=10, train=0.2, inc=0.2,
partitioners=[Grid.GridPartitioner],
2017-05-22 07:44:07 +04:00
partitions= np.arange(10,200,step=10), indexer=ix,
dump=True, save=True, file="experiments/sondawind_ahead_analytic.csv",
2017-05-22 01:04:10 +04:00
nodes=['192.168.0.106', '192.168.0.108', '192.168.0.109']) #, depends=[hofts, ifts])
bchmk.ahead_sliding_window(sonda, 10000, steps=10, resolution=10, train=0.2, inc=0.2,
partitioners=[Grid.GridPartitioner],
2017-05-22 07:44:07 +04:00
partitions= np.arange(3,20,step=2), transformation=diff, indexer=ix,
dump=True, save=True, file="experiments/sondawind_ahead_analytic_diff.csv",
2017-05-22 01:04:10 +04:00
nodes=['192.168.0.106', '192.168.0.108', '192.168.0.109']) #, depends=[hofts, ifts])
"""
from pyFTS import pwfts
from pyFTS.common import Transformations
from pyFTS.partitioners import Grid
#diff = Transformations.Differential(1)
#fs = Grid.GridPartitioner(best, 190) #, transformation=diff)
#model = pwfts.ProbabilisticWeightedFTS("FTS 1")
#model.appendTransformation(diff)
#model.train(best[0:1600],fs.sets, order=3)
#bchmk.plot_compared_intervals_ahead(best[1600:1700],[model], ['blue','red'],
# distributions=[True], save=True, file="pictures/best_ahead_forecasts",
# time_from=40, time_to=60, resolution=100)
'''
experiments = [
["experiments/taiex_point_synthetic_diff.csv","experiments/taiex_point_analytic_diff.csv",16],
["experiments/nasdaq_point_synthetic_diff.csv","experiments/nasdaq_point_analytic_diff.csv", 11],
["experiments/sp500_point_synthetic_diff.csv","experiments/sp500_point_analytic_diff.csv", 21],
["experiments/best_point_synthetic_diff.csv","experiments/best_point_analytic_diff.csv", 13],
["experiments/sondasun_point_synthetic_diff.csv","experiments/sondasun_point_analytic_diff.csv", 15],
["experiments/sondawind_point_synthetic_diff.csv","experiments/sondawind_point_analytic_diff.csv", 8],
["experiments/gauss_point_synthetic_diff.csv","experiments/gauss_point_analytic_diff.csv", 16]
]
Util.unified_scaled_point(experiments,tam=[15,8],save=True,file="pictures/unified_experiments_point.png",
ignore=['ARIMA(1,0,0)','ARIMA(2,0,0)','ARIMA(2,0,1)','ARIMA(2,0,2)','QAR(2)'],
replace=[['ARIMA','ARIMA'],['QAR','QAR']])
'''
'''
experiments = [
["experiments/taiex_interval_synthetic.csv","experiments/taiex_interval_analytic.csv",16],
["experiments/nasdaq_interval_synthetic_diff.csv","experiments/nasdaq_interval_analytic_diff.csv",11],
["experiments/sp500_interval_synthetic_diff.csv","experiments/sp500_interval_analytic_diff.csv", 11],
["experiments/best_interval_synthetic_diff.csv","experiments/best_interval_analytic_diff.csv",13],
["experiments/sondasun_interval_synthetic_diff.csv","experiments/sondasun_interval_analytic_diff.csv",8],
["experiments/sondawind_interval_synthetic_diff.csv","experiments/sondawind_interval_analytic_diff.csv",8],
["experiments/gauss_interval_synthetic_diff.csv","experiments/gauss_interval_analytic_diff.csv", 8]
]
Util.unified_scaled_interval(experiments,tam=[15,8],save=True,file="pictures/unified_experiments_interval.png",
ignore=['ARIMA(1,0,0)', 'ARIMA(2,0,0)', 'ARIMA(2,0,1)', 'ARIMA(2,0,2)', 'QAR(2)'],
replace=[['ARIMA(1,0,1) - 0.05', 'ARIMA 0.05'], ['ARIMA(1,0,1) - 0.25', 'ARIMA 0.25'],
['QAR(1) - 0.05', 'QAR 0.05'], ['QAR(1) - 0.25', 'QAR 0.25']])
Util.unified_scaled_interval_pinball(experiments,tam=[15,8],save=True,file="pictures/unified_experiments_interval_pinball.png",
ignore=['ARIMA(1,0,0)', 'ARIMA(2,0,0)', 'ARIMA(2,0,1)', 'ARIMA(2,0,2)', 'QAR(2)'],
replace=[['ARIMA(1,0,1) - 0.05', 'ARIMA 0.05'], ['ARIMA(1,0,1) - 0.25', 'ARIMA 0.25'],
['QAR(1) - 0.05', 'QAR 0.05'], ['QAR(1) - 0.25', 'QAR 0.25']])
'''
'''
experiments = [
["experiments/taiex_ahead_synthetic_diff.csv","experiments/taiex_ahead_analytic_diff.csv",16],
["experiments/nasdaq_ahead_synthetic_diff.csv","experiments/nasdaq_ahead_analytic_diff.csv",11],
["experiments/sp500_ahead_synthetic_diff.csv","experiments/sp500_ahead_analytic_diff.csv", 21],
["experiments/best_ahead_synthetic_diff.csv","experiments/best_ahead_analytic_diff.csv", 24],
["experiments/sondasun_ahead_synthetic_diff.csv","experiments/sondasun_ahead_analytic_diff.csv",13],
["experiments/sondawind_ahead_synthetic_diff.csv","experiments/sondawind_ahead_analytic_diff.csv", 13],
["experiments/gauss_ahead_synthetic_diff.csv","experiments/gauss_ahead_analytic_diff.csv",16]
]
Util.unified_scaled_ahead(experiments,tam=[15,8],save=True,file="pictures/unified_experiments_ahead.png",
ignore=['ARIMA(1,0,0)', 'ARIMA(0,0,1)', 'ARIMA(2,0,0)', 'ARIMA(2,0,1)',
'ARIMA(2,0,2)', 'QAR(2)', 'ARIMA0.05'],
replace=[['ARIMA(1,0,1) - 0.05', 'ARIMA 0.05'], ['ARIMA(1,0,1) - 0.25', 'ARIMA 0.25'],
['QAR(1) - 0.05', 'QAR 0.05'], ['QAR(1) - 0.25', 'QAR 0.25']])
'''
'''
from pyFTS.partitioners import Grid
2017-05-22 07:44:07 +04:00
2017-05-22 01:04:10 +04:00
from pyFTS import sfts
2017-05-22 07:44:07 +04:00
2017-05-22 01:04:10 +04:00
#print(ix.get_season_of_data(best[:2000]))
2017-02-27 22:53:29 +04:00
2017-05-22 01:04:10 +04:00
#print(ix.get_season_by_index(45))
2017-05-22 07:44:07 +04:00
#ix = SeasonalIndexer.LinearSeasonalIndexer([720,24],[False,True,False])
#print(ix.get_season_of_data(sonda[6500:9000])[-20:])
2017-05-22 01:04:10 +04:00
diff = Transformations.Differential(1)
2017-02-27 22:53:29 +04:00
2017-05-22 07:44:07 +04:00
fs = Grid.GridPartitioner(sonda[:9000], 10, transformation=diff)
'''
2017-05-22 01:04:10 +04:00
tmp = sfts.SeasonalFTS("")
tmp.indexer = ix
tmp.appendTransformation(diff)
2017-02-27 22:53:29 +04:00
2017-05-22 01:04:10 +04:00
#tmp = pwfts.ProbabilisticWeightedFTS("")
#tmp.appendTransformation(diff)
2017-05-22 07:44:07 +04:00
tmp.train(sonda[:9000], fs.sets, order=1)
2017-05-22 07:44:07 +04:00
x = tmp.forecast(sonda[:1610])
2017-05-22 01:04:10 +04:00
#print(taiex[1600:1610])
print(x)
'''