Compare commits
No commits in common. "1dc44f79889eae29b0f0bbb36e5abb5f0965304e" and "d03cb194ee0ef081af66d40fd63081155a68def7" have entirely different histories.
1dc44f7988
...
d03cb194ee
@ -30,6 +30,7 @@ public class AssessmentController {
|
|||||||
model.addAttribute("branches", branchService.findAllValid());
|
model.addAttribute("branches", branchService.findAllValid());
|
||||||
if (branchId.isPresent()) {
|
if (branchId.isPresent()) {
|
||||||
model.addAttribute("assessments", assessmentService.getAssessments(branchId.get()));
|
model.addAttribute("assessments", assessmentService.getAssessments(branchId.get()));
|
||||||
|
model.addAttribute("singleAssessment", assessmentService.getSingleAssessment(branchId.get()));
|
||||||
model.addAttribute("filterBranchForm", new FilterBranchForm(branchId.get()));
|
model.addAttribute("filterBranchForm", new FilterBranchForm(branchId.get()));
|
||||||
} else {
|
} else {
|
||||||
model.addAttribute("filterBranchForm", new FilterBranchForm());
|
model.addAttribute("filterBranchForm", new FilterBranchForm());
|
||||||
|
@ -2,6 +2,7 @@ package ru.ulstu.extractor.assessment.service;
|
|||||||
|
|
||||||
import org.springframework.stereotype.Service;
|
import org.springframework.stereotype.Service;
|
||||||
import ru.ulstu.extractor.assessment.model.Assessment;
|
import ru.ulstu.extractor.assessment.model.Assessment;
|
||||||
|
import ru.ulstu.extractor.rule.model.AssessmentException;
|
||||||
import ru.ulstu.extractor.rule.model.DbRule;
|
import ru.ulstu.extractor.rule.model.DbRule;
|
||||||
import ru.ulstu.extractor.rule.service.AntecedentValueService;
|
import ru.ulstu.extractor.rule.service.AntecedentValueService;
|
||||||
import ru.ulstu.extractor.rule.service.DbRuleService;
|
import ru.ulstu.extractor.rule.service.DbRuleService;
|
||||||
@ -9,9 +10,12 @@ import ru.ulstu.extractor.rule.service.FuzzyInferenceService;
|
|||||||
import ru.ulstu.extractor.ts.model.TimeSeries;
|
import ru.ulstu.extractor.ts.model.TimeSeries;
|
||||||
import ru.ulstu.extractor.ts.service.TimeSeriesService;
|
import ru.ulstu.extractor.ts.service.TimeSeriesService;
|
||||||
|
|
||||||
|
import java.util.ArrayList;
|
||||||
|
import java.util.Comparator;
|
||||||
import java.util.HashMap;
|
import java.util.HashMap;
|
||||||
import java.util.List;
|
import java.util.List;
|
||||||
import java.util.Map;
|
import java.util.Map;
|
||||||
|
import java.util.stream.Collectors;
|
||||||
|
|
||||||
@Service
|
@Service
|
||||||
public class AssessmentService {
|
public class AssessmentService {
|
||||||
@ -33,10 +37,44 @@ public class AssessmentService {
|
|||||||
public List<Assessment> getAssessments(Integer branchId) {
|
public List<Assessment> getAssessments(Integer branchId) {
|
||||||
List<TimeSeries> timeSeries = timeSeriesService.getByBranch(branchId);
|
List<TimeSeries> timeSeries = timeSeriesService.getByBranch(branchId);
|
||||||
List<DbRule> dbRules = ruleService.getList();
|
List<DbRule> dbRules = ruleService.getList();
|
||||||
|
try {
|
||||||
|
return getAssessments(dbRules, timeSeries);
|
||||||
|
} catch (AssessmentException ex) {
|
||||||
|
ex.printStackTrace();
|
||||||
|
return new ArrayList<>();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
public List<Assessment> getSingleAssessment(Integer branchId) throws AssessmentException {
|
||||||
|
List<TimeSeries> timeSeries = timeSeriesService.getByBranch(branchId);
|
||||||
|
List<DbRule> dbRules = ruleService.getList();
|
||||||
|
return getSingleAssessment(dbRules, timeSeries);
|
||||||
|
}
|
||||||
|
|
||||||
|
private List<Assessment> getSingleAssessment(List<DbRule> dbRules, List<TimeSeries> timeSeries) throws AssessmentException {
|
||||||
Map<String, Double> variableValues = new HashMap<>();
|
Map<String, Double> variableValues = new HashMap<>();
|
||||||
timeSeries.forEach(ts -> variableValues.put(ts.getTimeSeriesType().name(), timeSeriesService.getLastTimeSeriesTendency(ts)));
|
timeSeries.forEach(ts -> variableValues.put(ts.getTimeSeriesType().name(), timeSeriesService.getLastTimeSeriesTendency(ts)));
|
||||||
return fuzzyInferenceService.getFuzzyInference(dbRules,
|
return fuzzyInferenceService.getFuzzyInference(dbRules,
|
||||||
antecedentValueService.getList(),
|
antecedentValueService.getList(),
|
||||||
variableValues);
|
variableValues);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
private List<Assessment> getAssessments(List<DbRule> dbRules, List<TimeSeries> timeSeries) {
|
||||||
|
return dbRules
|
||||||
|
.stream()
|
||||||
|
.flatMap(dbRule -> {
|
||||||
|
Map<String, Double> variableValues = new HashMap<>();
|
||||||
|
timeSeries
|
||||||
|
.stream()
|
||||||
|
.filter(ts -> ts.getTimeSeriesType() == dbRule.getFirstAntecedent()
|
||||||
|
|| ts.getTimeSeriesType() == dbRule.getSecondAntecedent())
|
||||||
|
.forEach(ts -> variableValues.put(ts.getTimeSeriesType().name(), timeSeriesService
|
||||||
|
.getLastTimeSeriesTendency(ts)));
|
||||||
|
return fuzzyInferenceService.getFuzzyInference(List.of(dbRule),
|
||||||
|
antecedentValueService.getList(),
|
||||||
|
variableValues).stream();
|
||||||
|
})
|
||||||
|
.sorted(Comparator.comparing(Assessment::getDegree))
|
||||||
|
.collect(Collectors.toList());
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
@ -8,7 +8,6 @@ import com.fuzzylite.norm.t.AlgebraicProduct;
|
|||||||
import com.fuzzylite.norm.t.Minimum;
|
import com.fuzzylite.norm.t.Minimum;
|
||||||
import com.fuzzylite.rule.Rule;
|
import com.fuzzylite.rule.Rule;
|
||||||
import com.fuzzylite.rule.RuleBlock;
|
import com.fuzzylite.rule.RuleBlock;
|
||||||
import com.fuzzylite.term.Activated;
|
|
||||||
import com.fuzzylite.term.Triangle;
|
import com.fuzzylite.term.Triangle;
|
||||||
import com.fuzzylite.variable.InputVariable;
|
import com.fuzzylite.variable.InputVariable;
|
||||||
import com.fuzzylite.variable.OutputVariable;
|
import com.fuzzylite.variable.OutputVariable;
|
||||||
@ -58,11 +57,20 @@ public class FuzzyInferenceService {
|
|||||||
input.setName(key);
|
input.setName(key);
|
||||||
input.setDescription("");
|
input.setDescription("");
|
||||||
input.setEnabled(true);
|
input.setEnabled(true);
|
||||||
|
double delta = antecedentValues.size() > 1
|
||||||
|
? 2.0 / (antecedentValues.size() - 1)
|
||||||
|
: 2.0;
|
||||||
input.setRange(-1, 1);
|
input.setRange(-1, 1);
|
||||||
input.setLockValueInRange(false);
|
input.setLockValueInRange(false);
|
||||||
input.addTerm(new Triangle("спад", -1, 0));
|
for (int i = 0; i < antecedentValues.size(); i++) {
|
||||||
input.addTerm(new Triangle("стабильно", -0.1, 0.1));
|
input.addTerm(
|
||||||
input.addTerm(new Triangle("рост", 0, 1));
|
new Triangle(
|
||||||
|
antecedentValues.get(i).getAntecedentValue(),
|
||||||
|
-1 + i * delta - 0.5 * delta,
|
||||||
|
-1 + i * delta + delta + 0.5 * delta
|
||||||
|
)
|
||||||
|
);
|
||||||
|
}
|
||||||
engine.addInputVariable(input);
|
engine.addInputVariable(input);
|
||||||
});
|
});
|
||||||
|
|
||||||
@ -106,23 +114,18 @@ public class FuzzyInferenceService {
|
|||||||
List<AntecedentValue> antecedentValues,
|
List<AntecedentValue> antecedentValues,
|
||||||
Map<String, Double> variableValues) {
|
Map<String, Double> variableValues) {
|
||||||
validateVariables(variableValues, dbRules);
|
validateVariables(variableValues, dbRules);
|
||||||
variableValues.entrySet().forEach(e -> System.out.println(e.getKey() + " " + e.getValue()));
|
|
||||||
Engine engine = getFuzzyEngine();
|
Engine engine = getFuzzyEngine();
|
||||||
List<Integer> consequentValues = dbRules.stream().map(DbRule::getId).collect(Collectors.toList());
|
List<Integer> consequentValues = dbRules.stream().map(DbRule::getId).collect(Collectors.toList());
|
||||||
engine.addRuleBlock(getRuleBlock(engine, dbRules, variableValues, antecedentValues, consequentValues));
|
engine.addRuleBlock(getRuleBlock(engine, dbRules, variableValues, antecedentValues, consequentValues));
|
||||||
Map<String, Double> consequents = getConsequent(engine, variableValues);
|
Map.Entry<String, Double> consequent = getConsequent(engine, variableValues);
|
||||||
if (consequents.containsKey(NO_RESULT)) {
|
if (consequent.getKey().equals(NO_RESULT)) {
|
||||||
return new ArrayList<>();
|
return new ArrayList<>();
|
||||||
}
|
}
|
||||||
List<Assessment> assessments = new ArrayList<>();
|
return dbRules
|
||||||
for (Map.Entry<String, Double> consequent : consequents.entrySet()) {
|
.stream()
|
||||||
for (DbRule dbRule : dbRules) {
|
.filter(r -> r.getId().equals(Integer.valueOf(consequent.getKey())))
|
||||||
if (dbRule.getId().equals(Integer.valueOf(consequent.getKey()))) {
|
.map(r -> new Assessment(r, consequent.getValue()))
|
||||||
assessments.add(new Assessment(dbRule, consequent.getValue()));
|
.collect(Collectors.toList());
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return assessments;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -139,7 +142,7 @@ public class FuzzyInferenceService {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
private Map<String, Double> getConsequent(Engine engine, Map<String, Double> variableValues) {
|
private Map.Entry<String, Double> getConsequent(Engine engine, Map<String, Double> variableValues) {
|
||||||
OutputVariable outputVariable = engine.getOutputVariable(OUTPUT_VARIABLE_NAME);
|
OutputVariable outputVariable = engine.getOutputVariable(OUTPUT_VARIABLE_NAME);
|
||||||
for (Map.Entry<String, Double> variableValue : variableValues.entrySet()) {
|
for (Map.Entry<String, Double> variableValue : variableValues.entrySet()) {
|
||||||
InputVariable inputVariable = engine.getInputVariable(variableValue.getKey());
|
InputVariable inputVariable = engine.getInputVariable(variableValue.getKey());
|
||||||
@ -149,8 +152,8 @@ public class FuzzyInferenceService {
|
|||||||
if (outputVariable != null) {
|
if (outputVariable != null) {
|
||||||
LOG.info("Output: {}", outputVariable.getValue());
|
LOG.info("Output: {}", outputVariable.getValue());
|
||||||
}
|
}
|
||||||
return Double.isNaN(outputVariable.getValue())
|
return (outputVariable == null || Double.isNaN(outputVariable.getValue()))
|
||||||
? Map.of(NO_RESULT, 0.0)
|
? Map.entry(NO_RESULT, 0.0)
|
||||||
: outputVariable.fuzzyOutput().getTerms().stream().collect(Collectors.toMap(t -> t.getTerm().getName(), Activated::getDegree));
|
: Map.entry(outputVariable.highestMembershipTerm(outputVariable.getValue()).getName(), outputVariable.getValue());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -46,5 +46,22 @@
|
|||||||
<div th:if="${assessments != null && #lists.size(assessments) == 0}">
|
<div th:if="${assessments != null && #lists.size(assessments) == 0}">
|
||||||
<h5>Нет результатов</h5>
|
<h5>Нет результатов</h5>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
|
<hr/>
|
||||||
|
|
||||||
|
<div th:if="${singleAssessment != null && #lists.size(assessments) > 0}">
|
||||||
|
<h5>Состояние репозитория по лидирующему правилу описывается следующими выражениями:</h5>
|
||||||
|
<div th:each="assessment: ${singleAssessment}">
|
||||||
|
<span th:text="${assessment.consequent}"></span>
|
||||||
|
вследствие тенденции '<span th:text="${assessment.firstAntecedentTendency}"></span>' показателя '<span
|
||||||
|
th:text="${assessment.firstAntecedent.description}"></span>'
|
||||||
|
и тенденции '<span th:text="${assessment.secondAntecedentTendency}"></span>' показателя '<span
|
||||||
|
th:text="${assessment.secondAntecedent.description}"></span>';
|
||||||
|
<span class="badge badge-warning" th:text="${assessment.degree}"></span>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
<div th:if="${singleAssessment != null && #lists.size(singleAssessment) == 0}">
|
||||||
|
<h5>Нет результатов</h5>
|
||||||
|
</div>
|
||||||
</div>
|
</div>
|
||||||
</html>
|
</html>
|
||||||
|
Loading…
Reference in New Issue
Block a user