#91 -- Fix fuzzy inference
This commit is contained in:
parent
6823f34997
commit
1dc44f7988
@ -30,7 +30,6 @@ public class AssessmentController {
|
||||
model.addAttribute("branches", branchService.findAllValid());
|
||||
if (branchId.isPresent()) {
|
||||
model.addAttribute("assessments", assessmentService.getAssessments(branchId.get()));
|
||||
model.addAttribute("singleAssessment", assessmentService.getSingleAssessment(branchId.get()));
|
||||
model.addAttribute("filterBranchForm", new FilterBranchForm(branchId.get()));
|
||||
} else {
|
||||
model.addAttribute("filterBranchForm", new FilterBranchForm());
|
||||
|
@ -2,7 +2,6 @@ package ru.ulstu.extractor.assessment.service;
|
||||
|
||||
import org.springframework.stereotype.Service;
|
||||
import ru.ulstu.extractor.assessment.model.Assessment;
|
||||
import ru.ulstu.extractor.rule.model.AssessmentException;
|
||||
import ru.ulstu.extractor.rule.model.DbRule;
|
||||
import ru.ulstu.extractor.rule.service.AntecedentValueService;
|
||||
import ru.ulstu.extractor.rule.service.DbRuleService;
|
||||
@ -10,12 +9,9 @@ import ru.ulstu.extractor.rule.service.FuzzyInferenceService;
|
||||
import ru.ulstu.extractor.ts.model.TimeSeries;
|
||||
import ru.ulstu.extractor.ts.service.TimeSeriesService;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Comparator;
|
||||
import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.stream.Collectors;
|
||||
|
||||
@Service
|
||||
public class AssessmentService {
|
||||
@ -37,44 +33,10 @@ public class AssessmentService {
|
||||
public List<Assessment> getAssessments(Integer branchId) {
|
||||
List<TimeSeries> timeSeries = timeSeriesService.getByBranch(branchId);
|
||||
List<DbRule> dbRules = ruleService.getList();
|
||||
try {
|
||||
return getAssessments(dbRules, timeSeries);
|
||||
} catch (AssessmentException ex) {
|
||||
ex.printStackTrace();
|
||||
return new ArrayList<>();
|
||||
}
|
||||
}
|
||||
|
||||
public List<Assessment> getSingleAssessment(Integer branchId) throws AssessmentException {
|
||||
List<TimeSeries> timeSeries = timeSeriesService.getByBranch(branchId);
|
||||
List<DbRule> dbRules = ruleService.getList();
|
||||
return getSingleAssessment(dbRules, timeSeries);
|
||||
}
|
||||
|
||||
private List<Assessment> getSingleAssessment(List<DbRule> dbRules, List<TimeSeries> timeSeries) throws AssessmentException {
|
||||
Map<String, Double> variableValues = new HashMap<>();
|
||||
timeSeries.forEach(ts -> variableValues.put(ts.getTimeSeriesType().name(), timeSeriesService.getLastTimeSeriesTendency(ts)));
|
||||
return fuzzyInferenceService.getFuzzyInference(dbRules,
|
||||
antecedentValueService.getList(),
|
||||
variableValues);
|
||||
}
|
||||
|
||||
private List<Assessment> getAssessments(List<DbRule> dbRules, List<TimeSeries> timeSeries) {
|
||||
return dbRules
|
||||
.stream()
|
||||
.flatMap(dbRule -> {
|
||||
Map<String, Double> variableValues = new HashMap<>();
|
||||
timeSeries
|
||||
.stream()
|
||||
.filter(ts -> ts.getTimeSeriesType() == dbRule.getFirstAntecedent()
|
||||
|| ts.getTimeSeriesType() == dbRule.getSecondAntecedent())
|
||||
.forEach(ts -> variableValues.put(ts.getTimeSeriesType().name(), timeSeriesService
|
||||
.getLastTimeSeriesTendency(ts)));
|
||||
return fuzzyInferenceService.getFuzzyInference(List.of(dbRule),
|
||||
antecedentValueService.getList(),
|
||||
variableValues).stream();
|
||||
})
|
||||
.sorted(Comparator.comparing(Assessment::getDegree))
|
||||
.collect(Collectors.toList());
|
||||
}
|
||||
}
|
||||
|
@ -8,6 +8,7 @@ import com.fuzzylite.norm.t.AlgebraicProduct;
|
||||
import com.fuzzylite.norm.t.Minimum;
|
||||
import com.fuzzylite.rule.Rule;
|
||||
import com.fuzzylite.rule.RuleBlock;
|
||||
import com.fuzzylite.term.Activated;
|
||||
import com.fuzzylite.term.Triangle;
|
||||
import com.fuzzylite.variable.InputVariable;
|
||||
import com.fuzzylite.variable.OutputVariable;
|
||||
@ -109,15 +110,19 @@ public class FuzzyInferenceService {
|
||||
Engine engine = getFuzzyEngine();
|
||||
List<Integer> consequentValues = dbRules.stream().map(DbRule::getId).collect(Collectors.toList());
|
||||
engine.addRuleBlock(getRuleBlock(engine, dbRules, variableValues, antecedentValues, consequentValues));
|
||||
Map.Entry<String, Double> consequent = getConsequent(engine, variableValues);
|
||||
if (consequent.getKey().equals(NO_RESULT)) {
|
||||
Map<String, Double> consequents = getConsequent(engine, variableValues);
|
||||
if (consequents.containsKey(NO_RESULT)) {
|
||||
return new ArrayList<>();
|
||||
}
|
||||
return dbRules
|
||||
.stream()
|
||||
.filter(r -> r.getId().equals(Integer.valueOf(consequent.getKey())))
|
||||
.map(r -> new Assessment(r, consequent.getValue()))
|
||||
.collect(Collectors.toList());
|
||||
List<Assessment> assessments = new ArrayList<>();
|
||||
for (Map.Entry<String, Double> consequent : consequents.entrySet()) {
|
||||
for (DbRule dbRule : dbRules) {
|
||||
if (dbRule.getId().equals(Integer.valueOf(consequent.getKey()))) {
|
||||
assessments.add(new Assessment(dbRule, consequent.getValue()));
|
||||
}
|
||||
}
|
||||
}
|
||||
return assessments;
|
||||
}
|
||||
|
||||
|
||||
@ -134,7 +139,7 @@ public class FuzzyInferenceService {
|
||||
}
|
||||
}
|
||||
|
||||
private Map.Entry<String, Double> getConsequent(Engine engine, Map<String, Double> variableValues) {
|
||||
private Map<String, Double> getConsequent(Engine engine, Map<String, Double> variableValues) {
|
||||
OutputVariable outputVariable = engine.getOutputVariable(OUTPUT_VARIABLE_NAME);
|
||||
for (Map.Entry<String, Double> variableValue : variableValues.entrySet()) {
|
||||
InputVariable inputVariable = engine.getInputVariable(variableValue.getKey());
|
||||
@ -144,8 +149,8 @@ public class FuzzyInferenceService {
|
||||
if (outputVariable != null) {
|
||||
LOG.info("Output: {}", outputVariable.getValue());
|
||||
}
|
||||
return (outputVariable == null || Double.isNaN(outputVariable.getValue()))
|
||||
? Map.entry(NO_RESULT, 0.0)
|
||||
: Map.entry(outputVariable.highestMembershipTerm(outputVariable.getValue()).getName(), outputVariable.getValue());
|
||||
return Double.isNaN(outputVariable.getValue())
|
||||
? Map.of(NO_RESULT, 0.0)
|
||||
: outputVariable.fuzzyOutput().getTerms().stream().collect(Collectors.toMap(t -> t.getTerm().getName(), Activated::getDegree));
|
||||
}
|
||||
}
|
||||
|
@ -46,22 +46,5 @@
|
||||
<div th:if="${assessments != null && #lists.size(assessments) == 0}">
|
||||
<h5>Нет результатов</h5>
|
||||
</div>
|
||||
|
||||
<hr/>
|
||||
|
||||
<div th:if="${singleAssessment != null && #lists.size(assessments) > 0}">
|
||||
<h5>Состояние репозитория по лидирующему правилу описывается следующими выражениями:</h5>
|
||||
<div th:each="assessment: ${singleAssessment}">
|
||||
<span th:text="${assessment.consequent}"></span>
|
||||
вследствие тенденции '<span th:text="${assessment.firstAntecedentTendency}"></span>' показателя '<span
|
||||
th:text="${assessment.firstAntecedent.description}"></span>'
|
||||
и тенденции '<span th:text="${assessment.secondAntecedentTendency}"></span>' показателя '<span
|
||||
th:text="${assessment.secondAntecedent.description}"></span>';
|
||||
<span class="badge badge-warning" th:text="${assessment.degree}"></span>
|
||||
</div>
|
||||
</div>
|
||||
<div th:if="${singleAssessment != null && #lists.size(singleAssessment) == 0}">
|
||||
<h5>Нет результатов</h5>
|
||||
</div>
|
||||
</div>
|
||||
</html>
|
||||
|
Loading…
Reference in New Issue
Block a user