Compare commits

...

2 Commits

3 changed files with 66 additions and 39 deletions

88
main.py
View File

@ -1,59 +1,73 @@
#!/usr/bin/env python3 #!/usr/bin/env python3
import os import os
import sys import sys
from typing import List
import numpy import numpy
import numpy as np
import pandas as pd import pandas as pd
# import scipy.cluster.hierarchy as sc import scipy.cluster.hierarchy as sc
from matplotlib import pyplot as plt from matplotlib import pyplot as plt
from pandas import DataFrame from numpy import ndarray
from pandas import Series
from sklearn.cluster import AgglomerativeClustering from sklearn.cluster import AgglomerativeClustering
from sklearn.decomposition import PCA from sklearn.decomposition import PCA
from src.main.df_loader import DfLoader from src.main.df_loader import DfLoader
from src.main.georeverse import Georeverse
is_plots: bool = False
default_clusters: int = 3
georeverse: Georeverse = Georeverse()
def __clustering(data: DataFrame) -> None: def __plots(data: ndarray, labels: ndarray) -> None:
# clusters = round(math.sqrt(len(data) / 2)) plt.figure(figsize=(12, 6))
# plt.figure(figsize=(20, 7)) plt.subplot(1, 2, 1)
# plt.title("Dendrograms") sc.dendrogram(sc.linkage(data, method='ward'), p=4, truncate_mode='level')
# # Create dendrogram plt.title('Dendrogram')
# sc.dendrogram(sc.linkage(data.to_numpy(), method='ward')) pca = PCA(n_components=2)
# plt.title('Dendrogram') transformed = pd.DataFrame(pca.fit_transform(data)).to_numpy()
# plt.xlabel('Sample index') plt.subplot(1, 2, 2)
# plt.ylabel('Euclidean distance') plt.scatter(x=transformed[:, 0], y=transformed[:, 1], c=labels, cmap='rainbow')
plt.title('Clustering')
clusters = 3
model = AgglomerativeClustering(n_clusters=clusters, metric='euclidean', linkage='ward')
model.fit(data)
labels = model.labels_
data_norm = (data - data.min()) / (data.max() - data.min())
pca = PCA(n_components=2) # 2-dimensional PCA
transformed = pd.DataFrame(pca.fit_transform(data_norm))
# plt.scatter(x=transformed[:, 0], y=transformed[:, 1], c=labels, cmap='rainbow')
for i in range(clusters):
series = transformed.iloc[numpy.where(labels[:] == i)]
plt.scatter(series[0], series[1], label=f'Cluster {i + 1}')
plt.legend()
plt.show() plt.show()
# fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(15, 5))
# sns.scatterplot(ax=axes[0], data=data, x='location-la,location-lo', y='age,sex').set_title('Without clustering')
# sns.scatterplot(ax=axes[1], data=data, x='location-la,location-lo', y='age,sex', hue=labels) \
# .set_title('With clustering')
# plt.show()
# s = numpy.where(labels[:] == 34) def __get_cluster_centers(data: ndarray, labels: ndarray) -> ndarray:
# print(labels) centers: List[List[float]] = list()
for label in set(labels):
center: Series = data[numpy.where(labels[:] == label)].mean(axis=0)
centers.append(list(center))
return np.array(centers)
def __print_center(center: ndarray) -> None:
location: str = georeverse.get_city(center[0], center[1])
sex = round(center[2])
age = round(center[3])
is_university = bool(round(center[4]))
is_work = bool(round(center[5]))
is_student = bool(round(center[6]))
is_schoolboy = bool(round(center[7]))
print(f'location: {location}, sex: {sex}, age: {age},'
f' univer: {is_university}, work: {is_work}, student: {is_student}, school: {is_schoolboy}')
def __clustering(data: ndarray, n_clusters: int = 3, plots: bool = False) -> None:
model = AgglomerativeClustering(n_clusters=n_clusters, metric='euclidean', linkage='ward')
model.fit(data)
labels = model.labels_
if plots:
__plots(data, labels)
centers = __get_cluster_centers(data, labels)
for center in centers:
__print_center(center)
def __main(json_file): def __main(json_file):
df_loader: DfLoader = DfLoader(json_file) data: ndarray = DfLoader(json_file).get_data()
data = df_loader.get_clustering_data() __clustering(data, default_clusters, is_plots)
print(data)
__clustering(data)
if __name__ == '__main__': if __name__ == '__main__':

View File

@ -2,6 +2,7 @@ from datetime import date
import numpy as np import numpy as np
import pandas as pd import pandas as pd
from numpy import ndarray
from pandas import DataFrame from pandas import DataFrame
from src.main.constants import Constants as const from src.main.constants import Constants as const
@ -73,8 +74,8 @@ class DfLoader:
self.__df['location-lo'] = self.__df.loc[:, 'location'] \ self.__df['location-lo'] = self.__df.loc[:, 'location'] \
.apply(lambda val: 0 if Utils.is_empty_collection(val) else val[1]) .apply(lambda val: 0 if Utils.is_empty_collection(val) else val[1])
def get_clustering_data(self) -> DataFrame: def get_data(self) -> ndarray:
columns: [] = ['location-la', 'location-lo', columns: [] = ['location-la', 'location-lo',
'sex', 'age', 'is_university', 'is_work', 'is_student', 'is_schoolboy'] 'sex', 'age', 'is_university', 'is_work', 'is_student', 'is_schoolboy']
df = self.__df df = self.__df
return df[columns] return df[columns].to_numpy()

12
src/main/georeverse.py Normal file
View File

@ -0,0 +1,12 @@
from functools import partial
from geopy import Nominatim
class Georeverse:
def __init__(self) -> None:
geolocator: Nominatim = Nominatim(user_agent="MyApp")
self.__reverse = partial(geolocator.reverse, language="ru")
def get_city(self, latitude: float, longitude: float) -> str:
return self.__reverse(f'{latitude}, {longitude}')