fuzzy-rules-generator/viscosity_tree.ipynb

309 KiB

In [1]:
import pickle
import pandas as pd
from sklearn import tree

model = pickle.load(open("data/vtree.model.sav", "rb"))
features = (
    pd.read_csv("data/viscosity_train.csv", sep=";", decimal=",")
    .drop(["Viscosity"], axis=1)
    .columns.values.tolist()
)

rules = tree.export_text(model, feature_names=features)
print(rules)
|--- T <= 32.50
|   |--- TiO2 <= 0.18
|   |   |--- Al2O3 <= 0.18
|   |   |   |--- T <= 22.50
|   |   |   |   |--- TiO2 <= 0.03
|   |   |   |   |   |--- Al2O3 <= 0.03
|   |   |   |   |   |   |--- value: [3.71]
|   |   |   |   |   |--- Al2O3 >  0.03
|   |   |   |   |   |   |--- value: [4.66]
|   |   |   |   |--- TiO2 >  0.03
|   |   |   |   |   |--- value: [4.88]
|   |   |   |--- T >  22.50
|   |   |   |   |--- TiO2 <= 0.03
|   |   |   |   |   |--- Al2O3 <= 0.03
|   |   |   |   |   |   |--- value: [3.18]
|   |   |   |   |   |--- Al2O3 >  0.03
|   |   |   |   |   |   |--- value: [3.38]
|   |   |   |   |--- TiO2 >  0.03
|   |   |   |   |   |--- value: [4.24]
|   |   |--- Al2O3 >  0.18
|   |   |   |--- T <= 22.50
|   |   |   |   |--- value: [6.67]
|   |   |   |--- T >  22.50
|   |   |   |   |--- T <= 27.50
|   |   |   |   |   |--- value: [5.59]
|   |   |   |   |--- T >  27.50
|   |   |   |   |   |--- value: [4.73]
|   |--- TiO2 >  0.18
|   |   |--- T <= 22.50
|   |   |   |--- value: [7.13]
|   |   |--- T >  22.50
|   |   |   |--- T <= 27.50
|   |   |   |   |--- value: [5.87]
|   |   |   |--- T >  27.50
|   |   |   |   |--- value: [4.94]
|--- T >  32.50
|   |--- T <= 47.50
|   |   |--- TiO2 <= 0.18
|   |   |   |--- Al2O3 <= 0.18
|   |   |   |   |--- T <= 42.50
|   |   |   |   |   |--- TiO2 <= 0.03
|   |   |   |   |   |   |--- Al2O3 <= 0.03
|   |   |   |   |   |   |   |--- value: [2.36]
|   |   |   |   |   |   |--- Al2O3 >  0.03
|   |   |   |   |   |   |   |--- value: [2.68]
|   |   |   |   |   |--- TiO2 >  0.03
|   |   |   |   |   |   |--- T <= 37.50
|   |   |   |   |   |   |   |--- value: [3.12]
|   |   |   |   |   |   |--- T >  37.50
|   |   |   |   |   |   |   |--- value: [2.65]
|   |   |   |   |--- T >  42.50
|   |   |   |   |   |--- TiO2 <= 0.03
|   |   |   |   |   |   |--- value: [1.83]
|   |   |   |   |   |--- TiO2 >  0.03
|   |   |   |   |   |   |--- value: [2.40]
|   |   |   |--- Al2O3 >  0.18
|   |   |   |   |--- T <= 37.50
|   |   |   |   |   |--- value: [4.12]
|   |   |   |   |--- T >  37.50
|   |   |   |   |   |--- value: [3.56]
|   |   |--- TiO2 >  0.18
|   |   |   |--- T <= 40.00
|   |   |   |   |--- value: [4.35]
|   |   |   |--- T >  40.00
|   |   |   |   |--- value: [3.56]
|   |--- T >  47.50
|   |   |--- TiO2 <= 0.18
|   |   |   |--- Al2O3 <= 0.18
|   |   |   |   |--- T <= 52.50
|   |   |   |   |   |--- TiO2 <= 0.03
|   |   |   |   |   |   |--- Al2O3 <= 0.03
|   |   |   |   |   |   |   |--- value: [1.63]
|   |   |   |   |   |   |--- Al2O3 >  0.03
|   |   |   |   |   |   |   |--- value: [1.90]
|   |   |   |   |   |--- TiO2 >  0.03
|   |   |   |   |   |   |--- value: [2.11]
|   |   |   |   |--- T >  52.50
|   |   |   |   |   |--- T <= 65.00
|   |   |   |   |   |   |--- TiO2 <= 0.03
|   |   |   |   |   |   |   |--- value: [1.55]
|   |   |   |   |   |   |--- TiO2 >  0.03
|   |   |   |   |   |   |   |--- value: [1.66]
|   |   |   |   |   |--- T >  65.00
|   |   |   |   |   |   |--- TiO2 <= 0.03
|   |   |   |   |   |   |   |--- value: [1.19]
|   |   |   |   |   |   |--- TiO2 >  0.03
|   |   |   |   |   |   |   |--- value: [1.29]
|   |   |   |--- Al2O3 >  0.18
|   |   |   |   |--- T <= 65.00
|   |   |   |   |   |--- T <= 57.50
|   |   |   |   |   |   |--- value: [2.43]
|   |   |   |   |   |--- T >  57.50
|   |   |   |   |   |   |--- value: [2.16]
|   |   |   |   |--- T >  65.00
|   |   |   |   |   |--- value: [1.73]
|   |   |--- TiO2 >  0.18
|   |   |   |--- T <= 65.00
|   |   |   |   |--- T <= 57.50
|   |   |   |   |   |--- value: [2.84]
|   |   |   |   |--- T >  57.50
|   |   |   |   |   |--- value: [2.54]
|   |   |   |--- T >  65.00
|   |   |   |   |--- value: [1.91]

In [2]:
from src.rules import get_rules


rules = get_rules(model, features)
display(len(rules))
rules
35
Out[2]:
[if (T > 32.5) and (T > 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T > 52.5) and (T > 65.0) and (TiO2 <= 0.025) -> 1.194,
 if (T > 32.5) and (T > 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T > 52.5) and (T > 65.0) and (TiO2 > 0.025) -> 1.289,
 if (T > 32.5) and (T > 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T > 52.5) and (T <= 65.0) and (TiO2 <= 0.025) -> 1.548,
 if (T > 32.5) and (T > 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T <= 52.5) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) -> 1.629,
 if (T > 32.5) and (T > 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T > 52.5) and (T <= 65.0) and (TiO2 > 0.025) -> 1.662,
 if (T > 32.5) and (T > 47.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) and (T > 65.0) -> 1.728,
 if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T > 42.5) and (TiO2 <= 0.025) -> 1.832,
 if (T > 32.5) and (T > 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T <= 52.5) and (TiO2 <= 0.025) and (Al2O3 > 0.025) -> 1.897,
 if (T > 32.5) and (T > 47.5) and (TiO2 > 0.175) and (T > 65.0) -> 1.91,
 if (T > 32.5) and (T > 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T <= 52.5) and (TiO2 > 0.025) -> 2.109,
 if (T > 32.5) and (T > 47.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) and (T <= 65.0) and (T > 57.5) -> 2.16,
 if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T <= 42.5) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) -> 2.361,
 if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T > 42.5) and (TiO2 > 0.025) -> 2.402,
 if (T > 32.5) and (T > 47.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) and (T <= 65.0) and (T <= 57.5) -> 2.426,
 if (T > 32.5) and (T > 47.5) and (TiO2 > 0.175) and (T <= 65.0) and (T > 57.5) -> 2.538,
 if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T <= 42.5) and (TiO2 > 0.025) and (T > 37.5) -> 2.655,
 if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T <= 42.5) and (TiO2 <= 0.025) and (Al2O3 > 0.025) -> 2.682,
 if (T > 32.5) and (T > 47.5) and (TiO2 > 0.175) and (T <= 65.0) and (T <= 57.5) -> 2.838,
 if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T <= 42.5) and (TiO2 > 0.025) and (T <= 37.5) -> 3.121,
 if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T > 22.5) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) -> 3.18,
 if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T > 22.5) and (TiO2 <= 0.025) and (Al2O3 > 0.025) -> 3.38,
 if (T > 32.5) and (T <= 47.5) and (TiO2 > 0.175) and (T > 40.0) -> 3.561,
 if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) and (T > 37.5) -> 3.565,
 if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T <= 22.5) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) -> 3.707,
 if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) and (T <= 37.5) -> 4.118,
 if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T > 22.5) and (TiO2 > 0.025) -> 4.236,
 if (T > 32.5) and (T <= 47.5) and (TiO2 > 0.175) and (T <= 40.0) -> 4.354,
 if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T <= 22.5) and (TiO2 <= 0.025) and (Al2O3 > 0.025) -> 4.66,
 if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) and (T > 22.5) and (T > 27.5) -> 4.731,
 if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (T <= 22.5) and (TiO2 > 0.025) -> 4.885,
 if (T <= 32.5) and (TiO2 > 0.175) and (T > 22.5) and (T > 27.5) -> 4.944,
 if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) and (T > 22.5) and (T <= 27.5) -> 5.594,
 if (T <= 32.5) and (TiO2 > 0.175) and (T > 22.5) and (T <= 27.5) -> 5.865,
 if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) and (T <= 22.5) -> 6.67,
 if (T <= 32.5) and (TiO2 > 0.175) and (T <= 22.5) -> 7.132]
In [3]:
from src.rules import normalise_rules


rules = normalise_rules(rules)
display(len(rules))
rules
35
Out[3]:
[if (T > 32.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 1.194,
 if (T > 32.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 1.289,
 if (T > 32.5) and (T <= 65.0) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 1.548,
 if (T > 32.5) and (T <= 52.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 1.629,
 if (T > 32.5) and (T <= 65.0) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 1.662,
 if (T > 32.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 1.728,
 if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 1.832,
 if (T > 32.5) and (T <= 52.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (Al2O3 > 0.025) -> 1.897,
 if (T > 32.5) and (TiO2 > 0.175) -> 1.91,
 if (T > 32.5) and (T <= 52.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 2.109,
 if (T > 32.5) and (T <= 65.0) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 2.16,
 if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 2.361,
 if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 2.402,
 if (T > 32.5) and (T <= 65.0) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 2.426,
 if (T > 32.5) and (T <= 65.0) and (TiO2 > 0.175) -> 2.538,
 if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 2.655,
 if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (Al2O3 > 0.025) -> 2.682,
 if (T > 32.5) and (T <= 65.0) and (TiO2 > 0.175) -> 2.838,
 if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 3.121,
 if (T <= 32.5) and (T > 22.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 3.18,
 if (T <= 32.5) and (T > 22.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (Al2O3 > 0.025) -> 3.38,
 if (T > 32.5) and (T <= 47.5) and (TiO2 > 0.175) -> 3.561,
 if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 3.565,
 if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 3.707,
 if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 4.118,
 if (T <= 32.5) and (T > 22.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 4.236,
 if (T > 32.5) and (T <= 47.5) and (TiO2 > 0.175) -> 4.354,
 if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (Al2O3 > 0.025) -> 4.66,
 if (T <= 32.5) and (T > 22.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 4.731,
 if (T <= 32.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 4.885,
 if (T <= 32.5) and (T > 22.5) and (TiO2 > 0.175) -> 4.944,
 if (T <= 32.5) and (T > 22.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 5.594,
 if (T <= 32.5) and (T > 22.5) and (TiO2 > 0.175) -> 5.865,
 if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 6.67,
 if (T <= 32.5) and (TiO2 > 0.175) -> 7.132]
In [4]:
from src.rules import delete_same_rules


rules = delete_same_rules(rules)
display(len(rules))
rules
26
Out[4]:
[if (T > 32.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 1.194,
 if (T > 32.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 1.289,
 if (T > 32.5) and (T <= 65.0) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 1.548,
 if (T > 32.5) and (T <= 52.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 1.629,
 if (T > 32.5) and (T <= 65.0) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 1.662,
 if (T > 32.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 1.728,
 if (T > 32.5) and (T <= 52.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (Al2O3 > 0.025) -> 1.897,
 if (T > 32.5) and (TiO2 > 0.175) -> 1.91,
 if (T > 32.5) and (T <= 52.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 2.109,
 if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 2.097,
 if (T > 32.5) and (T <= 65.0) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 2.293,
 if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (Al2O3 > 0.025) -> 2.682,
 if (T > 32.5) and (T <= 65.0) and (TiO2 > 0.175) -> 2.688,
 if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 2.726,
 if (T <= 32.5) and (T > 22.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 3.18,
 if (T <= 32.5) and (T > 22.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (Al2O3 > 0.025) -> 3.38,
 if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 3.707,
 if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 3.842,
 if (T <= 32.5) and (T > 22.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 4.236,
 if (T > 32.5) and (T <= 47.5) and (TiO2 > 0.175) -> 3.958,
 if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (Al2O3 > 0.025) -> 4.66,
 if (T <= 32.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 4.885,
 if (T <= 32.5) and (T > 22.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 5.162,
 if (T <= 32.5) and (T > 22.5) and (TiO2 > 0.175) -> 5.405,
 if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 6.67,
 if (T <= 32.5) and (TiO2 > 0.175) -> 7.132]
In [5]:
from src.rules import get_features, vectorize_rules

features = get_features(rules, ["T"])
print(features)

df_rules = vectorize_rules(rules, features)
df_rules.head(5)
['(Al2O3 <= 0.175)', '(Al2O3 > 0.025)', '(Al2O3 > 0.175)', '(TiO2 <= 0.175)', '(TiO2 > 0.025)', '(TiO2 > 0.175)']
Out[5]:
(Al2O3 <= 0.175) (Al2O3 > 0.025) (Al2O3 > 0.175) (TiO2 <= 0.175) (TiO2 > 0.025) (TiO2 > 0.175) consequent
rule
if (T > 32.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 1.194 1 0 0 1 0 0 1.194
if (T > 32.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 1.289 1 0 0 1 1 0 1.289
if (T > 32.5) and (T <= 65.0) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 1.548 1 0 0 1 0 0 1.548
if (T > 32.5) and (T <= 52.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 1.629 1 0 0 1 0 0 1.629
if (T > 32.5) and (T <= 65.0) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 1.662 1 0 0 1 1 0 1.662
In [6]:
from src.cluster_helper import draw_best_clusters_plot, get_best_clusters_num

random_state = 9

X = df_rules.copy()
X = X.drop(["consequent"], axis=1)

clusters_score = get_best_clusters_num(X, random_state)
display(clusters_score)

draw_best_clusters_plot(clusters_score)

clusters_num = sorted(clusters_score.items(), key=lambda x: x[1], reverse=True)[0][0]
display(f"The best clusters count is {clusters_num}")
c:\Users\user\Projects\python\fuzzy\.venv\Lib\site-packages\sklearn\base.py:1473: ConvergenceWarning: Number of distinct clusters (5) found smaller than n_clusters (6). Possibly due to duplicate points in X.
  return fit_method(estimator, *args, **kwargs)
{2: 0.42601604060235754,
 3: 0.7018993361356377,
 4: 0.8249121250065079,
 5: 1.0,
 6: 1.0}
'The best clusters count is 5'
In [7]:
from sklearn import cluster

from src.cluster_helper import print_cluster_result

kmeans = cluster.KMeans(n_clusters=clusters_num, random_state=random_state)
kmeans.fit(X)

print_cluster_result(X, clusters_num, kmeans.labels_)
Кластер 1 (6):
if (T > 32.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 1.194;
if (T > 32.5) and (T <= 65.0) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 1.548;
if (T > 32.5) and (T <= 52.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 1.629;
if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 2.097;
if (T <= 32.5) and (T > 22.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 3.18;
if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 3.707
--------
Кластер 2 (5):
if (T > 32.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 1.728;
if (T > 32.5) and (T <= 65.0) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 2.293;
if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 3.842;
if (T <= 32.5) and (T > 22.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 5.162;
if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 6.67
--------
Кластер 3 (5):
if (T > 32.5) and (TiO2 > 0.175) -> 1.91;
if (T > 32.5) and (T <= 65.0) and (TiO2 > 0.175) -> 2.688;
if (T > 32.5) and (T <= 47.5) and (TiO2 > 0.175) -> 3.958;
if (T <= 32.5) and (T > 22.5) and (TiO2 > 0.175) -> 5.405;
if (T <= 32.5) and (TiO2 > 0.175) -> 7.132
--------
Кластер 4 (6):
if (T > 32.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 1.289;
if (T > 32.5) and (T <= 65.0) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 1.662;
if (T > 32.5) and (T <= 52.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 2.109;
if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 2.726;
if (T <= 32.5) and (T > 22.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 4.236;
if (T <= 32.5) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 4.885
--------
Кластер 5 (4):
if (T > 32.5) and (T <= 52.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (Al2O3 > 0.025) -> 1.897;
if (T > 32.5) and (T <= 47.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (Al2O3 > 0.025) -> 2.682;
if (T <= 32.5) and (T > 22.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (Al2O3 > 0.025) -> 3.38;
if (T <= 32.5) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (Al2O3 > 0.025) -> 4.66
--------
In [8]:
viscosity_train = pd.read_csv("data/viscosity_train.csv", sep=";", decimal=",")
viscosity_test = pd.read_csv("data/viscosity_test.csv", sep=";", decimal=",")

display(viscosity_train.head(3))
display(viscosity_test.head(3))
T Al2O3 TiO2 Viscosity
0 20 0.0 0.0 3.707
1 25 0.0 0.0 3.180
2 35 0.0 0.0 2.361
T Al2O3 TiO2 Viscosity
0 30 0.0 0.0 2.716
1 40 0.0 0.0 2.073
2 60 0.0 0.0 1.329
In [9]:
from src.rules import simplify_and_group_rules

clustered_rules = simplify_and_group_rules(
    viscosity_train, rules, clusters_num, kmeans.labels_
)
clustered_rules
Out[9]:
[[if (T = 70) and (TiO2 = 0.0) and (Al2O3 = 0.0) -> 1.194,
  if (T = 48.75) and (TiO2 = 0.0) and (Al2O3 = 0.0) -> 1.548,
  if (T = 42.5) and (TiO2 = 0.0) and (Al2O3 = 0.0) -> 1.629,
  if (T = 40.0) and (TiO2 = 0.0) and (Al2O3 = 0.0) -> 2.097,
  if (T = 27.5) and (TiO2 = 0.0) and (Al2O3 = 0.0) -> 3.18,
  if (T = 20) and (TiO2 = 0.0) and (Al2O3 = 0.0) -> 3.707],
 [if (T = 70) and (TiO2 = 0.0) and (Al2O3 = 0.3) -> 1.728,
  if (T = 48.75) and (TiO2 = 0.0) and (Al2O3 = 0.3) -> 2.293,
  if (T = 40.0) and (TiO2 = 0.0) and (Al2O3 = 0.3) -> 3.842,
  if (T = 27.5) and (TiO2 = 0.0) and (Al2O3 = 0.3) -> 5.162,
  if (T = 20) and (TiO2 = 0.0) and (Al2O3 = 0.3) -> 6.67],
 [if (T = 70) and (TiO2 = 0.3) -> 1.91,
  if (T = 48.75) and (TiO2 = 0.3) -> 2.688,
  if (T = 40.0) and (TiO2 = 0.3) -> 3.958,
  if (T = 27.5) and (TiO2 = 0.3) -> 5.405,
  if (T = 20) and (TiO2 = 0.3) -> 7.132],
 [if (T = 70) and (TiO2 = 0.1) and (Al2O3 = 0.0) -> 1.289,
  if (T = 48.75) and (TiO2 = 0.1) and (Al2O3 = 0.0) -> 1.662,
  if (T = 42.5) and (TiO2 = 0.1) and (Al2O3 = 0.0) -> 2.109,
  if (T = 40.0) and (TiO2 = 0.1) and (Al2O3 = 0.0) -> 2.726,
  if (T = 27.5) and (TiO2 = 0.1) and (Al2O3 = 0.0) -> 4.236,
  if (T = 20) and (TiO2 = 0.1) and (Al2O3 = 0.0) -> 4.885],
 [if (T = 42.5) and (TiO2 = 0.0) and (Al2O3 = 0.1) -> 1.897,
  if (T = 40.0) and (TiO2 = 0.0) and (Al2O3 = 0.1) -> 2.682,
  if (T = 27.5) and (TiO2 = 0.0) and (Al2O3 = 0.1) -> 3.38,
  if (T = 20) and (TiO2 = 0.0) and (Al2O3 = 0.1) -> 4.66]]
In [10]:
import numpy as np
from skfuzzy import control as ctrl
import skfuzzy as fuzz

temp = ctrl.Antecedent(viscosity_train["T"].sort_values().unique(), "temp")
al = ctrl.Antecedent(np.arange(0, 0.3, 0.005), "al")
ti = ctrl.Antecedent(np.arange(0, 0.3, 0.005), "ti")
viscosity = ctrl.Consequent(np.arange(1.18, 3.71, 0.00001), "viscosity")

temp.automf(5, variable_type="quant")
temp.view()
al.automf(3, variable_type="quant")
al.view()
ti.automf(3, variable_type="quant")
ti.view()
viscosity.automf(5, variable_type="quant")
viscosity.view()
c:\Users\user\Projects\python\fuzzy\.venv\Lib\site-packages\skfuzzy\control\fuzzyvariable.py:125: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown
  fig.show()
In [11]:
from src.rules import  get_fuzzy_rules

fuzzy_variables = {"Al2O3": al, "TiO2": ti, "T": temp, "consequent": viscosity}
fuzzy_rules = get_fuzzy_rules(clustered_rules, fuzzy_variables)

fuzzy_cntrl = ctrl.ControlSystem(fuzzy_rules)

sim = ctrl.ControlSystemSimulation(fuzzy_cntrl, lenient=False)

display(len(fuzzy_rules))
fuzzy_rules
19
Out[11]:
[IF (temp[higher] AND ti[low]) AND al[low] THEN viscosity[lower]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF (temp[average] AND ti[low]) AND al[low] THEN viscosity[low]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF (temp[low] AND ti[low]) AND al[low] THEN viscosity[high]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF (temp[lower] AND ti[low]) AND al[low] THEN viscosity[higher]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF (temp[higher] AND ti[low]) AND al[high] THEN viscosity[low]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF (temp[average] AND ti[low]) AND al[high] THEN viscosity[higher]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF (temp[low] AND ti[low]) AND al[high] THEN viscosity[higher]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF (temp[lower] AND ti[low]) AND al[high] THEN viscosity[higher]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF temp[higher] AND ti[high] THEN viscosity[low]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF temp[average] AND ti[high] THEN viscosity[higher]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF temp[low] AND ti[high] THEN viscosity[higher]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF temp[lower] AND ti[high] THEN viscosity[higher]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF (temp[higher] AND ti[average]) AND al[low] THEN viscosity[lower]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF (temp[average] AND ti[average]) AND al[low] THEN viscosity[average]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF (temp[low] AND ti[average]) AND al[low] THEN viscosity[higher]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF (temp[lower] AND ti[average]) AND al[low] THEN viscosity[higher]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF (temp[average] AND ti[low]) AND al[average] THEN viscosity[average]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF (temp[low] AND ti[low]) AND al[average] THEN viscosity[high]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF (temp[lower] AND ti[low]) AND al[average] THEN viscosity[higher]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax]
In [12]:
sim.input["temp"] = 20
sim.input["al"] = 0.0
sim.input["ti"] = 0.0
sim.compute()
sim.print_state()

display(sim.output["viscosity"])
=============
 Antecedents 
=============
Antecedent: temp                    = 20
  - lower                           : 1.0
  - low                             : 0.0
  - average                         : 0.0
  - high                            : 0.0
  - higher                          : 0.0
Antecedent: ti                      = 0.0
  - low                             : 1.0
  - average                         : 0.0
  - high                            : 0.0
Antecedent: al                      = 0.0
  - low                             : 1.0
  - average                         : 0.0
  - high                            : 0.0

=======
 Rules 
=======
RULE #0:
  IF (temp[higher] AND ti[low]) AND al[low] THEN viscosity[lower]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - temp[higher]                                           : 0.0
  - ti[low]                                                : 1.0
  - al[low]                                                : 1.0
                    (temp[higher] AND ti[low]) AND al[low] = 0.0
  Activation (THEN-clause):
                                          viscosity[lower] : 0.0

RULE #1:
  IF (temp[average] AND ti[low]) AND al[low] THEN viscosity[low]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - temp[average]                                          : 0.0
  - ti[low]                                                : 1.0
  - al[low]                                                : 1.0
                   (temp[average] AND ti[low]) AND al[low] = 0.0
  Activation (THEN-clause):
                                            viscosity[low] : 0.0

RULE #2:
  IF (temp[low] AND ti[low]) AND al[low] THEN viscosity[high]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - temp[low]                                              : 0.0
  - ti[low]                                                : 1.0
  - al[low]                                                : 1.0
                       (temp[low] AND ti[low]) AND al[low] = 0.0
  Activation (THEN-clause):
                                           viscosity[high] : 0.0

RULE #3:
  IF (temp[lower] AND ti[low]) AND al[low] THEN viscosity[higher]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - temp[lower]                                            : 1.0
  - ti[low]                                                : 1.0
  - al[low]                                                : 1.0
                     (temp[lower] AND ti[low]) AND al[low] = 1.0
  Activation (THEN-clause):
                                         viscosity[higher] : 1.0

RULE #4:
  IF (temp[higher] AND ti[low]) AND al[high] THEN viscosity[low]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - temp[higher]                                           : 0.0
  - ti[low]                                                : 1.0
  - al[high]                                               : 0.0
                   (temp[higher] AND ti[low]) AND al[high] = 0.0
  Activation (THEN-clause):
                                            viscosity[low] : 0.0

RULE #5:
  IF (temp[average] AND ti[low]) AND al[high] THEN viscosity[higher]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - temp[average]                                          : 0.0
  - ti[low]                                                : 1.0
  - al[high]                                               : 0.0
                  (temp[average] AND ti[low]) AND al[high] = 0.0
  Activation (THEN-clause):
                                         viscosity[higher] : 0.0

RULE #6:
  IF (temp[low] AND ti[low]) AND al[high] THEN viscosity[higher]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - temp[low]                                              : 0.0
  - ti[low]                                                : 1.0
  - al[high]                                               : 0.0
                      (temp[low] AND ti[low]) AND al[high] = 0.0
  Activation (THEN-clause):
                                         viscosity[higher] : 0.0

RULE #7:
  IF (temp[lower] AND ti[low]) AND al[high] THEN viscosity[higher]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - temp[lower]                                            : 1.0
  - ti[low]                                                : 1.0
  - al[high]                                               : 0.0
                    (temp[lower] AND ti[low]) AND al[high] = 0.0
  Activation (THEN-clause):
                                         viscosity[higher] : 0.0

RULE #8:
  IF temp[higher] AND ti[high] THEN viscosity[low]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - temp[higher]                                           : 0.0
  - ti[high]                                               : 0.0
                                 temp[higher] AND ti[high] = 0.0
  Activation (THEN-clause):
                                            viscosity[low] : 0.0

RULE #9:
  IF temp[average] AND ti[high] THEN viscosity[higher]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - temp[average]                                          : 0.0
  - ti[high]                                               : 0.0
                                temp[average] AND ti[high] = 0.0
  Activation (THEN-clause):
                                         viscosity[higher] : 0.0

RULE #10:
  IF temp[low] AND ti[high] THEN viscosity[higher]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - temp[low]                                              : 0.0
  - ti[high]                                               : 0.0
                                    temp[low] AND ti[high] = 0.0
  Activation (THEN-clause):
                                         viscosity[higher] : 0.0

RULE #11:
  IF temp[lower] AND ti[high] THEN viscosity[higher]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - temp[lower]                                            : 1.0
  - ti[high]                                               : 0.0
                                  temp[lower] AND ti[high] = 0.0
  Activation (THEN-clause):
                                         viscosity[higher] : 0.0

RULE #12:
  IF (temp[higher] AND ti[average]) AND al[low] THEN viscosity[lower]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - temp[higher]                                           : 0.0
  - ti[average]                                            : 0.0
  - al[low]                                                : 1.0
                (temp[higher] AND ti[average]) AND al[low] = 0.0
  Activation (THEN-clause):
                                          viscosity[lower] : 0.0

RULE #13:
  IF (temp[average] AND ti[average]) AND al[low] THEN viscosity[average]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - temp[average]                                          : 0.0
  - ti[average]                                            : 0.0
  - al[low]                                                : 1.0
               (temp[average] AND ti[average]) AND al[low] = 0.0
  Activation (THEN-clause):
                                        viscosity[average] : 0.0

RULE #14:
  IF (temp[low] AND ti[average]) AND al[low] THEN viscosity[higher]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - temp[low]                                              : 0.0
  - ti[average]                                            : 0.0
  - al[low]                                                : 1.0
                   (temp[low] AND ti[average]) AND al[low] = 0.0
  Activation (THEN-clause):
                                         viscosity[higher] : 0.0

RULE #15:
  IF (temp[lower] AND ti[average]) AND al[low] THEN viscosity[higher]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - temp[lower]                                            : 1.0
  - ti[average]                                            : 0.0
  - al[low]                                                : 1.0
                 (temp[lower] AND ti[average]) AND al[low] = 0.0
  Activation (THEN-clause):
                                         viscosity[higher] : 0.0

RULE #16:
  IF (temp[average] AND ti[low]) AND al[average] THEN viscosity[average]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - temp[average]                                          : 0.0
  - ti[low]                                                : 1.0
  - al[average]                                            : 0.0
               (temp[average] AND ti[low]) AND al[average] = 0.0
  Activation (THEN-clause):
                                        viscosity[average] : 0.0

RULE #17:
  IF (temp[low] AND ti[low]) AND al[average] THEN viscosity[high]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - temp[low]                                              : 0.0
  - ti[low]                                                : 1.0
  - al[average]                                            : 0.0
                   (temp[low] AND ti[low]) AND al[average] = 0.0
  Activation (THEN-clause):
                                           viscosity[high] : 0.0

RULE #18:
  IF (temp[lower] AND ti[low]) AND al[average] THEN viscosity[higher]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - temp[lower]                                            : 1.0
  - ti[low]                                                : 1.0
  - al[average]                                            : 0.0
                 (temp[lower] AND ti[low]) AND al[average] = 0.0
  Activation (THEN-clause):
                                         viscosity[higher] : 0.0


==============================
 Intermediaries and Conquests 
==============================
Consequent: viscosity                = 3.499157499995422
  lower:
    Accumulate using accumulation_max : 0.0
  low:
    Accumulate using accumulation_max : 0.0
  average:
    Accumulate using accumulation_max : 0.0
  high:
    Accumulate using accumulation_max : 0.0
  higher:
    Accumulate using accumulation_max : 1.0

np.float64(3.499157499995422)
In [18]:
from sklearn import metrics
import math


def fuzzy_pred(row):
    sim.input["temp"] = row["T"]
    sim.input["al"] = row["Al2O3"]
    sim.input["ti"] = row["TiO2"]
    sim.compute()
    return sim.output["viscosity"]

def rmse(row):
    return math.sqrt(metrics.mean_squared_error([row["Real"]], [row["Inferred"]]))

result_train = viscosity_train.copy()
result_train["Real"] = result_train["Viscosity"]
result_train["Inferred"] = result_train.apply(fuzzy_pred, axis=1)
result_train["RMSE"] = result_train.apply(rmse, axis=1)
result_train.head(15)
Out[18]:
T Al2O3 TiO2 Viscosity Real Inferred RMSE
0 20 0.00 0.0 3.707 3.707 3.499157 0.207843
1 25 0.00 0.0 3.180 3.180 3.188565 0.008565
2 35 0.00 0.0 2.361 2.361 2.732494 0.371494
3 45 0.00 0.0 1.832 1.832 1.812498 0.019502
4 50 0.00 0.0 1.629 1.629 1.812498 0.183498
5 55 0.00 0.0 1.465 1.465 1.812498 0.347498
6 70 0.00 0.0 1.194 1.194 1.390833 0.196833
7 20 0.05 0.0 4.660 4.660 3.481064 1.178936
8 30 0.05 0.0 3.380 3.380 3.090537 0.289463
9 35 0.05 0.0 2.874 2.874 2.703435 0.170565
10 40 0.05 0.0 2.489 2.489 2.365680 0.123320
11 50 0.05 0.0 1.897 1.897 2.054459 0.157459
12 55 0.05 0.0 1.709 1.709 2.128746 0.419746
13 60 0.05 0.0 1.470 1.470 1.465795 0.004205
14 20 0.30 0.0 6.670 6.670 3.499157 3.170843
In [19]:
result_test = viscosity_test.copy()
result_test["Real"] = result_test["Viscosity"]
result_test["Inferred"] = result_test.apply(fuzzy_pred, axis=1)
result_test["RMSE"] = result_test.apply(rmse, axis=1)
result_test = result_test.round({"RMSE": 3})
result_test
Out[19]:
T Al2O3 TiO2 Viscosity Real Inferred RMSE
0 30 0.00 0.00 2.716 2.716 3.089540 0.374
1 40 0.00 0.00 2.073 2.073 2.359522 0.287
2 60 0.00 0.00 1.329 1.329 1.465795 0.137
3 65 0.00 0.00 1.211 1.211 1.414928 0.204
4 25 0.05 0.00 4.120 4.120 3.188565 0.931
5 45 0.05 0.00 2.217 2.217 2.045546 0.171
6 65 0.05 0.00 1.315 1.315 1.414928 0.100
7 70 0.05 0.00 1.105 1.105 1.408926 0.304
8 45 0.30 0.00 3.111 3.111 3.499157 0.388
9 50 0.30 0.00 2.735 2.735 3.475062 0.740
10 65 0.30 0.00 1.936 1.936 1.812498 0.124
11 30 0.00 0.05 3.587 3.587 3.111691 0.475
12 55 0.00 0.05 1.953 1.953 2.128746 0.176
13 65 0.00 0.05 1.443 1.443 1.414928 0.028
14 40 0.00 0.30 3.990 3.990 3.475062 0.515
15 50 0.00 0.30 3.189 3.189 3.475062 0.286
16 65 0.00 0.30 2.287 2.287 1.812498 0.475
In [17]:
import math

rmetrics = {}
rmetrics["RMSE_train"] = math.sqrt(
    metrics.mean_squared_error(result_train["Real"], result_train["Inferred"])
)
rmetrics["RMSE_test"] = math.sqrt(
    metrics.mean_squared_error(result_test["Real"], result_test["Inferred"])
)
rmetrics["RMAE_test"] = math.sqrt(
    metrics.mean_absolute_error(result_test["Real"], result_test["Inferred"])
)
rmetrics["R2_test"] = metrics.r2_score(result_test["Real"], result_test["Inferred"])

rmetrics
Out[17]:
{'RMSE_train': 1.0977710360150494,
 'RMSE_test': 0.4076186194536602,
 'RMAE_test': 0.5797504263400755,
 'R2_test': 0.813200460937507}