fuzzy-rules-generator/temp_density_regression.ipynb

26 KiB

In [ ]:
import pandas as pd

train = pd.read_csv("data/density_train.csv", sep=";", decimal=",")
test = pd.read_csv("data/density_test.csv", sep=";", decimal=",")

display(train.head())
display(test.head())
T Al2O3 TiO2 Density
0 20 0.0 0.0 1.06250
1 25 0.0 0.0 1.05979
2 35 0.0 0.0 1.05404
3 40 0.0 0.0 1.05103
4 45 0.0 0.0 1.04794
T Al2O3 TiO2 Density
0 30 0.00 0.0 1.05696
1 55 0.00 0.0 1.04158
2 25 0.05 0.0 1.08438
3 30 0.05 0.0 1.08112
4 35 0.05 0.0 1.07781
In [3]:
y_train = train["T"]
X_train = train.drop(["T"], axis=1)

display(X_train.head())
display(y_train.head())

y_test = test["T"]
X_test = test.drop(["T"], axis=1)

display(X_test.head())
display(y_test.head())
Al2O3 TiO2 Density
0 0.0 0.0 1.06250
1 0.0 0.0 1.05979
2 0.0 0.0 1.05404
3 0.0 0.0 1.05103
4 0.0 0.0 1.04794
0    20
1    25
2    35
3    40
4    45
Name: T, dtype: int64
Al2O3 TiO2 Density
0 0.00 0.0 1.05696
1 0.00 0.0 1.04158
2 0.05 0.0 1.08438
3 0.05 0.0 1.08112
4 0.05 0.0 1.07781
0    30
1    55
2    25
3    30
4    35
Name: T, dtype: int64
In [29]:
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn import linear_model, tree, neighbors, ensemble

random_state = 9

models = {
    "linear": {"model": linear_model.LinearRegression(n_jobs=-1)},
    "linear_poly": {
        "model": make_pipeline(
            PolynomialFeatures(degree=2),
            linear_model.LinearRegression(fit_intercept=False, n_jobs=-1),
        )
    },
    "linear_interact": {
        "model": make_pipeline(
            PolynomialFeatures(interaction_only=True),
            linear_model.LinearRegression(fit_intercept=False, n_jobs=-1),
        )
    },
    "ridge": {"model": linear_model.RidgeCV()},
    "decision_tree": {
        "model": tree.DecisionTreeRegressor(random_state=random_state, max_depth=6, criterion="absolute_error")
    },
    "knn": {"model": neighbors.KNeighborsRegressor(n_neighbors=7, n_jobs=-1)},
    "random_forest": {
        "model": ensemble.RandomForestRegressor(
            max_depth=7, random_state=random_state, n_jobs=-1
        )
    },
}
In [30]:
import math
from sklearn import metrics

for model_name in models.keys():
    print(f"Model: {model_name}")
    fitted_model = models[model_name]["model"].fit(
        X_train.values, y_train.values.ravel()
    )
    y_train_pred = fitted_model.predict(X_train.values)
    y_test_pred = fitted_model.predict(X_test.values)
    models[model_name]["fitted"] = fitted_model
    models[model_name]["MSE_train"] = metrics.mean_squared_error(y_train, y_train_pred)
    models[model_name]["MSE_test"] = metrics.mean_squared_error(y_test, y_test_pred)
    models[model_name]["MAE_train"] = metrics.mean_absolute_error(y_train, y_train_pred)
    models[model_name]["MAE_test"] = metrics.mean_absolute_error(y_test, y_test_pred)
    models[model_name]["R2_train"] = metrics.r2_score(y_train, y_train_pred)
    models[model_name]["R2_test"] = metrics.r2_score(y_test, y_test_pred)
Model: linear
Model: linear_poly
Model: linear_interact
Model: ridge
Model: decision_tree
Model: knn
Model: random_forest
In [31]:
reg_metrics = pd.DataFrame.from_dict(models, "index")[
    ["MSE_train", "MSE_test", "MAE_train", "MAE_test", "R2_train", "R2_test"]
]
reg_metrics.sort_values(by="MAE_test").style.background_gradient(
    cmap="viridis", low=1, high=0.3, subset=["MSE_train", "MSE_test"]
).background_gradient(cmap="plasma", low=0.3, high=1, subset=["MAE_test", "R2_test"])
Out[31]:
  MSE_train MSE_test MAE_train MAE_test R2_train R2_test
linear_poly 0.302768 0.203293 0.419467 0.392687 0.998860 0.999047
linear_interact 9.693323 10.875442 2.544944 2.718424 0.963492 0.949019
linear 10.468503 14.820315 2.657476 2.930229 0.960572 0.930526
decision_tree 10.526316 47.426471 1.842105 5.735294 0.960355 0.777676
random_forest 20.243876 54.501240 3.592953 6.598133 0.923755 0.744512
knn 174.100430 191.176471 10.808271 11.680672 0.344285 0.103812
ridge 243.364664 199.601477 13.472724 12.396799 0.083415 0.064317
In [32]:
model = models["decision_tree"]["fitted"]
rules = tree.export_text(
    model, feature_names=X_train.columns.values.tolist()
)
print(rules)
|--- Density <= 1.04
|   |--- Density <= 1.03
|   |   |--- value: [70.00]
|   |--- Density >  1.03
|   |   |--- Density <= 1.04
|   |   |   |--- value: [65.00]
|   |   |--- Density >  1.04
|   |   |   |--- value: [60.00]
|--- Density >  1.04
|   |--- Density <= 1.07
|   |   |--- TiO2 <= 0.03
|   |   |   |--- Al2O3 <= 0.03
|   |   |   |   |--- Density <= 1.05
|   |   |   |   |   |--- Density <= 1.05
|   |   |   |   |   |   |--- value: [50.00]
|   |   |   |   |   |--- Density >  1.05
|   |   |   |   |   |   |--- value: [42.50]
|   |   |   |   |--- Density >  1.05
|   |   |   |   |   |--- Density <= 1.06
|   |   |   |   |   |   |--- value: [35.00]
|   |   |   |   |   |--- Density >  1.06
|   |   |   |   |   |   |--- value: [22.50]
|   |   |   |--- Al2O3 >  0.03
|   |   |   |   |--- Density <= 1.06
|   |   |   |   |   |--- Density <= 1.05
|   |   |   |   |   |   |--- value: [70.00]
|   |   |   |   |   |--- Density >  1.05
|   |   |   |   |   |   |--- value: [65.00]
|   |   |   |   |--- Density >  1.06
|   |   |   |   |   |--- Density <= 1.07
|   |   |   |   |   |   |--- value: [55.00]
|   |   |   |   |   |--- Density >  1.07
|   |   |   |   |   |   |--- value: [50.00]
|   |   |--- TiO2 >  0.03
|   |   |   |--- Density <= 1.06
|   |   |   |   |--- value: [70.00]
|   |   |   |--- Density >  1.06
|   |   |   |   |--- Density <= 1.06
|   |   |   |   |   |--- value: [65.00]
|   |   |   |   |--- Density >  1.06
|   |   |   |   |   |--- value: [60.00]
|   |--- Density >  1.07
|   |   |--- Density <= 1.12
|   |   |   |--- Density <= 1.08
|   |   |   |   |--- Density <= 1.07
|   |   |   |   |   |--- value: [45.00]
|   |   |   |   |--- Density >  1.07
|   |   |   |   |   |--- Density <= 1.08
|   |   |   |   |   |   |--- value: [40.00]
|   |   |   |   |   |--- Density >  1.08
|   |   |   |   |   |   |--- value: [35.00]
|   |   |   |--- Density >  1.08
|   |   |   |   |--- Density <= 1.09
|   |   |   |   |   |--- value: [30.00]
|   |   |   |   |--- Density >  1.09
|   |   |   |   |   |--- Al2O3 <= 0.03
|   |   |   |   |   |   |--- value: [22.50]
|   |   |   |   |   |--- Al2O3 >  0.03
|   |   |   |   |   |   |--- value: [20.00]
|   |   |--- Density >  1.12
|   |   |   |--- Density <= 1.18
|   |   |   |   |--- Density <= 1.15
|   |   |   |   |   |--- value: [70.00]
|   |   |   |   |--- Density >  1.15
|   |   |   |   |   |--- Al2O3 <= 0.15
|   |   |   |   |   |   |--- value: [65.00]
|   |   |   |   |   |--- Al2O3 >  0.15
|   |   |   |   |   |   |--- value: [50.00]
|   |   |   |--- Density >  1.18
|   |   |   |   |--- Al2O3 <= 0.15
|   |   |   |   |   |--- Density <= 1.20
|   |   |   |   |   |   |--- value: [50.00]
|   |   |   |   |   |--- Density >  1.20
|   |   |   |   |   |   |--- value: [30.00]
|   |   |   |   |--- Al2O3 >  0.15
|   |   |   |   |   |--- Density <= 1.18
|   |   |   |   |   |   |--- value: [30.00]
|   |   |   |   |   |--- Density >  1.18
|   |   |   |   |   |   |--- value: [22.50]

In [33]:
import pickle

pickle.dump(model, open("data/temp_density_tree.model.sav", "wb"))