fuzzy-rules-generator/turbine_tree_co1.ipynb

370 KiB
Raw Permalink Blame History

In [1]:
import pickle
import pandas as pd
from sklearn import tree

data = pd.read_csv("data-turbine/clear-data.csv")
model = pickle.load(open("data-turbine/tree.model.sav", "rb"))
features = (
    data
    .drop(["CO"], axis=1)
    .columns.values.tolist()
)

rules = tree.export_text(model, feature_names=features)
print(rules)
|--- TIT <= 1058.15
|   |--- TAT <= 543.87
|   |   |--- TAT <= 528.12
|   |   |   |--- AH <= 92.13
|   |   |   |   |--- value: [21.02]
|   |   |   |--- AH >  92.13
|   |   |   |   |--- value: [41.58]
|   |   |--- TAT >  528.12
|   |   |   |--- TIT <= 1028.85
|   |   |   |   |--- value: [13.71]
|   |   |   |--- TIT >  1028.85
|   |   |   |   |--- value: [9.47]
|   |--- TAT >  543.87
|   |   |--- TAT <= 549.23
|   |   |   |--- TIT <= 1049.65
|   |   |   |   |--- value: [7.00]
|   |   |   |--- TIT >  1049.65
|   |   |   |   |--- value: [5.61]
|   |   |--- TAT >  549.23
|   |   |   |--- TIT <= 1056.05
|   |   |   |   |--- value: [4.70]
|   |   |   |--- TIT >  1056.05
|   |   |   |   |--- value: [4.08]
|--- TIT >  1058.15
|   |--- TIT <= 1076.55
|   |   |--- TAT <= 545.34
|   |   |   |--- TIT <= 1076.45
|   |   |   |   |--- value: [6.29]
|   |   |   |--- TIT >  1076.45
|   |   |   |   |--- value: [30.38]
|   |   |--- TAT >  545.34
|   |   |   |--- TAT <= 549.52
|   |   |   |   |--- value: [3.87]
|   |   |   |--- TAT >  549.52
|   |   |   |   |--- value: [2.88]
|   |--- TIT >  1076.55
|   |   |--- TIT <= 1091.35
|   |   |   |--- TAT <= 532.02
|   |   |   |   |--- value: [12.04]
|   |   |   |--- TAT >  532.02
|   |   |   |   |--- value: [1.70]
|   |   |--- TIT >  1091.35
|   |   |   |--- TAT <= 530.62
|   |   |   |   |--- value: [0.96]
|   |   |   |--- TAT >  530.62
|   |   |   |   |--- value: [1.35]

In [2]:
from src.rules import get_rules


rules = get_rules(model, features)
display(len(rules))
rules
16
Out[2]:
[if (TIT > 1058.15) and (TIT > 1076.55) and (TIT > 1091.35) and (TAT <= 530.625) -> 0.963,
 if (TIT > 1058.15) and (TIT > 1076.55) and (TIT > 1091.35) and (TAT > 530.625) -> 1.345,
 if (TIT <= 1058.15) and (TAT <= 543.87) and (TAT > 528.115) and (TIT <= 1028.85) -> 13.709,
 if (TIT <= 1058.15) and (TAT <= 543.87) and (TAT > 528.115) and (TIT > 1028.85) -> 9.473,
 if (TIT <= 1058.15) and (TAT > 543.87) and (TAT <= 549.235) and (TIT <= 1049.65) -> 7.003,
 if (TIT <= 1058.15) and (TAT > 543.87) and (TAT <= 549.235) and (TIT > 1049.65) -> 5.612,
 if (TIT <= 1058.15) and (TAT > 543.87) and (TAT > 549.235) and (TIT <= 1056.05) -> 4.698,
 if (TIT <= 1058.15) and (TAT > 543.87) and (TAT > 549.235) and (TIT > 1056.05) -> 4.079,
 if (TIT > 1058.15) and (TIT <= 1076.55) and (TAT <= 545.34) and (TIT <= 1076.45) -> 6.292,
 if (TIT > 1058.15) and (TIT <= 1076.55) and (TAT <= 545.34) and (TIT > 1076.45) -> 30.384,
 if (TIT > 1058.15) and (TIT <= 1076.55) and (TAT > 545.34) and (TAT <= 549.515) -> 3.874,
 if (TIT > 1058.15) and (TIT <= 1076.55) and (TAT > 545.34) and (TAT > 549.515) -> 2.883,
 if (TIT > 1058.15) and (TIT > 1076.55) and (TIT <= 1091.35) and (TAT <= 532.015) -> 12.044,
 if (TIT > 1058.15) and (TIT > 1076.55) and (TIT <= 1091.35) and (TAT > 532.015) -> 1.704,
 if (TIT <= 1058.15) and (TAT <= 543.87) and (TAT <= 528.115) and (AH <= 92.135) -> 21.024,
 if (TIT <= 1058.15) and (TAT <= 543.87) and (TAT <= 528.115) and (AH > 92.135) -> 41.576]
In [3]:
from src.rules import normalise_rules


rules = normalise_rules(rules)
display(len(rules))
rules
16
Out[3]:
[if (TIT > 1058.15) and (TAT <= 530.625) -> 0.963,
 if (TIT > 1058.15) and (TAT > 530.625) -> 1.345,
 if (TIT <= 1058.15) and (TAT <= 543.87) and (TAT > 528.115) -> 13.709,
 if (TIT <= 1058.15) and (TIT > 1028.85) and (TAT <= 543.87) and (TAT > 528.115) -> 9.473,
 if (TIT <= 1058.15) and (TAT > 543.87) and (TAT <= 549.235) -> 7.003,
 if (TIT <= 1058.15) and (TIT > 1049.65) and (TAT > 543.87) and (TAT <= 549.235) -> 5.612,
 if (TIT <= 1058.15) and (TAT > 543.87) -> 4.698,
 if (TIT <= 1058.15) and (TIT > 1056.05) and (TAT > 543.87) -> 4.079,
 if (TIT > 1058.15) and (TIT <= 1076.55) and (TAT <= 545.34) -> 6.292,
 if (TIT > 1058.15) and (TIT <= 1076.55) and (TAT <= 545.34) -> 30.384,
 if (TIT > 1058.15) and (TIT <= 1076.55) and (TAT > 545.34) and (TAT <= 549.515) -> 3.874,
 if (TIT > 1058.15) and (TIT <= 1076.55) and (TAT > 545.34) -> 2.883,
 if (TIT > 1058.15) and (TIT <= 1091.35) and (TAT <= 532.015) -> 12.044,
 if (TIT > 1058.15) and (TIT <= 1091.35) and (TAT > 532.015) -> 1.704,
 if (TIT <= 1058.15) and (TAT <= 543.87) and (AH <= 92.135) -> 21.024,
 if (TIT <= 1058.15) and (TAT <= 543.87) and (AH > 92.135) -> 41.576]
In [4]:
from src.rules import delete_same_rules


rules = delete_same_rules(rules)
display(len(rules))
rules
15
Out[4]:
[if (TIT > 1058.15) and (TAT <= 530.625) -> 0.963,
 if (TIT > 1058.15) and (TAT > 530.625) -> 1.345,
 if (TIT <= 1058.15) and (TAT <= 543.87) and (TAT > 528.115) -> 13.709,
 if (TIT <= 1058.15) and (TIT > 1028.85) and (TAT <= 543.87) and (TAT > 528.115) -> 9.473,
 if (TIT <= 1058.15) and (TAT > 543.87) and (TAT <= 549.235) -> 7.003,
 if (TIT <= 1058.15) and (TIT > 1049.65) and (TAT > 543.87) and (TAT <= 549.235) -> 5.612,
 if (TIT <= 1058.15) and (TAT > 543.87) -> 4.698,
 if (TIT <= 1058.15) and (TIT > 1056.05) and (TAT > 543.87) -> 4.079,
 if (TIT > 1058.15) and (TIT <= 1076.55) and (TAT <= 545.34) -> 18.338,
 if (TIT > 1058.15) and (TIT <= 1076.55) and (TAT > 545.34) and (TAT <= 549.515) -> 3.874,
 if (TIT > 1058.15) and (TIT <= 1076.55) and (TAT > 545.34) -> 2.883,
 if (TIT > 1058.15) and (TIT <= 1091.35) and (TAT <= 532.015) -> 12.044,
 if (TIT > 1058.15) and (TIT <= 1091.35) and (TAT > 532.015) -> 1.704,
 if (TIT <= 1058.15) and (TAT <= 543.87) and (AH <= 92.135) -> 21.024,
 if (TIT <= 1058.15) and (TAT <= 543.87) and (AH > 92.135) -> 41.576]
In [5]:
from sklearn.model_selection import train_test_split

random_state = 9

y = data["CO"]
X = data.drop(["CO"], axis=1).copy()
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=random_state
)
display(X_train, y_train, X_test, y_test)
AH TIT TAT
4480 83.256 1100.0 540.65
24883 73.583 1099.8 538.53
21557 81.089 1100.0 534.04
1705 64.757 1086.6 549.76
21388 75.645 1100.0 534.21
... ... ... ...
25725 85.663 1072.2 549.82
5014 75.280 1058.0 549.86
22584 92.874 1067.2 550.15
501 93.029 1099.9 524.78
20828 88.840 1079.9 550.02

29386 rows × 3 columns

4480     0.3527
24883    1.2522
21557    1.4718
1705     1.3117
21388    1.7835
          ...  
25725    2.4980
5014     3.2652
22584    1.2630
501      0.7851
20828    2.7272
Name: CO, Length: 29386, dtype: float64
AH TIT TAT
18246 84.837 1088.7 550.39
20343 59.574 1100.0 542.01
2924 81.262 1092.9 544.91
117 88.135 1100.0 526.21
5713 86.846 1080.2 550.25
... ... ... ...
21917 75.935 1081.1 549.66
13099 78.314 1089.8 550.37
26704 79.478 1073.0 550.19
4182 41.623 1100.2 539.10
2982 69.233 1091.6 549.98

7347 rows × 3 columns

18246    1.34970
20343    1.63430
2924     0.78632
117      0.72742
5713     1.35980
          ...   
21917    1.45140
13099    1.00960
26704    2.01190
4182     0.37685
2982     1.15990
Name: CO, Length: 7347, dtype: float64
In [6]:
from src.rules import simplify_rules

rules = simplify_rules(X_train, rules)
rules
Out[6]:
[if (TIT = 1100.9) and (TAT = 511.04) -> 0.963,
 if (TIT = 1100.9) and (TAT = 550.6) -> 1.345,
 if (TIT = 1001.3) and (TAT = 535.993) -> 13.709,
 if (TIT = 1043.5) and (TAT = 535.993) -> 9.473,
 if (TIT = 1001.3) and (TAT = 546.552) -> 7.003,
 if (TIT = 1053.9) and (TAT = 546.552) -> 5.612,
 if (TIT = 1001.3) and (TAT = 550.6) -> 4.698,
 if (TIT = 1057.1) and (TAT = 550.6) -> 4.079,
 if (TIT = 1067.35) and (TAT = 511.04) -> 18.338,
 if (TIT = 1067.35) and (TAT = 547.428) -> 3.874,
 if (TIT = 1067.35) and (TAT = 550.6) -> 2.883,
 if (TIT = 1074.75) and (TAT = 511.04) -> 12.044,
 if (TIT = 1074.75) and (TAT = 550.6) -> 1.704,
 if (TIT = 1001.3) and (TAT = 511.04) and (AH = 24.085) -> 21.024,
 if (TIT = 1001.3) and (TAT = 511.04) and (AH = 100.2) -> 41.576]
In [7]:
data.describe().transpose()
Out[7]:
count mean std min 25% 50% 75% max
AH 36733.0 77.867015 14.461355 24.085000 68.1880 80.4700 89.3760 100.200
TIT 36733.0 1081.428084 17.536373 1000.800000 1071.8000 1085.9000 1097.0000 1100.900
TAT 36733.0 546.158517 6.842360 511.040000 544.7200 549.8800 550.0400 550.610
CO 36733.0 2.372468 2.262672 0.000388 1.1824 1.7135 2.8429 44.103
In [18]:
import numpy as np
from skfuzzy import control as ctrl
import skfuzzy as fuzz

# AT = ctrl.Antecedent(np.arange(-6.2348, 37.103, 0.0001), "AT")
# AP = ctrl.Antecedent(np.arange(985.85, 1036.6, 0.01), "AP")
AH = ctrl.Antecedent(np.arange(24.085, 100.2, 0.1), "AH")
# AFDP = ctrl.Antecedent(np.arange(2.0874, 7.6106, 0.0001), "AFDP")
TIT = ctrl.Antecedent(np.arange(1000.8, 1100.9, 0.1), "TIT")
TAT = ctrl.Antecedent(np.arange(511.04, 550.61, 0.1), "TAT")
CO = ctrl.Consequent(np.arange(0.000388, 44.103, 0.1), "CO")

# AT.automf(3, variable_type="quant")
# AP.automf(5, variable_type="quant")
AH.automf(3, variable_type="quant")
AH.view()
# AFDP.automf(3, variable_type="quant")
TIT.automf(3, variable_type="quant")
# TIT["low"] = fuzz.zmf(TIT.universe, 1025, 1035)
# TIT["average"] = fuzz.trapmf(TIT.universe, [1025, 1035, 1056, 1075])
# TIT["high"] = fuzz.smf(TIT.universe, 1065, 1075)
TIT.view()
TAT.automf(3, variable_type="quant")
# TAT["low"] = fuzz.zmf(TAT.universe, 520, 525)
# TAT["average"] = fuzz.trapmf(TAT.universe, [520, 525, 535, 540])
# TAT["high"] = fuzz.smf(TAT.universe, 535, 540)
TAT.view()
CO.automf(names=[str(i) for i in range(1, 13)], variable_type="quant")
# CO["low"] = fuzz.zmf(CO.universe, 10, 13)
# CO["average"] = fuzz.trapmf(CO.universe, [10, 13, 30, 33])
# CO["high"] = fuzz.smf(CO.universe, 30, 33)
CO.view()
/Users/user/Projects/python/fuzzy-rules-generator/.venv/lib/python3.12/site-packages/skfuzzy/control/fuzzyvariable.py:125: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown
  fig.show()
In [19]:
from src.rules import get_fuzzy_rules

fuzzy_variables = {
    # "AT": AT,
    # "AP": AP,
    "AH": AH,
    # "AFDP": AFDP,
    "TIT": TIT,
    "TAT": TAT,
    "consequent": CO,
}
fuzzy_rules = get_fuzzy_rules(rules, fuzzy_variables)

fuzzy_cntrl = ctrl.ControlSystem(fuzzy_rules)

sim = ctrl.ControlSystemSimulation(fuzzy_cntrl, lenient=False)

display(len(fuzzy_rules))
fuzzy_rules
9
Out[19]:
[IF TIT[high] AND TAT[low] THEN CO[1]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF TIT[high] AND TAT[high] THEN CO[1]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF TIT[low] AND TAT[average] THEN CO[4]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF TIT[average] AND TAT[average] THEN CO[3]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF TIT[low] AND TAT[high] THEN CO[3]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF TIT[average] AND TAT[low] THEN CO[4]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF TIT[average] AND TAT[high] THEN CO[1]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF (TIT[low] AND TAT[low]) AND AH[low] THEN CO[6]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF (TIT[low] AND TAT[low]) AND AH[high] THEN CO[11]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax]
In [24]:
# sim.input["AT"] = 4.5878
# sim.input["AP"] = 1018.7
# sim.input["AH"] = 83.675
# sim.input["AFDP"] = 3.5758
# sim.input["TIT"] = 1086.2
# sim.input["TAT"] = 549.83
# sim.input["AT"] = 7.8167
# sim.input["AP"] = 1022.2
sim.input["AH"] = 88.135
# sim.input["AFDP"] = 4.6605
sim.input["TIT"] = 1100.0
sim.input["TAT"] = 526.21
sim.compute()
sim.print_state()
display(sim.output["CO"])
CO.view(sim=sim)
=============
 Antecedents 
=============
Antecedent: TIT                     = 1100.0
  - low                             : 0.0
  - average                         : 0.017982017982469945
  - high                            : 0.9820179820175301
Antecedent: TAT                     = 526.21
  - low                             : 0.23189873417738902
  - average                         : 0.7681012658226116
  - high                            : 0.0
Antecedent: AH                      = 88.135
  - low                             : 0.0
  - average                         : 0.3166885676741368
  - high                            : 0.6833114323258631

=======
 Rules 
=======
RULE #0:
  IF TIT[high] AND TAT[low] THEN CO[1]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - TIT[high]                                              : 0.9820179820175301
  - TAT[low]                                               : 0.23189873417738902
                                    TIT[high] AND TAT[low] = 0.23189873417738902
  Activation (THEN-clause):
                                                     CO[1] : 0.23189873417738902

RULE #1:
  IF TIT[high] AND TAT[high] THEN CO[1]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - TIT[high]                                              : 0.9820179820175301
  - TAT[high]                                              : 0.0
                                   TIT[high] AND TAT[high] = 0.0
  Activation (THEN-clause):
                                                     CO[1] : 0.0

RULE #2:
  IF TIT[low] AND TAT[average] THEN CO[4]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - TIT[low]                                               : 0.0
  - TAT[average]                                           : 0.7681012658226116
                                 TIT[low] AND TAT[average] = 0.0
  Activation (THEN-clause):
                                                     CO[4] : 0.0

RULE #3:
  IF TIT[average] AND TAT[average] THEN CO[3]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - TIT[average]                                           : 0.017982017982469945
  - TAT[average]                                           : 0.7681012658226116
                             TIT[average] AND TAT[average] = 0.017982017982469945
  Activation (THEN-clause):
                                                     CO[3] : 0.017982017982469945

RULE #4:
  IF TIT[low] AND TAT[high] THEN CO[3]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - TIT[low]                                               : 0.0
  - TAT[high]                                              : 0.0
                                    TIT[low] AND TAT[high] = 0.0
  Activation (THEN-clause):
                                                     CO[3] : 0.0

RULE #5:
  IF TIT[average] AND TAT[low] THEN CO[4]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - TIT[average]                                           : 0.017982017982469945
  - TAT[low]                                               : 0.23189873417738902
                                 TIT[average] AND TAT[low] = 0.017982017982469945
  Activation (THEN-clause):
                                                     CO[4] : 0.017982017982469945

RULE #6:
  IF TIT[average] AND TAT[high] THEN CO[1]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - TIT[average]                                           : 0.017982017982469945
  - TAT[high]                                              : 0.0
                                TIT[average] AND TAT[high] = 0.0
  Activation (THEN-clause):
                                                     CO[1] : 0.0

RULE #7:
  IF (TIT[low] AND TAT[low]) AND AH[low] THEN CO[6]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - TIT[low]                                               : 0.0
  - TAT[low]                                               : 0.23189873417738902
  - AH[low]                                                : 0.0
                       (TIT[low] AND TAT[low]) AND AH[low] = 0.0
  Activation (THEN-clause):
                                                     CO[6] : 0.0

RULE #8:
  IF (TIT[low] AND TAT[low]) AND AH[high] THEN CO[11]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - TIT[low]                                               : 0.0
  - TAT[low]                                               : 0.23189873417738902
  - AH[high]                                               : 0.6833114323258631
                      (TIT[low] AND TAT[low]) AND AH[high] = 0.0
  Activation (THEN-clause):
                                                    CO[11] : 0.0


==============================
 Intermediaries and Conquests 
==============================
Consequent: CO                       = 3.494757369017915
  1:
    Accumulate using accumulation_max : 0.23189873417738902
  2:
    Accumulate using accumulation_max : None
  3:
    Accumulate using accumulation_max : 0.017982017982469945
  4:
    Accumulate using accumulation_max : 0.017982017982469945
  5:
    Accumulate using accumulation_max : None
  6:
    Accumulate using accumulation_max : 0.0
  7:
    Accumulate using accumulation_max : None
  8:
    Accumulate using accumulation_max : None
  9:
    Accumulate using accumulation_max : None
  10:
    Accumulate using accumulation_max : None
  11:
    Accumulate using accumulation_max : 0.0
  12:
    Accumulate using accumulation_max : None

np.float64(3.494757369017915)
/Users/user/Projects/python/fuzzy-rules-generator/.venv/lib/python3.12/site-packages/skfuzzy/control/fuzzyvariable.py:125: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown
  fig.show()
In [21]:
from sklearn import metrics
import math


def fuzzy_pred(row):
    # sim.input["AT"] = row["AT"]
    # sim.input["AP"] = row["AP"]
    sim.input["AH"] = row["AH"]
    # sim.input["AFDP"] = row["AFDP"]
    sim.input["TIT"] = row["TIT"]
    sim.input["TAT"] = row["TAT"]
    sim.compute()
    return sim.output["CO"]


def rmse(row):
    return math.sqrt(metrics.mean_squared_error([row["Real"]], [row["Inferred"]]))

result_train = X_train.copy()
result_train["Real"] = y_train
result_train = result_train[:10000]

result_train["Inferred"] = result_train.apply(fuzzy_pred, axis=1)
result_train["RMSE"] = result_train.apply(rmse, axis=1)
result_train = result_train.round({"RMSE": 3})
result_train.head(15)
Out[21]:
AH TIT TAT Real Inferred RMSE
4480 83.256 1100.0 540.65 0.3527 2.122815 1.770
24883 73.583 1099.8 538.53 1.2522 2.418762 1.167
21557 81.089 1100.0 534.04 1.4718 3.026952 1.555
1705 64.757 1086.6 549.76 1.3117 2.374747 1.063
21388 75.645 1100.0 534.21 1.7835 2.976760 1.193
36422 69.953 1076.7 549.96 2.9304 2.398142 0.532
21816 70.858 1087.8 549.43 1.7219 2.666172 0.944
34158 47.855 1085.2 549.91 1.5878 2.242754 0.655
12784 69.850 1090.5 550.26 2.0753 1.754647 0.321
30182 70.275 1060.9 550.13 4.1917 1.906511 2.285
3996 61.376 1092.2 549.89 0.3633 2.155418 1.792
31492 63.967 1085.9 549.98 2.0315 2.151404 0.120
36021 61.707 1081.1 549.34 2.3146 2.914147 0.600
21791 96.150 1087.7 549.79 1.2175 2.323823 1.106
1054 80.911 1086.1 550.32 1.1838 1.733644 0.550
In [22]:
result_test = X_test.copy()
result_test["Real"] = y_test

result_test["Inferred"] = result_test.apply(fuzzy_pred, axis=1)
result_test["RMSE"] = result_test.apply(rmse, axis=1)
result_test = result_test.round({"RMSE": 3})
result_test
Out[22]:
AH TIT TAT Real Inferred RMSE
18246 84.837 1088.7 550.39 1.34970 1.608328 0.259
20343 59.574 1100.0 542.01 1.63430 2.036748 0.402
2924 81.262 1092.9 544.91 0.78632 3.997200 3.211
117 88.135 1100.0 526.21 0.72742 3.494757 2.767
5713 86.846 1080.2 550.25 1.35980 1.928498 0.569
... ... ... ... ... ... ...
21917 75.935 1081.1 549.66 1.45140 2.606285 1.155
13099 78.314 1089.8 550.37 1.00960 1.622633 0.613
26704 79.478 1073.0 550.19 2.01190 2.042107 0.030
4182 41.623 1100.2 539.10 0.37685 2.116185 1.739
2982 69.233 1091.6 549.98 1.15990 2.066452 0.907

7347 rows × 6 columns

In [23]:
rmetrics = {}
rmetrics["RMSE_train"] = math.sqrt(
    metrics.mean_squared_error(result_train["Real"], result_train["Inferred"])
)
rmetrics["RMSE_test"] = math.sqrt(
    metrics.mean_squared_error(result_test["Real"], result_test["Inferred"])
)
rmetrics["RMAE_train"] = math.sqrt(
    metrics.mean_absolute_error(result_train["Real"], result_train["Inferred"])
)
rmetrics["RMAE_test"] = math.sqrt(
    metrics.mean_absolute_error(result_test["Real"], result_test["Inferred"])
)
rmetrics["MAE_train"] = float(
    metrics.mean_absolute_error(result_train["Real"], result_train["Inferred"])
)
rmetrics["MAE_test"] = float(
    metrics.mean_absolute_error(result_test["Real"], result_test["Inferred"])
)
rmetrics["R2_train"] = metrics.r2_score(result_train["Real"], result_train["Inferred"])
rmetrics["R2_test"] = metrics.r2_score(result_test["Real"], result_test["Inferred"])

rmetrics
Out[23]:
{'RMSE_train': 2.0980454600317606,
 'RMSE_test': 2.05886400827211,
 'RMAE_train': 1.1847436158491003,
 'RMAE_test': 1.1874008432872027,
 'MAE_train': 1.4036174352952007,
 'MAE_test': 1.4099207626391603,
 'R2_train': 0.1608000420839235,
 'R2_test': 0.16319151715106217}