fuzzy-rules-generator/temp_viscosity_tree.ipynb

356 KiB

In [2]:
import pickle
import pandas as pd
from sklearn import tree

model = pickle.load(open("data/temp_viscosity_tree.model.sav", "rb"))
features = (
    pd.read_csv("data/viscosity_train.csv", sep=";", decimal=",")
    .drop(["T"], axis=1)
    .columns.values.tolist()
)

rules = tree.export_text(model, feature_names=features)
print(rules)
|--- Viscosity <= 2.86
|   |--- Viscosity <= 1.38
|   |   |--- value: [70.00]
|   |--- Viscosity >  1.38
|   |   |--- Viscosity <= 1.78
|   |   |   |--- Viscosity <= 1.72
|   |   |   |   |--- TiO2 <= 0.03
|   |   |   |   |   |--- Al2O3 <= 0.03
|   |   |   |   |   |   |--- value: [52.50]
|   |   |   |   |   |--- Al2O3 >  0.03
|   |   |   |   |   |   |--- value: [57.50]
|   |   |   |   |--- TiO2 >  0.03
|   |   |   |   |   |--- value: [60.00]
|   |   |   |--- Viscosity >  1.72
|   |   |   |   |--- value: [70.00]
|   |   |--- Viscosity >  1.78
|   |   |   |--- TiO2 <= 0.18
|   |   |   |   |--- Al2O3 <= 0.18
|   |   |   |   |   |--- Viscosity <= 2.24
|   |   |   |   |   |   |--- value: [50.00]
|   |   |   |   |   |--- Viscosity >  2.24
|   |   |   |   |   |   |--- value: [40.00]
|   |   |   |   |--- Al2O3 >  0.18
|   |   |   |   |   |--- Viscosity <= 2.29
|   |   |   |   |   |   |--- value: [60.00]
|   |   |   |   |   |--- Viscosity >  2.29
|   |   |   |   |   |   |--- value: [55.00]
|   |   |   |--- TiO2 >  0.18
|   |   |   |   |--- Viscosity <= 2.22
|   |   |   |   |   |--- value: [70.00]
|   |   |   |   |--- Viscosity >  2.22
|   |   |   |   |   |--- Viscosity <= 2.69
|   |   |   |   |   |   |--- value: [60.00]
|   |   |   |   |   |--- Viscosity >  2.69
|   |   |   |   |   |   |--- value: [55.00]
|--- Viscosity >  2.86
|   |--- Viscosity <= 3.64
|   |   |--- TiO2 <= 0.18
|   |   |   |--- Viscosity <= 3.15
|   |   |   |   |--- value: [35.00]
|   |   |   |--- Viscosity >  3.15
|   |   |   |   |--- Viscosity <= 3.47
|   |   |   |   |   |--- Al2O3 <= 0.03
|   |   |   |   |   |   |--- value: [25.00]
|   |   |   |   |   |--- Al2O3 >  0.03
|   |   |   |   |   |   |--- value: [30.00]
|   |   |   |   |--- Viscosity >  3.47
|   |   |   |   |   |--- value: [40.00]
|   |   |--- TiO2 >  0.18
|   |   |   |--- value: [45.00]
|   |--- Viscosity >  3.64
|   |   |--- Viscosity <= 6.27
|   |   |   |--- TiO2 <= 0.18
|   |   |   |   |--- Al2O3 <= 0.18
|   |   |   |   |   |--- TiO2 <= 0.03
|   |   |   |   |   |   |--- value: [20.00]
|   |   |   |   |   |--- TiO2 >  0.03
|   |   |   |   |   |   |--- value: [22.50]
|   |   |   |   |--- Al2O3 >  0.18
|   |   |   |   |   |--- Viscosity <= 4.42
|   |   |   |   |   |   |--- value: [35.00]
|   |   |   |   |   |--- Viscosity >  4.42
|   |   |   |   |   |   |--- value: [27.50]
|   |   |   |--- TiO2 >  0.18
|   |   |   |   |--- Viscosity <= 4.65
|   |   |   |   |   |--- value: [35.00]
|   |   |   |   |--- Viscosity >  4.65
|   |   |   |   |   |--- Viscosity <= 5.40
|   |   |   |   |   |   |--- value: [30.00]
|   |   |   |   |   |--- Viscosity >  5.40
|   |   |   |   |   |   |--- value: [25.00]
|   |   |--- Viscosity >  6.27
|   |   |   |--- value: [20.00]

In [3]:
from src.rules import get_rules


rules = get_rules(model, features)
display(len(rules))
rules
25
Out[3]:
[if (Viscosity > 2.856) and (Viscosity > 3.636) and (Viscosity <= 6.267) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (TiO2 <= 0.025) -> 20.0,
 if (Viscosity > 2.856) and (Viscosity > 3.636) and (Viscosity > 6.267) -> 20.0,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) and (Viscosity <= 1.78) and (Viscosity <= 1.719) and (TiO2 <= 0.025) and (Al2O3 > 0.025) -> 57.5,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) and (Viscosity <= 1.78) and (Viscosity <= 1.719) and (TiO2 > 0.025) -> 60.0,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) and (Viscosity <= 1.78) and (Viscosity > 1.719) -> 70.0,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) and (Viscosity > 1.78) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (Viscosity <= 2.235) -> 50.0,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) and (Viscosity > 1.78) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (Viscosity > 2.235) -> 40.0,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) and (Viscosity > 1.78) and (TiO2 <= 0.175) and (Al2O3 > 0.175) and (Viscosity <= 2.293) -> 60.0,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) and (Viscosity > 1.78) and (TiO2 <= 0.175) and (Al2O3 > 0.175) and (Viscosity > 2.293) -> 55.0,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) and (Viscosity > 1.78) and (TiO2 > 0.175) and (Viscosity <= 2.224) -> 70.0,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) and (Viscosity > 1.78) and (TiO2 > 0.175) and (Viscosity > 2.224) and (Viscosity <= 2.688) -> 60.0,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) and (Viscosity > 1.78) and (TiO2 > 0.175) and (Viscosity > 2.224) and (Viscosity > 2.688) -> 55.0,
 if (Viscosity > 2.856) and (Viscosity <= 3.636) and (TiO2 <= 0.175) and (Viscosity <= 3.151) -> 35.0,
 if (Viscosity > 2.856) and (Viscosity <= 3.636) and (TiO2 <= 0.175) and (Viscosity > 3.151) and (Viscosity <= 3.473) and (Al2O3 <= 0.025) -> 25.0,
 if (Viscosity > 2.856) and (Viscosity <= 3.636) and (TiO2 <= 0.175) and (Viscosity > 3.151) and (Viscosity <= 3.473) and (Al2O3 > 0.025) -> 30.0,
 if (Viscosity > 2.856) and (Viscosity <= 3.636) and (TiO2 <= 0.175) and (Viscosity > 3.151) and (Viscosity > 3.473) -> 40.0,
 if (Viscosity > 2.856) and (Viscosity <= 3.636) and (TiO2 > 0.175) -> 45.0,
 if (Viscosity <= 2.856) and (Viscosity <= 1.377) -> 70.0,
 if (Viscosity > 2.856) and (Viscosity > 3.636) and (Viscosity <= 6.267) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) and (TiO2 > 0.025) -> 22.5,
 if (Viscosity > 2.856) and (Viscosity > 3.636) and (Viscosity <= 6.267) and (TiO2 <= 0.175) and (Al2O3 > 0.175) and (Viscosity <= 4.424) -> 35.0,
 if (Viscosity > 2.856) and (Viscosity > 3.636) and (Viscosity <= 6.267) and (TiO2 <= 0.175) and (Al2O3 > 0.175) and (Viscosity > 4.424) -> 27.5,
 if (Viscosity > 2.856) and (Viscosity > 3.636) and (Viscosity <= 6.267) and (TiO2 > 0.175) and (Viscosity <= 4.649) -> 35.0,
 if (Viscosity > 2.856) and (Viscosity > 3.636) and (Viscosity <= 6.267) and (TiO2 > 0.175) and (Viscosity > 4.649) and (Viscosity <= 5.404) -> 30.0,
 if (Viscosity > 2.856) and (Viscosity > 3.636) and (Viscosity <= 6.267) and (TiO2 > 0.175) and (Viscosity > 4.649) and (Viscosity > 5.404) -> 25.0,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) and (Viscosity <= 1.78) and (Viscosity <= 1.719) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) -> 52.5]
In [4]:
from src.rules import normalise_rules


rules = normalise_rules(rules)
display(len(rules))
rules
25
Out[4]:
[if (Viscosity > 2.856) and (Viscosity <= 6.267) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 20.0,
 if (Viscosity > 2.856) -> 20.0,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) and (TiO2 <= 0.025) and (Al2O3 > 0.025) -> 57.5,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) and (TiO2 > 0.025) -> 60.0,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) -> 70.0,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 50.0,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 40.0,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 60.0,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 55.0,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) and (TiO2 > 0.175) -> 70.0,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) and (TiO2 > 0.175) -> 60.0,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) and (TiO2 > 0.175) -> 55.0,
 if (Viscosity > 2.856) and (Viscosity <= 3.636) and (TiO2 <= 0.175) -> 35.0,
 if (Viscosity > 2.856) and (Viscosity <= 3.636) and (TiO2 <= 0.175) and (Al2O3 <= 0.025) -> 25.0,
 if (Viscosity > 2.856) and (Viscosity <= 3.636) and (TiO2 <= 0.175) and (Al2O3 > 0.025) -> 30.0,
 if (Viscosity > 2.856) and (Viscosity <= 3.636) and (TiO2 <= 0.175) -> 40.0,
 if (Viscosity > 2.856) and (Viscosity <= 3.636) and (TiO2 > 0.175) -> 45.0,
 if (Viscosity <= 2.856) -> 70.0,
 if (Viscosity > 2.856) and (Viscosity <= 6.267) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 22.5,
 if (Viscosity > 2.856) and (Viscosity <= 6.267) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 35.0,
 if (Viscosity > 2.856) and (Viscosity <= 6.267) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 27.5,
 if (Viscosity > 2.856) and (Viscosity <= 6.267) and (TiO2 > 0.175) -> 35.0,
 if (Viscosity > 2.856) and (Viscosity <= 6.267) and (TiO2 > 0.175) -> 30.0,
 if (Viscosity > 2.856) and (Viscosity <= 6.267) and (TiO2 > 0.175) -> 25.0,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) -> 52.5]
In [5]:
from src.rules import delete_same_rules


rules = delete_same_rules(rules)
display(len(rules))
rules
17
Out[5]:
[if (Viscosity > 2.856) and (Viscosity <= 6.267) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 20.0,
 if (Viscosity > 2.856) -> 20.0,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) and (TiO2 <= 0.025) and (Al2O3 > 0.025) -> 57.5,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) and (TiO2 > 0.025) -> 60.0,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) -> 70.0,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) and (TiO2 <= 0.175) and (Al2O3 <= 0.175) -> 45.0,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 57.5,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) and (TiO2 > 0.175) -> 61.667,
 if (Viscosity > 2.856) and (Viscosity <= 3.636) and (TiO2 <= 0.175) and (Al2O3 <= 0.025) -> 25.0,
 if (Viscosity > 2.856) and (Viscosity <= 3.636) and (TiO2 <= 0.175) and (Al2O3 > 0.025) -> 30.0,
 if (Viscosity > 2.856) and (Viscosity <= 3.636) and (TiO2 <= 0.175) -> 37.5,
 if (Viscosity > 2.856) and (Viscosity <= 3.636) and (TiO2 > 0.175) -> 45.0,
 if (Viscosity <= 2.856) -> 70.0,
 if (Viscosity > 2.856) and (Viscosity <= 6.267) and (TiO2 <= 0.175) and (TiO2 > 0.025) and (Al2O3 <= 0.175) -> 22.5,
 if (Viscosity > 2.856) and (Viscosity <= 6.267) and (TiO2 <= 0.175) and (Al2O3 > 0.175) -> 31.25,
 if (Viscosity > 2.856) and (Viscosity <= 6.267) and (TiO2 > 0.175) -> 30.0,
 if (Viscosity <= 2.856) and (Viscosity > 1.377) and (TiO2 <= 0.025) and (Al2O3 <= 0.025) -> 52.5]
In [6]:
train = pd.read_csv("data/viscosity_train.csv", sep=";", decimal=",")
test = pd.read_csv("data/viscosity_test.csv", sep=";", decimal=",")

display(train.head(3))
display(test.head(3))
T Al2O3 TiO2 Viscosity
0 20 0.0 0.0 3.707
1 25 0.0 0.0 3.180
2 35 0.0 0.0 2.361
T Al2O3 TiO2 Viscosity
0 30 0.0 0.0 2.716
1 40 0.0 0.0 2.073
2 60 0.0 0.0 1.329
In [7]:
from src.rules import simplify_rules

rules = simplify_rules(train, rules)
display(len(rules))
rules
17
Out[7]:
[if (Viscosity = 4.562) and (TiO2 = 0.0) and (Al2O3 = 0.0) -> 20.0,
 if (Viscosity = 7.132) -> 20.0,
 if (Viscosity = 2.117) and (TiO2 = 0.0) and (Al2O3 = 0.3) -> 57.5,
 if (Viscosity = 2.117) and (TiO2 = 0.3) -> 60.0,
 if (Viscosity = 2.117) -> 70.0,
 if (Viscosity = 2.117) and (TiO2 = 0.0) and (Al2O3 = 0.0) -> 45.0,
 if (Viscosity = 2.117) and (TiO2 = 0.0) and (Al2O3 = 0.3) -> 57.5,
 if (Viscosity = 2.117) and (TiO2 = 0.3) -> 61.667,
 if (Viscosity = 3.246) and (TiO2 = 0.0) and (Al2O3 = 0.0) -> 25.0,
 if (Viscosity = 3.246) and (TiO2 = 0.0) and (Al2O3 = 0.3) -> 30.0,
 if (Viscosity = 3.246) and (TiO2 = 0.0) -> 37.5,
 if (Viscosity = 3.246) and (TiO2 = 0.3) -> 45.0,
 if (Viscosity = 1.194) -> 70.0,
 if (Viscosity = 4.562) and (TiO2 = 0.1) and (Al2O3 = 0.0) -> 22.5,
 if (Viscosity = 4.562) and (TiO2 = 0.0) and (Al2O3 = 0.3) -> 31.25,
 if (Viscosity = 4.562) and (TiO2 = 0.3) -> 30.0,
 if (Viscosity = 2.117) and (TiO2 = 0.0) and (Al2O3 = 0.0) -> 52.5]
In [8]:
import numpy as np
from skfuzzy import control as ctrl
import skfuzzy as fuzz

al = ctrl.Antecedent(np.arange(0, 0.3, 0.005), "al")
ti = ctrl.Antecedent(np.arange(0, 0.3, 0.005), "ti")
viscosity = ctrl.Antecedent(np.arange(1.18, 3.71, 0.00001), "viscosity")
temp = ctrl.Consequent(train["T"].sort_values().unique(), "temp")

al.automf(3, variable_type="quant")
al.view()
ti.automf(3, variable_type="quant")
ti.view()
viscosity.automf(3, variable_type="quant")
viscosity.view()
temp.automf(5, variable_type="quant")
temp.view()
/Users/user/Projects/python/fuzzy-rules-generator/.venv/lib/python3.12/site-packages/skfuzzy/control/fuzzyvariable.py:125: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown
  fig.show()
In [9]:
from src.rules import get_fuzzy_rules

fuzzy_variables = {"Al2O3": al, "TiO2": ti, "Viscosity": viscosity, "consequent": temp}
fuzzy_rules = get_fuzzy_rules(rules, fuzzy_variables)

fuzzy_cntrl = ctrl.ControlSystem(fuzzy_rules)

sim = ctrl.ControlSystemSimulation(fuzzy_cntrl, lenient=False)

display(len(fuzzy_rules))
fuzzy_rules
11
Out[9]:
[IF viscosity[high] THEN temp[lower]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF viscosity[average] THEN temp[higher]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF (viscosity[average] AND ti[low]) AND al[low] THEN temp[average]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF (viscosity[average] AND ti[low]) AND al[high] THEN temp[high]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF viscosity[average] AND ti[high] THEN temp[high]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF (viscosity[high] AND ti[low]) AND al[low] THEN temp[lower]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF viscosity[high] AND ti[low] THEN temp[low]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF viscosity[high] AND ti[high] THEN temp[average]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF viscosity[low] THEN temp[higher]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF (viscosity[high] AND ti[average]) AND al[low] THEN temp[lower]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF (viscosity[high] AND ti[low]) AND al[high] THEN temp[low]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax]
In [10]:
sim.input["al"] = 0.0
sim.input["ti"] = 0.0
sim.input["viscosity"] = 2.716
sim.compute()
sim.print_state()
display(sim.output["temp"])
temp.view(sim=sim)
=============
 Antecedents 
=============
Antecedent: viscosity               = 2.716
  - low                             : 0.0
  - average                         : 0.7857659516520321
  - high                            : 0.2142340483479678
Antecedent: ti                      = 0.0
  - low                             : 1.0
  - average                         : 0.0
  - high                            : 0.0
Antecedent: al                      = 0.0
  - low                             : 1.0
  - average                         : 0.0
  - high                            : 0.0

=======
 Rules 
=======
RULE #0:
  IF viscosity[high] THEN temp[lower]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - viscosity[high]                                        : 0.2142340483479678
                                           viscosity[high] = 0.2142340483479678
  Activation (THEN-clause):
                                               temp[lower] : 0.2142340483479678

RULE #1:
  IF viscosity[average] THEN temp[higher]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - viscosity[average]                                     : 0.7857659516520321
                                        viscosity[average] = 0.7857659516520321
  Activation (THEN-clause):
                                              temp[higher] : 0.7857659516520321

RULE #2:
  IF (viscosity[average] AND ti[low]) AND al[low] THEN temp[average]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - viscosity[average]                                     : 0.7857659516520321
  - ti[low]                                                : 1.0
  - al[low]                                                : 1.0
              (viscosity[average] AND ti[low]) AND al[low] = 0.7857659516520321
  Activation (THEN-clause):
                                             temp[average] : 0.7857659516520321

RULE #3:
  IF (viscosity[average] AND ti[low]) AND al[high] THEN temp[high]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - viscosity[average]                                     : 0.7857659516520321
  - ti[low]                                                : 1.0
  - al[high]                                               : 0.0
             (viscosity[average] AND ti[low]) AND al[high] = 0.0
  Activation (THEN-clause):
                                                temp[high] : 0.0

RULE #4:
  IF viscosity[average] AND ti[high] THEN temp[high]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - viscosity[average]                                     : 0.7857659516520321
  - ti[high]                                               : 0.0
                           viscosity[average] AND ti[high] = 0.0
  Activation (THEN-clause):
                                                temp[high] : 0.0

RULE #5:
  IF (viscosity[high] AND ti[low]) AND al[low] THEN temp[lower]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - viscosity[high]                                        : 0.2142340483479678
  - ti[low]                                                : 1.0
  - al[low]                                                : 1.0
                 (viscosity[high] AND ti[low]) AND al[low] = 0.2142340483479678
  Activation (THEN-clause):
                                               temp[lower] : 0.2142340483479678

RULE #6:
  IF viscosity[high] AND ti[low] THEN temp[low]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - viscosity[high]                                        : 0.2142340483479678
  - ti[low]                                                : 1.0
                               viscosity[high] AND ti[low] = 0.2142340483479678
  Activation (THEN-clause):
                                                 temp[low] : 0.2142340483479678

RULE #7:
  IF viscosity[high] AND ti[high] THEN temp[average]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - viscosity[high]                                        : 0.2142340483479678
  - ti[high]                                               : 0.0
                              viscosity[high] AND ti[high] = 0.0
  Activation (THEN-clause):
                                             temp[average] : 0.0

RULE #8:
  IF viscosity[low] THEN temp[higher]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - viscosity[low]                                         : 0.0
                                            viscosity[low] = 0.0
  Activation (THEN-clause):
                                              temp[higher] : 0.0

RULE #9:
  IF (viscosity[high] AND ti[average]) AND al[low] THEN temp[lower]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - viscosity[high]                                        : 0.2142340483479678
  - ti[average]                                            : 0.0
  - al[low]                                                : 1.0
             (viscosity[high] AND ti[average]) AND al[low] = 0.0
  Activation (THEN-clause):
                                               temp[lower] : 0.0

RULE #10:
  IF (viscosity[high] AND ti[low]) AND al[high] THEN temp[low]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - viscosity[high]                                        : 0.2142340483479678
  - ti[low]                                                : 1.0
  - al[high]                                               : 0.0
                (viscosity[high] AND ti[low]) AND al[high] = 0.0
  Activation (THEN-clause):
                                                 temp[low] : 0.0


==============================
 Intermediaries and Conquests 
==============================
Consequent: temp                     = 48.54014115741227
  lower:
    Accumulate using accumulation_max : 0.2142340483479678
  low:
    Accumulate using accumulation_max : 0.2142340483479678
  average:
    Accumulate using accumulation_max : 0.7857659516520321
  high:
    Accumulate using accumulation_max : 0.0
  higher:
    Accumulate using accumulation_max : 0.7857659516520321

np.float64(48.54014115741227)
In [11]:
from sklearn import metrics
import math


def fuzzy_pred(row):
    sim.input["al"] = row["Al2O3"]
    sim.input["ti"] = row["TiO2"]
    sim.input["viscosity"] = row["Viscosity"]
    sim.compute()
    return sim.output["temp"]


def rmse(row):
    return math.sqrt(metrics.mean_squared_error([row["Real"]], [row["Inferred"]]))


result_train = train.copy()
result_train["Real"] = result_train["T"]
result_train["Inferred"] = result_train.apply(fuzzy_pred, axis=1)
result_train["RMSE"] = result_train.apply(rmse, axis=1)
result_test = test.round({"RMSE": 3})
result_train.head(15)
Out[11]:
T Al2O3 TiO2 Viscosity Real Inferred RMSE
0 20 0.00 0.0 3.707 20 30.377181 10.377181
1 25 0.00 0.0 3.180 25 41.919069 16.919069
2 35 0.00 0.0 2.361 35 51.831632 16.831632
3 45 0.00 0.0 1.832 45 51.597678 6.597678
4 50 0.00 0.0 1.629 50 53.497509 3.497509
5 55 0.00 0.0 1.465 55 55.761343 0.761343
6 70 0.00 0.0 1.194 70 64.549659 5.450341
7 20 0.05 0.0 4.660 20 30.268817 10.268817
8 30 0.05 0.0 3.380 30 38.645274 8.645274
9 35 0.05 0.0 2.874 35 46.359607 11.359607
10 40 0.05 0.0 2.489 40 51.776945 11.776945
11 50 0.05 0.0 1.897 50 51.640759 1.640759
12 55 0.05 0.0 1.709 55 52.612582 2.387418
13 60 0.05 0.0 1.470 60 55.679132 4.320868
14 20 0.30 0.0 6.670 20 30.268817 10.268817
In [12]:
result_test = test.copy()
result_test["Real"] = result_test["T"]
result_test["Inferred"] = result_test.apply(fuzzy_pred, axis=1)
result_test["RMSE"] = result_test.apply(rmse, axis=1)
# result_test["RMSE"] = result_test["RMSE"].apply(lambda x: "{:,.4f}".format(x))
result_test = result_test.round({"RMSE": 3})
result_test
Out[12]:
T Al2O3 TiO2 Viscosity Real Inferred RMSE
0 30 0.00 0.00 2.716 30 48.540141 18.540
1 40 0.00 0.00 2.073 40 51.738998 11.739
2 60 0.00 0.00 1.329 60 58.696217 1.304
3 65 0.00 0.00 1.211 65 63.509123 1.491
4 25 0.05 0.00 4.120 25 30.268817 5.269
5 45 0.05 0.00 2.217 45 52.189574 7.190
6 65 0.05 0.00 1.315 65 59.121671 5.878
7 70 0.05 0.00 1.105 70 65.512821 4.487
8 45 0.30 0.00 3.111 45 44.290253 0.710
9 50 0.30 0.00 2.735 50 52.519864 2.520
10 65 0.30 0.00 1.936 65 59.258248 5.742
11 30 0.00 0.05 3.587 30 34.285110 4.285
12 55 0.00 0.05 1.953 55 51.674968 3.325
13 65 0.00 0.05 1.443 65 56.136510 8.863
14 40 0.00 0.30 3.990 40 38.162393 1.838
15 50 0.00 0.30 3.189 50 44.908342 5.092
16 65 0.00 0.30 2.287 65 59.971426 5.029
In [13]:
import matplotlib.pyplot as plt

result_test.hist(bins=30, figsize=(10, 10))
plt.show()
In [14]:
rmetrics = {}
rmetrics["RMSE_train"] = math.sqrt(
    metrics.mean_squared_error(result_train["Real"], result_train["Inferred"])
)
rmetrics["RMSE_test"] = math.sqrt(
    metrics.mean_squared_error(result_test["Real"], result_test["Inferred"])
)
rmetrics["RMAE_test"] = math.sqrt(
    metrics.mean_absolute_error(result_test["Real"], result_test["Inferred"])
)
rmetrics["R2_test"] = metrics.r2_score(result_test["Real"], result_test["Inferred"])

rmetrics
Out[14]:
{'RMSE_train': 8.5839725721675,
 'RMSE_test': 6.953595788353505,
 'RMAE_test': 2.34270500726715,
 'R2_test': 0.7517962543858544}