fuzzy-rules-generator/temp_density_tree1.ipynb

387 KiB

In [2]:
import pickle
import pandas as pd
from sklearn import tree

model = pickle.load(open("data/temp_density_tree-gs.model.sav", "rb"))
features = (
    pd.read_csv("data/density_train.csv", sep=";", decimal=",")
    .drop(["T"], axis=1)
    .columns.values.tolist()
)

rules = tree.export_text(model, feature_names=features)
print(rules)
|--- Density <= 1.21
|   |--- TiO2 <= 0.03
|   |   |--- Density <= 1.07
|   |   |   |--- value: [48.33]
|   |   |--- Density >  1.07
|   |   |   |--- Al2O3 <= 0.18
|   |   |   |   |--- Density <= 1.08
|   |   |   |   |   |--- value: [37.50]
|   |   |   |   |--- Density >  1.08
|   |   |   |   |   |--- value: [27.50]
|   |   |   |--- Al2O3 >  0.18
|   |   |   |   |--- value: [50.00]
|   |--- TiO2 >  0.03
|   |   |--- Density <= 1.19
|   |   |   |--- TiO2 <= 0.18
|   |   |   |   |--- value: [50.00]
|   |   |   |--- TiO2 >  0.18
|   |   |   |   |--- value: [65.00]
|   |   |--- Density >  1.19
|   |   |   |--- value: [40.00]
|--- Density >  1.21
|   |--- value: [25.00]

In [3]:
from src.rules import get_rules


rules = get_rules(model, features)
display(len(rules))
rules
8
Out[3]:
[if (Density > 1.208) -> 25.0,
 if (Density <= 1.208) and (TiO2 <= 0.025) and (Density > 1.067) and (Al2O3 <= 0.175) and (Density > 1.079) -> 27.5,
 if (Density <= 1.208) and (TiO2 <= 0.025) and (Density > 1.067) and (Al2O3 <= 0.175) and (Density <= 1.079) -> 37.5,
 if (Density <= 1.208) and (TiO2 <= 0.025) and (Density > 1.067) and (Al2O3 > 0.175) -> 50.0,
 if (Density <= 1.208) and (TiO2 > 0.025) and (Density <= 1.193) and (TiO2 <= 0.175) -> 50.0,
 if (Density <= 1.208) and (TiO2 > 0.025) and (Density <= 1.193) and (TiO2 > 0.175) -> 65.0,
 if (Density <= 1.208) and (TiO2 > 0.025) and (Density > 1.193) -> 40.0,
 if (Density <= 1.208) and (TiO2 <= 0.025) and (Density <= 1.067) -> 48.333]
In [4]:
from src.rules import normalise_rules


rules = normalise_rules(rules)
display(len(rules))
rules
8
Out[4]:
[if (Density > 1.208) -> 25.0,
 if (Density <= 1.208) and (Density > 1.067) and (TiO2 <= 0.025) and (Al2O3 <= 0.175) -> 27.5,
 if (Density <= 1.208) and (Density > 1.067) and (TiO2 <= 0.025) and (Al2O3 <= 0.175) -> 37.5,
 if (Density <= 1.208) and (Density > 1.067) and (TiO2 <= 0.025) and (Al2O3 > 0.175) -> 50.0,
 if (Density <= 1.208) and (TiO2 > 0.025) and (TiO2 <= 0.175) -> 50.0,
 if (Density <= 1.208) and (TiO2 > 0.025) -> 65.0,
 if (Density <= 1.208) and (Density > 1.193) and (TiO2 > 0.025) -> 40.0,
 if (Density <= 1.208) and (TiO2 <= 0.025) -> 48.333]
In [5]:
from src.rules import delete_same_rules


rules = delete_same_rules(rules)
display(len(rules))
rules
7
Out[5]:
[if (Density > 1.208) -> 25.0,
 if (Density <= 1.208) and (Density > 1.067) and (TiO2 <= 0.025) and (Al2O3 <= 0.175) -> 32.5,
 if (Density <= 1.208) and (Density > 1.067) and (TiO2 <= 0.025) and (Al2O3 > 0.175) -> 50.0,
 if (Density <= 1.208) and (TiO2 > 0.025) and (TiO2 <= 0.175) -> 50.0,
 if (Density <= 1.208) and (TiO2 > 0.025) -> 65.0,
 if (Density <= 1.208) and (Density > 1.193) and (TiO2 > 0.025) -> 40.0,
 if (Density <= 1.208) and (TiO2 <= 0.025) -> 48.333]
In [6]:
train = pd.read_csv("data/density_train.csv", sep=";", decimal=",")
test = pd.read_csv("data/density_test.csv", sep=";", decimal=",")

train["Density"] = train["Density"]
test["Density"] = test["Density"]

display(train.head(3))
display(test.head(3))
train.describe().transpose()
T Al2O3 TiO2 Density
0 20 0.0 0.0 1.06250
1 25 0.0 0.0 1.05979
2 35 0.0 0.0 1.05404
T Al2O3 TiO2 Density
0 30 0.00 0.0 1.05696
1 55 0.00 0.0 1.04158
2 25 0.05 0.0 1.08438
Out[6]:
count mean std min 25% 50% 75% max
T 38.0 45.526316 16.513282 20.00000 31.25000 45.000000 60.000000 70.0000
Al2O3 38.0 0.078947 0.126080 0.00000 0.00000 0.000000 0.050000 0.3000
TiO2 38.0 0.057895 0.108133 0.00000 0.00000 0.000000 0.050000 0.3000
Density 38.0 1.108180 0.060772 1.03182 1.05763 1.082755 1.169058 1.2186
In [7]:
from src.rules import simplify_rules

rules = simplify_rules(train, rules)
display(len(rules))
rules
7
Out[7]:
[if (Density = 1.219) -> 25.0,
 if (Density = 1.138) and (TiO2 = 0.0) and (Al2O3 = 0.0) -> 32.5,
 if (Density = 1.138) and (TiO2 = 0.0) and (Al2O3 = 0.3) -> 50.0,
 if (Density = 1.032) and (TiO2 = 0.1) -> 50.0,
 if (Density = 1.032) and (TiO2 = 0.3) -> 65.0,
 if (Density = 1.2) and (TiO2 = 0.3) -> 40.0,
 if (Density = 1.032) and (TiO2 = 0.0) -> 48.333]
In [19]:
import numpy as np
from skfuzzy import control as ctrl
import skfuzzy as fuzz

al = ctrl.Antecedent(np.arange(0, 0.3, 0.1), "al")
ti = ctrl.Antecedent(np.arange(0, 0.3, 0.1), "ti")
density = ctrl.Antecedent(np.arange(1.03, 1.22, 0.001), "density")
# temp = ctrl.Consequent(train["T"].sort_values().unique(), "temp")
temp = ctrl.Consequent(np.arange(20, 70, 1), "temp")

al.automf(3, variable_type="quant")
al.view()
ti.automf(3, variable_type="quant")
ti.view()
density.automf(3, variable_type="quant")
density.view()
temp.automf(7, variable_type="quant")
temp.view()
/Users/user/Projects/python/fuzzy-rules-generator/.venv/lib/python3.12/site-packages/skfuzzy/control/fuzzyvariable.py:125: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown
  fig.show()
In [20]:
from src.rules import get_fuzzy_rules

fuzzy_variables = {"Al2O3": al, "TiO2": ti, "Density": density, "consequent": temp}
fuzzy_rules = get_fuzzy_rules(rules, fuzzy_variables)
fuzzy_rules.remove(fuzzy_rules[5])

fuzzy_cntrl = ctrl.ControlSystem(fuzzy_rules)

sim = ctrl.ControlSystemSimulation(fuzzy_cntrl, lenient=False)

display(len(fuzzy_rules))
fuzzy_rules
6
Out[20]:
[IF density[high] THEN temp[lower]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF (density[average] AND ti[low]) AND al[low] THEN temp[low]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF (density[average] AND ti[low]) AND al[high] THEN temp[high]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF density[low] AND ti[average] THEN temp[high]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF density[low] AND ti[high] THEN temp[highest]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax,
 IF density[low] AND ti[low] THEN temp[average]
 	AND aggregation function : fmin
 	OR aggregation function  : fmax]
In [21]:
sim.input["al"] = 0.0
sim.input["ti"] = 0.0
sim.input["density"] = 1.056
sim.compute()
sim.print_state()
display(sim.output["temp"])
temp.view(sim=sim)
=============
 Antecedents 
=============
Antecedent: density                 = 1.056
  - low                             : 0.7248677248676944
  - average                         : 0.27513227513230565
  - high                            : 0.0
Antecedent: ti                      = 0.0
  - low                             : 1.0
  - average                         : 0.0
  - high                            : 0.0
Antecedent: al                      = 0.0
  - low                             : 1.0
  - average                         : 0.0
  - high                            : 0.0

=======
 Rules 
=======
RULE #0:
  IF density[high] THEN temp[lower]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - density[high]                                          : 0.0
                                             density[high] = 0.0
  Activation (THEN-clause):
                                               temp[lower] : 0.0

RULE #1:
  IF (density[average] AND ti[low]) AND al[low] THEN temp[low]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - density[average]                                       : 0.27513227513230565
  - ti[low]                                                : 1.0
  - al[low]                                                : 1.0
                (density[average] AND ti[low]) AND al[low] = 0.27513227513230565
  Activation (THEN-clause):
                                                 temp[low] : 0.27513227513230565

RULE #2:
  IF (density[average] AND ti[low]) AND al[high] THEN temp[high]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - density[average]                                       : 0.27513227513230565
  - ti[low]                                                : 1.0
  - al[high]                                               : 0.0
               (density[average] AND ti[low]) AND al[high] = 0.0
  Activation (THEN-clause):
                                                temp[high] : 0.0

RULE #3:
  IF density[low] AND ti[average] THEN temp[high]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - density[low]                                           : 0.7248677248676944
  - ti[average]                                            : 0.0
                              density[low] AND ti[average] = 0.0
  Activation (THEN-clause):
                                                temp[high] : 0.0

RULE #4:
  IF density[low] AND ti[high] THEN temp[highest]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - density[low]                                           : 0.7248677248676944
  - ti[high]                                               : 0.0
                                 density[low] AND ti[high] = 0.0
  Activation (THEN-clause):
                                             temp[highest] : 0.0

RULE #5:
  IF density[low] AND ti[low] THEN temp[average]
	AND aggregation function : fmin
	OR aggregation function  : fmax

  Aggregation (IF-clause):
  - density[low]                                           : 0.7248677248676944
  - ti[low]                                                : 1.0
                                  density[low] AND ti[low] = 0.7248677248676944
  Activation (THEN-clause):
                                             temp[average] : 0.7248677248676944


==============================
 Intermediaries and Conquests 
==============================
Consequent: temp                     = 41.945501934095006
  lowest:
    Accumulate using accumulation_max : None
  lower:
    Accumulate using accumulation_max : 0.0
  low:
    Accumulate using accumulation_max : 0.27513227513230565
  average:
    Accumulate using accumulation_max : 0.7248677248676944
  high:
    Accumulate using accumulation_max : 0.0
  higher:
    Accumulate using accumulation_max : None
  highest:
    Accumulate using accumulation_max : 0.0

np.float64(41.945501934095006)
In [22]:
from sklearn import metrics
import math


def fuzzy_pred(row):
    sim.input["al"] = row["Al2O3"]
    sim.input["ti"] = row["TiO2"]
    sim.input["density"] = row["Density"]
    sim.compute()
    return sim.output["temp"]


def rmse(row):
    return math.sqrt(metrics.mean_squared_error([row["Real"]], [row["Inferred"]]))


result_train = train.copy()
result_train["Real"] = result_train["T"]
result_train["Inferred"] = result_train.apply(fuzzy_pred, axis=1)
result_train["RMSE"] = result_train.apply(rmse, axis=1)
result_train = result_train.round({"RMSE": 3})
result_train.head(15)
Out[22]:
T Al2O3 TiO2 Density Real Inferred RMSE
0 20 0.00 0.0 1.06250 20 41.459120 21.459
1 25 0.00 0.0 1.05979 25 41.659673 16.660
2 35 0.00 0.0 1.05404 35 42.099779 7.100
3 40 0.00 0.0 1.05103 40 42.347242 2.347
4 45 0.00 0.0 1.04794 45 42.610185 2.390
5 50 0.00 0.0 1.04477 50 42.889015 7.111
6 60 0.00 0.0 1.03826 60 43.534924 16.465
7 65 0.00 0.0 1.03484 65 43.903559 21.096
8 70 0.00 0.0 1.03182 70 44.262804 25.737
9 20 0.05 0.0 1.08755 20 39.993857 19.994
10 45 0.05 0.0 1.07105 45 40.851253 4.149
11 50 0.05 0.0 1.06760 50 41.091876 8.908
12 55 0.05 0.0 1.06409 55 41.342701 13.657
13 65 0.05 0.0 1.05691 65 41.875477 23.125
14 70 0.05 0.0 1.05291 70 42.191078 27.809
In [23]:
result_test = test.copy()
result_test["Real"] = result_test["T"]
result_test["Inferred"] = result_test.apply(fuzzy_pred, axis=1)
result_test["RMSE"] = result_test.apply(rmse, axis=1)
result_test = result_test.round({"RMSE": 3})
result_test
Out[23]:
T Al2O3 TiO2 Density Real Inferred RMSE
0 30 0.00 0.00 1.05696 30 41.871657 11.872
1 55 0.00 0.00 1.04158 55 43.191501 11.808
2 25 0.05 0.00 1.08438 25 40.142006 15.142
3 30 0.05 0.00 1.08112 30 40.279597 10.280
4 35 0.05 0.00 1.07781 35 40.403354 5.403
5 40 0.05 0.00 1.07446 40 40.615252 0.615
6 60 0.05 0.00 1.06053 60 41.605489 18.395
7 35 0.30 0.00 1.17459 35 39.941390 4.941
8 65 0.30 0.00 1.14812 65 44.873522 20.126
9 45 0.00 0.05 1.07424 45 44.652831 0.347
10 50 0.00 0.05 1.07075 50 44.842298 5.158
11 55 0.00 0.05 1.06721 55 45.048945 9.951
12 20 0.00 0.30 1.22417 20 28.180000 8.180
13 30 0.00 0.30 1.21310 30 28.180272 1.820
14 40 0.00 0.30 1.20265 40 28.180858 11.819
15 60 0.00 0.30 1.18265 60 28.182820 31.817
16 70 0.00 0.30 1.17261 70 28.184796 41.815
In [24]:
import matplotlib.pyplot as plt

result_test.hist(bins=30, figsize=(10, 10))
plt.show()
In [25]:
rmetrics = {}
rmetrics["RMSE_train"] = math.sqrt(
    metrics.mean_squared_error(result_train["Real"], result_train["Inferred"])
)
rmetrics["RMSE_test"] = math.sqrt(
    metrics.mean_squared_error(result_test["Real"], result_test["Inferred"])
)
rmetrics["RMAE_test"] = math.sqrt(
    metrics.mean_absolute_error(result_test["Real"], result_test["Inferred"])
)
rmetrics["R2_test"] = metrics.r2_score(result_test["Real"], result_test["Inferred"])

rmetrics
Out[25]:
{'RMSE_train': 17.1096971907754,
 'RMSE_test': 16.286513096011436,
 'RMAE_test': 3.5104040610801057,
 'R2_test': -0.2434289870376889}