252 KiB
252 KiB
In [2]:
import pandas as pd
density_train = pd.read_csv("data/density_train.csv", sep=";", decimal=",")
density_test = pd.read_csv("data/density_test.csv", sep=";", decimal=",")
d_data = pd.concat([density_train, density_test])
d_data.info()
In [3]:
import matplotlib.pyplot as plt
d_data.hist(bins=30, figsize=(10, 10))
plt.show()
In [4]:
import seaborn as sns
sns.catplot(
y="value",
data=d_data.melt(value_vars=d_data.columns), # type: ignore
col="variable",
kind="box",
col_wrap=2,
sharex=False,
sharey=False,
)
Out[4]:
In [18]:
sns.heatmap(d_data.corr(), annot=True, fmt=".1%")
Out[18]:
In [6]:
viscosity_train = pd.read_csv("data/viscosity_train.csv", sep=";", decimal=",")
viscosity_test = pd.read_csv("data/viscosity_test.csv", sep=";", decimal=",")
v_data = pd.concat([viscosity_train, viscosity_test])
v_data.info()
In [7]:
v_data.hist(bins=30, figsize=(10, 10))
plt.show()
In [8]:
sns.catplot(
y="value",
data=v_data.melt(value_vars=v_data.columns), # type: ignore
col="variable",
kind="box",
col_wrap=2,
sharex=False,
sharey=False,
)
Out[8]:
In [19]:
sns.heatmap(v_data.corr(), annot=True, fmt=".1%")
Out[19]: