
Search for Structurally Similar Projects of
Software Systems

Aleksey Filippov1[0000−0003−0008−5035] and Julia Stroeva1[0009−0003−8026−235X]

Department of Information Systems, Ulyanovsk State Technical University, 32
Severny Venetz Street, 432027 Ulyanovsk, Russia

Abstract. The authors have developed an approach to the search for
structurally similar projects of software systems. Teachers can use the
proposed approach to search for borrowings in the works of students.
The concept behind this proposal is that it can to locate projects that
students have used as parts of a current project.
The authors propose a new algorithm for determining the similarity be-
tween the structures of software projects. The proposed algorithm is
based on finding similar structural elements in the source code of the
program in an abstract syntax trees analyzing.
The authors developed a software system to evaluate the proposed algo-
rithm. The current version of the system only supports Java programs.
However, the system operates with its own representation of the abstract
syntax tree, which allows you to add support for new programming lan-
guages.

Keywords: source code · structure analysis · structurally similar projects
· hashing.

1 Introduction

Currently, the most practical work of students in information technology in-
cludes laboratory and coursework. These classes help students understand the
theoretical information from their lectures.

Typically, student work is a small program that solves typical problems. In
most cases, these works contain few files or a few lines of code. The architecture
and algorithms of such programs are also simple.

The teacher needs to spend many time to check all the work. The teacher
usually notices when the student has borrowed a program source code. Students
in such cases do not change the structure of the borrowed source code, but
rename variables or change types of loops (from for to while), etc.

The software system proposed in this article allows you to analyze the struc-
ture of projects and provide information about their structural similarity. The
indicator of the uniqueness of the current project structure is used to evaluate
the uniqueness of the project in comparison with other projects.



2 A. Filippov, J. Stroeva

2 State of the art

There are no universal methods for analyzing the source code of software systems
at the moment. Certain methods of analysis are used to solve various problems.

There is a group of methods for analyzing source code, which is based on
obtaining and analyzing abstract syntax trees (AST). An AST is an abstract
representation of the grammatical structure of a source code. It expresses the
structure of a program in some programming language as a tree structure. Each
AST node is an operator or a set of operators of the analyzed source code. The
compiler generates an AST because of the parsing step. Unlike a parse tree,
an AST does not have nodes or edges for syntax rules that do not affect the
semantics of the program (for example, grouping brackets).

It can also analyze projects using call graph generation tools, such as CodeViz
or Egypt. It is possible to use some functions of reverse engineering tools, such
as IDA Pro.

AST-based approaches can find structurally similar projects. However, such
approaches have high computational complexity [6]. Many existing approaches
analyze a larger number of parameters than is necessary to solve the problem of
this study [1, 3, 5–7]: project dependencies, the number of stars in the repository,
the contents of the documentation, etc.

The paper [2] presents an analysis of approaches and software tools for search-
ing for borrowings in the text and source code. However, there is no mention of
software tools for searching for borrowings in the source code.

In the article [4], the authors analyze borrowings in the source code according
to the sequences of using external programming interfaces and the frequency of
such calls. This method is not suitable for solving the problem of this study
because of the educational orientation of the analyzed source code.

Thus, it is necessary to develop an approach to the search for structurally
similar projects, which are focused on working with simple software systems and
with a high speed of analysis.

3 The Proposed Algorithm for Analyzing the Structure
of the Source Code

The source code of the software system in the proposed algorithm is the main
source of data for identifying structural features.

We formed an AST to analyze the source code. There are various libraries
and tools for all existing programming languages for the formation of AST. Thus,
using your own representation of the AST allows you to add support for new
programming languages to the system without changing the analysis algorithms.

We will use the following AST model:

AST = ⟨N,R⟩,

where N = {N1, N2, . . . , Nn} is the set of nodes AST;



Search for Structurally Similar Projects of Software Systems 3

Ni = ⟨name, data⟩ is an i-th AST node containing the node name, node data;
R is the set of relations between AST nodes.
We developed an algorithm to highlight the structure of the project in ana-

lyzing the source code, which comprises the following steps:

1. Form an ASD for the project.
2. Select nodes with type “Class”:

NClass = {Ni ∈ N |F (Ni.data) = ’Class’},

3. Find nodes with the “Class field” type in the found classes:

NV ars = {NClass
i ∈ NClass|F

(
NClass

i .data
)
= ’Field’},

4. Find nodes with the “Methods” type in the found classes:

NMethods = {NClass
i ∈ NClass|F

(
NClass

i .data
)
= ’Method’},

5. Find nodes with type “Method Argument” in the found methods:

NMethodsArgs = {NMethods
i ∈ NMethods|F

(
NMethods

i .data
)
= ’Arg’},

6. Find nodes with the type “Operator” in the found methods:

NMethodsOps = {NMethods
i ∈ NMethods|F

(
NMethods

i .data
)
= ’Operator’},

7. Create based on previously got sets of AST for the analyzed source code,
considering the set of relations R.

8. Save the resulting AST in a graph database (GDB) to facilitate data han-
dling.

Figure 1 shows an example of the source code and the ASD got for it.
GDB is a non-relational type of database based on the topographic structure

of the network. Graphs represent sets of data as nodes, edges, and properties.
Relational databases provide a structured approach to data. GDBs are more
flexible and focused on fast data acquisition, considering various types of links
between them.

We used Neo4j as the GDB, since this system has a high speed of operation
even with a large amount of stored data.

4 The Proposed Algorithm for Determining the
Structural Similarity of Software Projects

5 State of the art

5.1 A Subsection Sample

Please note that the first paragraph of a section or subsection is not indented.
The first paragraph that follows a table, figure, equation etc. does not need an
indent, either.

Subsequent paragraphs, however, are indented.



4 A. Filippov, J. Stroeva

Fig. 1. Sample source code and its AST.

Sample Heading (Third Level) Only two levels of headings should be num-
bered. Lower level headings remain unnumbered; they are formatted as run-in
headings.

Sample Heading (Fourth Level) The contribution should contain no more than
four levels of headings. Table 1 gives a summary of all heading levels.

Table 1. Table captions should be placed above the tables.

Heading level Example Font size and style
Title (centered) Lecture Notes 14 point, bold
1st-level heading 1 Introduction 12 point, bold
2nd-level heading 2.1 Printing Area 10 point, bold
3rd-level heading Run-in Heading in Bold. Text follows 10 point, bold
4th-level heading Lowest Level Heading. Text follows 10 point, italic

–

1.

Displayed equations are centered and set on a separate line.

NClass = {Ni ∈ N |F (Ni.data) = ’Class’},

Please try to avoid rasterized images for line-art diagrams and schemas. When-
ever possible, use vector graphics instead (see Fig. 1).



Search for Structurally Similar Projects of Software Systems 5

Theorem 1. This is a sample theorem. The run-in heading is set in bold, while
the following text appears in italics. Definitions, lemmas, propositions, and corol-
laries are styled the same way.

Proof. Proofs, examples, and remarks have the initial word in italics, while the
following text appears in normal font.

For citations of references, we prefer the use of square brackets and consecutive
numbers. Citations using labels or the author/year convention are also accept-
able. The following bibliography provides a sample reference list with entries
for journal articles [?], an LNCS chapter [?], a book [?], proceedings without
editors [?], and a homepage [?]. Multiple citations are grouped [?,?,?], [?,?,?,?].

Acknowledgements Please place your acknowledgments at the end of the
paper, preceded by an unnumbered run-in heading (i.e. 3rd-level heading).

References

1. Aleksey Alekundrovich, F., Yurevich, G.G., Aleksey Michailovich, N.,
Nudezhda Glebovna, Y.: Approach to the search for software projects similar
in structure and semantics based on the knowledge extracted from existed projects.
In: Computational Science and Its Applications–ICCSA 2020: 20th International
Conference, Cagliari, Italy, July 1–4, 2020, Proceedings, Part I. pp. 718–733.
Springer (2020)

2. Ali, A.M.E.T., Abdulla, H.M.D., Snasel, V.: Overview and comparison of plagiarism
detection tools. In: Dateso. pp. 161–172 (2011)

3. Beniwal, R., Dahiya, S., Kumar, D., Yadav, D., Pal, D.: Npmrec: Npm packages
and similar projects recommendation system. In: Data Analytics and Management:
Proceedings of ICDAM. pp. 701–710. Springer (2021)

4. Chae, D.K., Ha, J., Kim, S.W., Kang, B., Im, E.G.: Software plagiarism detection:
a graph-based approach. In: Proceedings of the 22nd ACM international conference
on Information & Knowledge Management. pp. 1577–1580 (2013)

5. Nadezhda, Y., Gleb, G., Pavel, D., Vladimir, S.: An approach to similar software
projects searching and architecture analysis based on artificial intelligence meth-
ods. In: Proceedings of the Third International Scientific Conference “Intelligent
Information Technologies for Industry”(IITI’18) Volume 1 3. pp. 341–352. Springer
(2019)

6. Nguyen, P.T., Di Rocco, J., Rubei, R., Di Ruscio, D.: Crosssim: exploiting mutual
relationships to detect similar oss projects. In: 2018 44th Euromicro conference on
software engineering and advanced applications (SEAA). pp. 388–395. IEEE (2018)

7. Nguyen, P.T., Di Rocco, J., Rubei, R., Di Ruscio, D.: An automated approach to
assess the similarity of github repositories. Software Quality Journal 28, 595–631
(2020)


