Search for Structurally Similar Projects of
Software Systems

1[{0000—0003—0008—5035] 1[0009—0003—8026—235X]

Aleksey Filippov and Julia Stroeva

Department of Information Systems, Ulyanovsk State Technical University, 32
Severny Venetz Street, 432027 Ulyanovsk, Russia

Abstract. The authors have developed an approach to the search for
structurally similar projects of software systems. Teachers can use the
proposed approach to search for borrowings in the works of students.
The concept behind this proposal is that it can to locate projects that
students have used as parts of a current project.

The authors propose a new algorithm for determining the similarity be-
tween the structures of software projects. The proposed algorithm is
based on finding similar structural elements in the source code of the
program in an abstract syntax trees analyzing.

The authors developed a software system to evaluate the proposed algo-
rithm. The current version of the system only supports Java programs.
However, the system operates with its own representation of the abstract
syntax tree, which allows you to add support for new programming lan-
guages.

Keywords: source code - structure analysis - structurally similar projects
- hashing.

1 Introduction

Currently, the most practical work of students in information technology in-
cludes laboratory and coursework. These classes help students understand the
theoretical information from their lectures.

Typically, student work is a small program that solves typical problems. In
most cases, these works contain few files or a few lines of code. The architecture
and algorithms of such programs are also simple.

The teacher needs to spend many time to check all the work. The teacher
usually notices when the student has borrowed a program source code. Students
in such cases do not change the structure of the borrowed source code, but
rename variables or change types of loops (from for to while), etc.

The software system proposed in this article allows you to analyze the struc-
ture of projects and provide information about their structural similarity. The
indicator of the uniqueness of the current project structure is used to evaluate
the uniqueness of the project in comparison with other projects.

2 A. Filippov, J. Stroeva
2 State of the art

There are no universal methods for analyzing the source code of software systems
at the moment. Certain methods of analysis are used to solve various problems.

There is a group of methods for analyzing source code, which is based on
obtaining and analyzing abstract syntax trees (AST). An AST is an abstract
representation of the grammatical structure of a source code. It expresses the
structure of a program in some programming language as a tree structure. Each
AST node is an operator or a set of operators of the analyzed source code. The
compiler generates an AST because of the parsing step. Unlike a parse tree,
an AST does not have nodes or edges for syntax rules that do not affect the
semantics of the program (for example, grouping brackets).

It can also analyze projects using call graph generation tools, such as Code Viz
or Egypt. It is possible to use some functions of reverse engineering tools, such
as IDA Pro.

AST-based approaches can find structurally similar projects. However, such
approaches have high computational complexity [6]. Many existing approaches
analyze a larger number of parameters than is necessary to solve the problem of
this study [1, 3, 5-7]: project dependencies, the number of stars in the repository,
the contents of the documentation, etc.

The paper [2] presents an analysis of approaches and software tools for search-
ing for borrowings in the text and source code. However, there is no mention of
software tools for searching for borrowings in the source code.

In the article [4], the authors analyze borrowings in the source code according
to the sequences of using external programming interfaces and the frequency of
such calls. This method is not suitable for solving the problem of this study
because of the educational orientation of the analyzed source code.

Thus, it is necessary to develop an approach to the search for structurally
similar projects, which are focused on working with simple software systems and
with a high speed of analysis.

3 The Proposed Algorithm for Analyzing the Structure
of the Source Code

The source code of the software system in the proposed algorithm is the main
source of data for identifying structural features.

We formed an AST to analyze the source code. There are various libraries
and tools for all existing programming languages for the formation of AST. Thus,
using your own representation of the AST allows you to add support for new
programming languages to the system without changing the analysis algorithms.

We will use the following AST model:

AST = (N, R),
where N = {Ny, Na, ..., N,} is the set of nodes AST;

Search for Structurally Similar Projects of Software Systems 3

N; = (name, data) is an i-th AST node containing the node name, node data;

R is the set of relations between AST nodes.

We developed an algorithm to highlight the structure of the project in ana-
lyzing the source code, which comprises the following steps:

1. Form an ASD for the project.
2. Select nodes with type “Class”

NClass — IN; € N|F (N;.data) = 'Class’},
3. Find nodes with the “Class field” type in the found classes:
NVars _ {NiClass € NClass|p (Nflass.data) — "Field’},
4. Find nodes with the “Methods” type in the found classes:
NMethods _ N Class ¢ Class| (Nflass.data) = "Method’},
5. Find nodes with type “Method Argument” in the found methods:
N MethodsArgs _ [NMethods ¢ prMethods| o (NZMethods.data) = Arg},
6. Find nodes with the type “Operator” in the found methods:
NMethodsOps _ (\yMethods o NrMethods| 7 (NZMethods.data) — "Operator’},

7. Create based on previously got sets of AST for the analyzed source code,
considering the set of relations R.

8. Save the resulting AST in a graph database (GDB) to facilitate data han-
dling.

Figure 1 shows an example of the source code and the ASD got for it.

GDB is a non-relational type of database based on the topographic structure
of the network. Graphs represent sets of data as nodes, edges, and properties.
Relational databases provide a structured approach to data. GDBs are more
flexible and focused on fast data acquisition, considering various types of links
between them.

We used Neodj as the GDB, since this system has a high speed of operation
even with a large amount of stored data.

4 The Proposed Algorithm for Determining the
Structural Similarity of Software Projects

The determination of the structural similarity of projects is based on the use of
a hashing algorithm. We use a hash function to collapse an input array of any
size into string.

It is necessary to get the values of the AST hash function of the analyzed
project:

4 A. Filippov, J. Stroeva

package com.example.demo.simple;

public class Main { root
private String a;

void run() {
while (true) {

——— VARIABLE

> Manjava
int a = 1; ‘\\
un
o ¢ i .
this.show(text "Hello"); 6 VARIASLE
r \
METHOD
BLOCK
} / —
void show(String text) { VARIABLE F ‘\\\
METHOD

System.out.println(text);

I

+

Fig. 1. Sample source code and its AST.

1. Get fragments (paths) of the AST graph from the root node of the graph
tree to each node of the graph.

2. We extract the distinguishing property of each node (type) in the current
fragment.

3. We passed the type of the node to the hash function. The result is an output
string of a certain length.

4. If fragment A contains hash H and fragment B contains hash H, then we
can say that fragments A and B have similarity in one node.

5. If fragment A contains hash H, and fragment B does not contain hash H,
then fragments A and B do not have similar nodes.

We calculate the hash function values using the Neo4j GDB using the md5
algorithm.

Thus, the number of matching hash values affects the uniqueness and bor-
rowing rates of code in a project. The following expression is used to calculate
project originality:

HC ¢ H
o HOEH
Ic
where HC is the set of values of the hash function of the current project;
H is the set of hash values of other projects in the system.

5 Description of the Developed Software System

Figure 2 shows the developed software system. The system comprises three
nodes, which are on different nodes of the computer network.

Users interact with the web client on the Frontend node. The Backend node
performs the main business logic for implementing the proposed approach in

Search for Structurally Similar Projects of Software Systems 5

Backend

<<component>> E Database

m Controller

o -

& | S

index js <<deployment spec>>
<<component>> 5] Neod

AP| Service 1

<<component>> g]
Repository

Frontend

Fig. 2. Deployment diagram.

searching for structurally similar projects. Backend and Frontend nodes com-
municate through an API. The GDB is on the Database node and provides a
saving of project data.

The developed software system represents a web application using a client-
server architecture. The web client sends requests to the server, the server pro-
cesses the requests and returns responses to the web client.

The web client is an application written in JavaScript using the Vue js frame-
work. Vue.js is a framework for developing single page applications and web in-
terfaces. The main advantages of this framework are its lightness (small size of
the library in lines of code), performance, flexibility, and excellent documenta-
tion.

We implement the server part of the application in Java using the Spring
Boot framework. The Spring framework is a whole ecosystem for developing
applications in the Java language, which includes a huge number of ready-made
modules. Spring Boot extends the Spring framework. The main advantages of
this framework include speed and ease of development, auto-configuration of all
components, easy access to databases and network capabilities.

The current version of the software system only supports source code analysis
in the Java. The JavaParser library is used to form an AST in the process of
Java code analysis. This library allows you to build an internal representation
of the AST, which is then translated into the proposed AST model using the
previously discussed algorithm.

Figure 3 shows an example of the internal representation of the AST in the
JavaParser library.

We used neodj GDB for data storage. Possibly redundant expression GDBs
over relational ones is the ability to change the data model.

The GDB data model allows you to store the following nodes:

— nodes with type “Package” (Java-specific);
— nodes with type “Class™;
— nodes with the “Class field” type;

6 A. Filippov, J. Stroeva

CompilationUnit

|

PackageDeclaration SingleTypelmportDeclaration ClassOrinterfaceDeclaration

QualifiedNameExpr ClassOrinterfaceType NameExpr MethodDeclaration
I

com.github.javaparser java.time.LocalDateTime TimePrinter void main String args

Fig. 3. An example of the internal representation of the JavaParser library AST.

— nodes with type “Method”;
— nodes with type “Method argument”;
— nodes with type “Operator”.

We arrange the nodes in the GDB hierarchically. For example, a class is in
a package, but a method is in a class. The data model allows you to form the
following relationships between graph nodes:

— HAScLASS is a relationship between a package and a class;
HASRFIFELD is a relationship between a class and a class field;
HASETHOD is a is a link between a class and a method,;

— HAS ARG is a relationship between method and method argument;
HASBLOCK is a link between a method and a statement.

The main idea of searching for structurally similar projects is to use hashing
of graph fragments (paths) based on the md5 function. We formed the path from
the root node to each node of the graph. We take nesting into account when
forming the path (package -> class -> field / method -> method argument /
operator). The hash function takes the string representation of the node type as
input.

Example of a request to get paths and a hash that matches this path:

MATCH p = (of{name:"root"})—[r*]— ()
WHERE 1D (0)={0}
WITH [x in nodes(p) | CASE WHEN EXISTS(x.name)
THEN x.name ELSE x.type END| as names,

[x in nodes(p) | ID(x)] as ids
WITH names, apoc.util.md5(names) as hash, ids
RETURN names, hash, ids

Figure 4 shows the result of the query execution.

Figure 4 shows that the hash "b199ef8568f72c43f6fd50860e228c51" matches
the path [“root”, “cont”]. Two graphs contain this hash. The primary keys of the
root nodes of these graphs are 7872 and 7977.

Thus, we can discover the number of matching and different paths in the
analyzed projects by obtaining hashes for all AST fragments. Figure 5 shows an
example of the developed system.

Search for Structurally Similar Projects of Software Systems 7

$ MATCH p=(o{name: "root"})-[r*1-() WITH [x in

= names.
Tatke
["root”, "cont"]
A “"NewController java']

"NewController java", “testik’]

"NewController java", "testik", "mvc]

“"NewController java", "testik", "IF"]

['root", “cont", "NewController java", “testik”, "IF",
“BLOCK’]
["root”, "cont", "NewController java", "testik”, "IF",

"BLOCK", "METHOD']

[root
"RETURN']

[root”,

‘cont’, "NewController java

“controller’]
["root", "controller”, "MainController java']
["root’, "controller”, "MainController java", "test1"]

['root’, "controller”, "MainController java", "test1”

nodes(p) | CASE WHEN EXISTS(x.name) THEN x.name ELSE x.type END] as names, [x in nodes(p) | ID(x)] as ids WITH nam

hash

"b199ef8568{72c4316{d50860e228c51"
"18e73018fdabfbafBa153c9bf386a582"
"9663e41c2dbfbaas6b09e70869062b3"
"9b4088bdf1813ef3f970dd53604796c2"
"70fbeda717085a12ch108ecdfcefe705"
"4806cae351928a770389b0f32000292a"

"425799f7214644183873bccce677a65"

"c415415978b5cCTb925206547ad56655"

"c4112be00809¢377¢2a04b90818adef3"
"3ce6i74c4(14367804d883ac96d2930d"

"c3674352252aefaae08de8812748a30f"
"1024403dc0dcb379d6cBa753ff961494"

(17872,

(17872,

17872
17872,
17872
17872

7873), [7977, 7978]]

7873, 7874]]

7873, 7874, 6467]]

7873, 7874, 6467, 7878]]
7873, 7874, 6467, 7879]]
7873, 7874, 6467, 7879, 7880])

7873, 7874, 6467, 7879, 7880, 7881]]

7873, 7874, 6467, 7882])

7883], (7925, 7926], [7977, 7982])
7883, 7884], [7925, 7926, 7927], [7977, 7982, 6446])
7883, 7884, 7885), [7925, 7926, 7927, 7928), [7977, 7982, 6446, 7983]]

7883, 7884, 7885, 7886], [7925, 7926, 7927, 7928, 7929), [7977, 7982, 6446, 7983, 6447]]

Fig. 4. An example of the result of a request to Neo4j.

Hazpanire IIpOeKTa src
AgTOp adwad
Pacnono:xerire D
Iy
OpHIHHATEHOCTE 3amvcTEOBaHHA
(s 20%) (— 80%)
OCTAILHBIE TP OEKTEI
Hazeanme AgTop Coenazenue (%)
1 B dwa 79 %
2 company dadsazz 51%

Fig. 5. System operation

Pazamane (%)

21%

example.

8 A. Filippov, J. Stroeva

6 Experiments

We conducted experiments to evaluate the speed of source code analysis. We
calculated the results relative to the number of lines of code and files in the
project. The main aim of the experiment is to calculate the average number of
lines of code and the time to complete the analysis in one minute. This allows
us to determine the speed of the algorithm. We used the IntelliJ IDEA Statistic

plugin to get the data for the experiment.

Table 1 presents the initial data for determining the speed of the proposed
algorithm. We selected 10 random Java projects as data.

Table 1. Initial data for analyzing the speed of the proposed algorithm.

Ne|Project name Number of lines of code|Number of java files|Number of rows processed per 1 minute
1 |BaseRecycler 3 896 92 2 491
2 |AlamazDev 15 776 103 2 658
3 |SnakeBoom 20 534 158 3 255
4 |retrofit 32119 227 2718
5 |Glide 37 508 203 2 576
6 |ZXing 51 857 310 2 533
7 |RxJava 64 101 339 2 814
8 |VisualProjectCore|71 303 450 2 969
9 |mc-dev 85 267 877 2 746
10{xRayJavaTool 97 249 937 2 730
Average value 2 750

Table 2 presents the results of experiments to determine the speed of the

proposed algorithm.

Table 2. Results of experiments performed to evaluate the speed of the proposed

algorithm.

Ne[Project name Parsing speed (min)|Number of graph nodes|Number of rows processed per 1 minute
1 |BaseRecycler 1.564 2 491
2 |AlamazDev 5.935 1837 2 658
3 |SnakeBoom 6.308 2197 3 255
4 |retrofit 11.817 7118 2718
5 |Glide 14.556 8 496 2 576
6 |ZXing 20.468 10 560 2 533
7 |RxJava 22.777 11 972 2 814
8 |VisualProjectCore|24.009 13 334 2 969
9 |mc-dev 31.048 14 444 2 746
10|xRayJavaTool 35.613 23 946 2 730
Average value 2 750

Search for Structurally Similar Projects of Software Systems 9

The experiment revealed that we processed an average of 2,750 lines of code

per minute. Laboratory and coursework are on average 500-3000 lines of code.
Thus, the processing speed of one laboratory on average will take less than one
minute.

7 Conclusion

This article presents the results of developing an approach and a system for
searching for structurally similar projects.

We completed the following tasks:

we analyzed existing methods of source code analysis, including for deter-
mining originality of the project;

we developed an algorithm for constructing ASD in analyzing the source
code of the project;

we developed an algorithm for determining originality of the project based
on the analysis of the AST structure;

we implemented a software system to determine originality based on the
analysis of its structure;

we conducted experiments to determine the speed of the proposed algorithm.

Thus, the developed system makes it possible to find borrowings in student

projects in less than a minute on average.

References

1.

Aleksey Alekundrovich, F., Yurevich, G.G., Aleksey Michailovich, N.,
Nudezhda Glebovna, Y.: Approach to the search for software projects similar
in structure and semantics based on the knowledge extracted from existed projects.
In: Computational Science and Its Applications—ICCSA 2020: 20th International
Conference, Cagliari, Italy, July 1-4, 2020, Proceedings, Part 1. pp. 718-733.
Springer (2020)

. Ali, AM.E.T., Abdulla, H.M.D., Snasel, V.: Overview and comparison of plagiarism

detection tools. In: Dateso. pp. 161-172 (2011)

. Beniwal, R., Dahiya, S., Kumar, D., Yadav, D., Pal, D.: Npmrec: Npm packages

and similar projects recommendation system. In: Data Analytics and Management:
Proceedings of ICDAM. pp. 701-710. Springer (2021)

. Chae, D.K., Ha, J., Kim, S.W., Kang, B., Im, E.G.: Software plagiarism detection:

a graph-based approach. In: Proceedings of the 22nd ACM international conference
on Information & Knowledge Management. pp. 1577-1580 (2013)

Nadezhda, Y., Gleb, G., Pavel, D., Vladimir, S.: An approach to similar software
projects searching and architecture analysis based on artificial intelligence meth-
ods. In: Proceedings of the Third International Scientific Conference “Intelligent
Information Technologies for Industry”(IITT'18) Volume 1 3. pp. 341-352. Springer
(2019)

Nguyen, P.T., Di Rocco, J., Rubei, R., Di Ruscio, D.: Crosssim: exploiting mutual
relationships to detect similar oss projects. In: 2018 44th Euromicro conference on
software engineering and advanced applications (SEAA). pp. 388-395. IEEE (2018)

10 A. Filippov, J. Stroeva

7. Nguyen, P.T., Di Rocco, J., Rubei, R., Di Ruscio, D.: An automated approach to
assess the similarity of github repositories. Software Quality Journal 28, 595-631
(2020)

