
Search for Structurally Similar Projects of
Software Systems

Aleksey Filippov1[0000−0003−0008−5035], Anton Romanov1[0000−0001−5275−7628],
Anton Skalkin1[0000−0003−0044−8027], and Julia Stroeva1[0009−0003−8026−235X]

Department of Information Systems, Ulyanovsk State Technical University, 32
Severny Venetz Street, 432027 Ulyanovsk, Russia

Abstract. The authors have developed an approach to the search for
structurally similar projects of software systems. Teachers can use the
proposed approach to search for borrowings in the works of students.
The concept behind this proposal is that it can to locate projects that
students have used as parts of a current project.
The authors propose a new algorithm for determining the similarity be-
tween the structures of software projects. The proposed algorithm is
based on finding similar structural elements in the source code of the
program in an abstract syntax trees analyzing.
The authors developed a software system to evaluate the proposed algo-
rithm. The current version of the system only supports Java programs.
However, the system operates with its own representation of the abstract
syntax tree, which allows you to add support for new programming lan-
guages.

Keywords: source code · structure analysis · structurally similar projects
· hashing.

1 Introduction

Currently, the most practical work of students in information technology in-
cludes laboratory and coursework. These classes help students understand the
theoretical information from their lectures.

Typically, student work is a small program that solves typical problems. In
most cases, these works contain few files or a few lines of code. The architecture
and algorithms of such programs are also simple.

The teacher needs to spend many time to check all the works. The teacher
usually notices when the student has borrowed a program source code. Students
in such cases do not change the structure of the borrowed source code, but
rename variables or change types of loops (from for to while), etc.

The software system proposed in this article allows you to analyze the struc-
ture of projects and provide information about their structural similarity. The
indicator of the uniqueness of the current project structure is used to evaluate
the uniqueness of the project in comparison with each other.

2 A. Filippov et al.

2 State of the art

There are no universal methods for analyzing the source code of software systems
at the moment. Certain methods of analysis are used to solve various problems.

We can analyze projects using call graph generation tools, such as CodeViz
or Egypt. Or we can use of reverse engineering tools, such as IDA Pro. The call
graph based approaches allow developers to solve the program comprehension
task for better program maintenance or to reduce security issues [9, 12–14].

Another group of methods is based on obtaining and analyzing abstract syn-
tax trees (AST). An AST is an abstract representation of the grammatical struc-
ture of a source code. It expresses the structure of a program as a structured tree
and rarely depends on programming language. Each AST node is an operator
or a set of operators of the analyzed source code. The compiler generates an
AST on the parsing step. Unlike a parse tree, an AST does not contain nodes
or edges that do not define the semantics of the program (for example, grouping
brackets).

AST-based approaches allow us to find structurally similar projects. How-
ever, such approaches have high computational complexity [10]. Many existing
approaches analyze a larger number of parameters than is necessary to solve the
problem of this study [6, 8, 10, 11, 15]: project dependencies, the number of stars
in the repository, the contents of the documentation, etc.

The paper [5] presents an review of approaches and software tools for bor-
rowings searching in the text and source code. However, there is no mention of
existing software tools for borrowings searching in the source code.

In the article [7], the authors analyze borrowings in the source code according
to the sequences of using external programming interfaces (external dependen-
cies) and the frequency of such calls. This method is not suitable for solving
the problem of this study because of the educational orientation. Some student
projects can not use external dependencies.

Thus, it is necessary to develop an approach to the search for structurally
similar projects, which are focused on simple software systems and a high speed
of analysis.

3 The Proposed Algorithm for Analyzing the Structure
of the Source Code

We represent software system projects as a set of source code files. The source
code of the software system is the main data source for structural features iden-
tifying in the proposed algorithm.

We formed an AST to analyze the source code. There are various libraries
and tools for all existing programming languages for the AST formation. We use
own representation of the AST to add support for new programming languages
without changing the analysis algorithms. Therefore, we need to develop a con-
verter that transforms the AST generated by the parser for some programming
language into our AST representation.

Search for Structurally Similar Projects of Software Systems 3

For example, we analyze Java files and their hierarchy at the package level for
the Java-based software systems. We use the JavaParser library to form an AST
for Java projects. The algorithm considered below allows us to transform the
AST, which is generated by the JavaParser library, into our AST representation.

We define the proposed AST model as follows:

AST = ⟨N,R⟩,

where N = {N1, N2, . . . , Nn} is the set of AST nodes;
Ni = ⟨name, data⟩ is an i-th AST node containing the node name and data;
R is the set of relations between AST nodes.

We developed an algorithm to extract the structure of the project in the
source code analyzing. The proposed algorithm contains the following steps:

1. Select nodes with the ‘Class’ type as the NClass set:

NClass = {Ni ∈ N |F (Ni.data) = ‘Class’},

2. Select nodes with the ‘Class field’ as the NV ars set from the NClass set:

NV ars = {NClass
i ∈ NClass|F

(
NClass

i .data
)
= ‘Field’},

3. Select nodes with the ‘Methods’ type as the NMethods set from the NClass

set:

NMethods = {NClass
i ∈ NClass|F

(
NClass

i .data
)
= ‘Method’},

4. Select nodes with the ‘Method Argument’ type as the NMethodsArgs set from
the NMethods set:

NMethodsArgs = {NMethods
i ∈ NMethods|F

(
NMethods

i .data
)
= ‘Arg’},

5. Select nodes with the ‘Operator’ type as the NMethodsOps from the NMethods

set:

NMethodsOps = {NMethods
i ∈ NMethods|F

(
NMethods

i .data
)
= ‘Operator’},

6. Create the set of ties R between the nodes from sets obtained in previous
steps.

7. Save the resulting AST.

In this algorithm, the F is a search function that finds nested nodes. The
function parameter is a node or subtree, and the output is a set of nodes with
the desired type: class, class field, method, method argument or statements (op-
erators).

Let us consider the proposed algorithm in the example of the following Java
code:

4 A. Filippov et al.

package com.example.demo.simple;
public c lass Main {

private String a;
void run() {

while(true) {
int a = 1;
i f (a == 1)

this .show("Hello");
}
String c = "Foo";

}
void show(String text) {

System.out.println(text);
}

}

The Table 1 shows an example of the proposed algorithm. Each line of the
table shows how the algorithm works at each step.

Table 1: AST generation example.

Step Source code AST Nodes

1 public class Main {}

2 private String a;

3 void run() {}
void show(String text) {}

Continued on next page

Search for Structurally Similar Projects of Software Systems 5

Step Source code AST Nodes

4 void show(String text) {}

5 while(true) {}
int a = 1;

if (a == 1) {}
this.show("Hello");
String c = "Foo";

System.out.println(text);

4 The Proposed Algorithm for Detecting the Structural
Similarity of Software Projects

The detection of the projects structural similarity is based on the hashing algo-
rithm. We use a hash function to minimize the size of an input data.

The proposed AST hashing algorithm is contains from the following steps:

1. Select all paths of the AST graph from the root node to each other node.
2. Get a value of the ‘type’ property for each node of the current path.

6 A. Filippov et al.

3. Calculate an MD5 hash function for the current path. As a result of this
step, formed a set that contains a tuple of the following values:
– a path,
– a path md5 hash.

For example:
– <‘root->class->method->if’, ‘820b...9c4b’>,
– <‘root->class->field’, ‘6161...eab3’>.

The following expression is used to calculate project originality:

O =
HC /∈ H

HC
, (1)

where HC is a set of hash functions of the analyzed project;
H is a set of hash values of other projects in the system.

5 Results

5.1 Architecture of the developed system

Figure 1 shows the deployment diagram in the UML notation of the developed
software system. The developed system has the three-tier architecture.

Fig. 1. Deployment diagram.

Users interact with the web client on the Frontend node. The Backend node
performs the main business logic for searching of the structurally similar projects.
Backend and Frontend nodes communicate through an API. The Database pro-
vides data storage functions.

The web client is an application written in JavaScript with the Vue.js frame-
work. Vue.js is a framework for developing single page applications and web
interfaces. The main advantages of this framework are the small size of the li-
brary in lines of code, performance, flexibility, and excellent documentation.

Search for Structurally Similar Projects of Software Systems 7

We implement the server part of the application in Java with the Spring Boot
framework. The Spring framework is a ecosystem for developing applications in
the Java language. The Spring Boot includes a huge number of ready-to-use
modules. The main advantages of this framework include speed and convenience
of development, auto-configuration of all components, easy access to databases
and network capabilities.

The current version of the software system supports only Java-based software
projects. The JavaParser library is used to form an AST in the Java source
code analysis. This library allows you to extract the AST using the previously
discussed algorithm.

We use the Neo4j [2] as the data storage. Neo4j is a graph database man-
agement system (GDB). Neo4j allows us to store nodes and edges to connecting
them. We can to add additional attributes to nodes and edges. Neo4j has a high
speed of operation even with a large amount of stored data.

GDB is a non-relational type of database based on the topographic structure
of the network. GDBs are more flexible than relational databases. GDBs are more
flexible than relational databases and allows us to fast obtain data of various
types, considering numerous relations.

Cypher [1] provides a convenient way to express queries and other Neo4j
actions. Although Cypher is particularly useful for exploratory work, it is fast
enough to be used in production.

Also, we use the apoc.util.md5 plugin [4]. This plugin allows us to compute
the md5 of the concatenation of all string representations of the Neo4j entities
list.

5.2 Data model for representing AST as a GDB fragment

In this subsection, we discussed the proposed data model for representing AST
as a GDB fragment.

The GDB data model contains the nodes with the following type:

– ‘Package’ (Java-specific),
– ‘Class’,
– ‘Class field’,
– ‘Method’,
– ‘Method argument’,
– ‘Statement’ (declaration, expression and control statements).

We arrange the nodes in the GDB hierarchically. For example, a class-node
is a part of a package-node, a method-node is a part of a class-node. The data
model allows you to form the following ties between data model nodes:

– ‘HAS_CLASS’ is a relationship between a ‘Package’ and a ‘Class’ nodes,
– ‘HAS_FIELD’ is a relationship between a ‘Class’ and a ‘Class field’ nodes,
– ‘HAS_METHOD’ is a relationship between a ‘Class’ and a ‘Method’ nodes,
– ‘HAS_ARG’ is a relationship between ‘Method’ and ‘Method argument’

nodes,

8 A. Filippov et al.

– ‘HAS_BLOCK’ is a link between a ‘Method’ and a ‘Statement’.

The proposed algorithm for searching for structurally similar projects is to
use hashing of graph paths based on the md5 function. We describe the hashing
algorithm in the previous section. The searching algorithm can be represented
as the following Cypher-query:

MATCH p = (o{name:"root"})-[r*]- ()
WHERE ID(o)={0}
WITH [x in nodes(p) | CASE WHEN EXISTS(x.name)
THEN x.name ELSE x.type END] as names ,

[x in nodes(p) | ID(x)] as ids
WITH names , apoc.util.md5(names) as hash , ids
RETURN DISTINCT names , hash , ids

Table 2 shows the sample result of the Cypher-query.

Table 2. An example of the result of the searching Cypher-query.

names hash ids

root->package "346f...a463" [[7872, 7873], [7977, 7978]]

root->package->class "840b...7f9a" [[7872, 7873, 7874],
[7977, 7978, 7979]]

root->package->class
->method "7151...0f3d" [[7872, 7873, 7874, 7875],

[7977, 7978, 7979, 7980]]
root->package->class

->method
->statement.control

"5810...f0c9" [[7872, 7873, 7874, 7875,
7879]]

Table 2 shows that:

– the hash ‘346f...a463’ matches the path ‘root->package’,
– the hash ‘840b...7f9a’ matches the path ‘root->package->class’,
– the hash ‘7151...0f3d’ matches the path ‘root->package->class->method’,
– two projects with identifiers 7872 and 7977 contain this structural patterns

(paths). The length of the collection in the ids column shows how many
projects contains the i-th structural element. And the length of the element
of this collection allows us to get the length of the chain of structural elements
to calculate project originality degree.

Thus, we can calculate the number of matching and not matching paths (see
eq. 1) in the analyzed project compare with other projects in data storage. Figure
2 shows the main form of the developed system.

Search for Structurally Similar Projects of Software Systems 9

Fig. 2. The main form of the developed system.

Figure 3 shows the resulting AST for the following source code:

package laba1;
public c lass Scheduler {

private f ina l int time = 5;
private ArrayList <Thread > threads = new ArrayList <Thread >();

void scheduler () {
for (int i=0; i<threads.size (); i++) {

threads.get(i).run(time);
System.out.println(threads.get(i). toString ());

}
}

}

This source code looks different, but the resulting AST is the same:

package os -lab -1;
public c lass Planing {

private f ina l int QUANT = 10;
private List <Stream > streams = new ArrayList <>();

void plan() {
for (Stream stream: streams) {

stream.run(QUANT);
System.out.println(stream.toString ());

}
}

}

10 A. Filippov et al.

Fig. 3. Sample AST.

6 Experiments

We conducted experiments to evaluate the speed of source code analysis. We
calculated the results relative to the number of lines of code and the number of
files in the analyzing project. The main aim of the experiment is to determine the
speed of the algorithm, considering the average number of lines of code processed
per minute. We used the IntelliJ IDEA Statistic plugin [3] to get the data for the
experiment. The plugin allows you to calculate the number, size, number of lines,
average value and other information for each file in the project. You can also
find out the total number of rows, the number of lines of code, the proportion
of lines of code, the number of comment lines, the proportion of comment lines,
etc.

We selected 10 random Java projects for this experiment. Table 3 presents
the results of experiments for analyzing the speed of the proposed algorithm.

Table 4 presents the results of experiments to determine the total time of
projects analyzing and the number of nodes in resulting graphs.

The experiment revealed that we processed an average of 2 750 lines of code
per minute. Student projects contains average 500-3000 lines of code. Thus, the
analysis of one project takes on average less than one minute.

Search for Structurally Similar Projects of Software Systems 11

Table 3. Results of experiments for analyzing the speed of the proposed algorithm.

Project name Lines of code Java files Lines of code
per minute

1 BaseRecycler 3 896 92 2 491
2 AlamazDev 15 776 103 2 658
3 SnakeBoom 20 534 158 3 255
4 retrofit 32 119 227 2 718
5 Glide 37 508 203 2 576
6 ZXing 51 857 310 2 533
7 RxJava 64 101 339 2 814
8 VisualProjectCore 71 303 450 2 969
9 mc-dev 85 267 877 2 746
10 xRayJavaTool 97 249 937 2 730

Average value 2 749

Table 4. Results of experiments to determine the total time of projects analyzing and
the number of nodes in resulting graphs.

Project name Total time
(min)

Number of
graph nodes

1 BaseRecycler 1.6 844
2 AlamazDev 6.0 1 837
3 SnakeBoom 6.3 2 197
4 retrofit 11.8 7 118
5 Glide 14.6 8 496
6 ZXing 20.5 10 560
7 RxJava 22.7 11 972
8 VisualProjectCore 24.1 13 334
9 mc-dev 31.1 14 444
10 xRayJavaTool 35.6 23 946

12 A. Filippov et al.

7 Conclusion

This article presents the results of developing an approach and a system for
searching for structurally similar projects.

We solved the following tasks:

– we analyzed existing methods of source code analysis, including the methods
for borrowings searching in a text and source code;

– we developed the algorithm for extracting the AST in analyzing a project
source code;

– we developed the algorithm for determining originality of a project based on
the the AST structure hashing;

– we implemented the software system to determine originality of a project;
– we conducted experiments to determine the speed of the proposed algorithm.

Thus, the developed system makes it possible to find borrowings in student
projects in less than a minute on average.

Acknowledgements The authors acknowledge that the work was supported
by the framework of the state task No. 075-03-2023-143 "Research of intelligent
predictive analytics based on the integration of methods for constructing features
of heterogeneous dynamic data for machine learning and methods of predictive
multimodal data analysis".

References

1. Cypher query language - developer guides, https://neo4j.com/developer/cypher/,
[Online; accessed 11-June-2023]

2. Neo4j graph database & analytics | graph database management system,
https://neo4j.com/, [Online; accessed 11-June-2023]

3. Statistic - intellij ides plugin, https://plugins.jetbrains.com/plugin/4509-statistic,
[Online; accessed 11-June-2023]

4. Text functions - apoc extended documentation,
https://neo4j.com/labs/apoc/4.4/misc/text-functions/#text-functions-hashing,
[Online; accessed 11-June-2023]

5. Ali, A.M.E.T., Abdulla, H.M.D., Snasel, V.: Overview and comparison of plagia-
rism detection tools. In: Dateso. pp. 161–172 (2011)

6. Beniwal, R., Dahiya, S., Kumar, D., Yadav, D., Pal, D.: Npmrec: Npm packages
and similar projects recommendation system. In: Data Analytics and Management:
Proceedings of ICDAM. pp. 701–710. Springer (2021)

7. Chae, D.K., Ha, J., Kim, S.W., Kang, B., Im, E.G.: Software plagiarism detection:
a graph-based approach. In: Proceedings of the 22nd ACM international conference
on Information & Knowledge Management. pp. 1577–1580 (2013)

8. Filippov, A., Guskov, G., Namestnikov, A., Yarushkina, N.: Approach to the search
for software projects similar in structure and semantics based on the knowledge
extracted from existed projects. In: Computational Science and Its Applications–
ICCSA 2020: 20th International Conference, Cagliari, Italy, July 1–4, 2020, Pro-
ceedings, Part I. pp. 718–733. Springer (2020)

Search for Structurally Similar Projects of Software Systems 13

9. Ghavamnia, S., Palit, T., Mishra, S., Polychronakis, M.: Temporal system call
specialization for attack surface reduction. In: Proceedings of the 29th USENIX
Conference on Security Symposium. pp. 1749–1766 (2020)

10. Nguyen, P.T., Di Rocco, J., Rubei, R., Di Ruscio, D.: Crosssim: exploiting mutual
relationships to detect similar oss projects. In: 2018 44th Euromicro conference
on software engineering and advanced applications (SEAA). pp. 388–395. IEEE
(2018)

11. Nguyen, P.T., Di Rocco, J., Rubei, R., Di Ruscio, D.: An automated approach to
assess the similarity of github repositories. Software Quality Journal 28, 595–631
(2020)

12. Soares, D., Pereira, M.J.V., Henriques, P.R.: Integrating a graph builder into
python tutor. In: Second International Computer Programming Education Con-
ference (ICPEC 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2021)

13. Tang, F., Østvold, B.M.: Assessing software privacy using the privacy flow-graph.
In: Proceedings of the 1st International Workshop on Mining Software Repositories
Applications for Privacy and Security. pp. 7–15 (2022)

14. Vinayaka, K., Jaidhar, C.: Android malware detection using function call graph
with graph convolutional networks. In: 2021 2nd International Conference on Se-
cure Cyber Computing and Communications (ICSCCC). pp. 279–287. IEEE (2021)

15. Yarushkina, N., Guskov, G., Dudarin, P., Stuchebnikov, V.: An approach to similar
software projects searching and architecture analysis based on artificial intelligence
methods. In: Proceedings of the Third International Scientific Conference “Intel-
ligent Information Technologies for Industry”(IITI’18) Volume 1 3. pp. 341–352.
Springer (2019)

