from pyFTS.models import pwfts from pyFTS.partitioners import Grid, Entropy, Util as pUtil from pyFTS.data import sunspots as DataFrame from pyFTS.common import Util, Transformations, fts, tree def pwfts(dataset, trainLength, npart=50): fs = Grid.GridPartitioner(data=dataset, npart=50) model = pwfts.ProbabilisticWeightedFTS(partitioner=fs) model.fit(dataset[:trainLength]) print(model) forecasts = model.predict(dataset[trainLength:trainLength + 200], type='point', steps_ahead=int(dataset.size * 0.2)) # , steps_ahead=int(dataset.size*0.2) # forecasts = model.forecast_ahead(dataset[:], trainLength)