import matplotlib.pylab as plt from pyFTS.models import pwfts from pyFTS.partitioners import Grid from service.api import influx, smoothing data = influx.get_field() dataFrame = smoothAPI.getTimeSeries() dataset = dataFrame['value'].values trainLength = int(dataset.size*0.8) fs = Grid.GridPartitioner(data=dataset, npart=10) # Количество узлов разделения model = pwfts.ProbabilisticWeightedFTS(partitioner=fs) model.fit(dataset[:trainLength]) print(model) forecasts = model.predict(dataset[trainLength:trainLength+200], type='point', steps_ahead=int(dataset.size*0.2)) #, steps_ahead=int(dataset.size*0.2) # forecasts = model.forecast_ahead(dataset[:], trainLength) fig, ax = plt.subplots() ax.plot(dataset) ax.plot( forecasts) #range(trainLength,trainLength+200), plt.show()