pyFTSex/tutorial/pyFTS/developer/Silva, Sadaei, Guimaraes - IntervalFTS.ipynb

272 lines
211 KiB
Plaintext
Raw Normal View History

2024-08-15 12:15:32 +04:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# High Order Interval Fuzzy Time Series\n",
"\n",
"SILVA, Petrônio CL; SADAEI, Hossein Javedani; GUIMARÃES, Frederico Gadelha. Interval Forecasting with Fuzzy Time Series.\n",
"In: Computational Intelligence (SSCI), 2016 IEEE Symposium Series on. IEEE, 2016. p. 1-8."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.6/dist-packages/statsmodels/compat/pandas.py:56: FutureWarning: The pandas.core.datetools module is deprecated and will be removed in a future version. Please use the pandas.tseries module instead.\n",
" from pandas.core import datetools\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/lib/python3/dist-packages/IPython/core/magics/pylab.py:161: UserWarning: pylab import has clobbered these variables: ['plt']\n",
"`%matplotlib` prevents importing * from pylab and numpy\n",
" \"\\n`%matplotlib` prevents importing * from pylab and numpy\"\n"
]
}
],
"source": [
"import matplotlib.pylab as plt\n",
"from pyFTS.benchmarks import benchmarks as bchmk\n",
"from pyFTS.models import ifts\n",
"\n",
"from pyFTS.common import Transformations\n",
"tdiff = Transformations.Differential(1)\n",
"\n",
"%pylab inline"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from pyFTS.data import Enrollments\n",
"\n",
"enrollments = Enrollments.get_data()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAALICAYAAABijlFfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvUlsHOuW5/eLnDPJSFIckkOSkq4o\n6WpgkpLu6wK8Mgw/b23DfuUCDHjnerXwtlGN2nrT6FoaMIx+dnnhXrW7DC8NuF8BNow2YNS7lEgm\nNZNXFDOTyVHJCDLnjPAi8ktR1MQhIjIi7vcDLsicIj5ekRHfOed//kcxTROJRCKRSCQSiUQikVyd\nUL8XIJFIJBKJRCKRSCRBQQZYEolEIpFIJBKJRGITMsCSSCQSiUQikUgkEpuQAZZEIpFIJBKJRCKR\n2IQMsCQSiUQikUgkEonEJmSAJZFIJBKJRCKRSCQ2IQMsiUQikXgeRVF+ryjKuqIopqIoHxRF+ZeK\nogx/5b1PFEX5+SuvDSuK8sHZ1UokEonk14wMsCQSiUTiaRRF+T3wL4B/BlwD/hy4BfzDVz6y0X2v\nRCKRSCSuIwMsiUQikXiWbpXqXwI/mab596ZpVkzT/KNpmv8RsKEoyq3uf/9WUZS/7laubmEFZOIY\nv+9WvdaB3/fnJ5FIJBLJr4VIvxcgkUgkEsk3+A2wZJrmxtkXTNP8cwBFUW5137cB/OXp9yiK8gQr\n2PoPu69/reolkUgkEoktyAqWRCKRSLzME6zACLCCqW41SvwnKlLDpmn+lWmaS2c+/1fAH0zTXDJN\ns4KUDkokEonEYWSAJZFIJBIvs4El+QOgW8n6ofvfH8+870uMAP946vGf7F6gRCKRSCSnkQGWRCKR\nSLzMH4EnXakfAN0+rApWdUtQ+crnN4B/curxb+xfokQikUgkH5EBlkQikUg8yylZ3z8oivK7rs36\nE0VR/u05D/Gvgd93PzOMlAhKJBKJxGGkyYVEIpFIPI1pmn+rKEoF+Bvg3wBLwD/vvjzync8uKYry\nz/hobvGXyCqWRCKRSBxEMU2z32uQSCQSiUQikUgkkkAgJYISiUQikUgkEolEYhMywJJIJBKJRCKR\nSCQSm5ABlkQikUgkEolEIpHYhAywJBKJRCKRSCQSicQmXHURHBsbM2/evOnmKSUSiUQikUgkEonk\nyvz888/7pmmOf+99rgZYN2/e5E9/+pObp5RIJBKJRCKRSCSSK6MoyuZ53iclghKJRCKRSCQSiURi\nEzLAkkgkEolEIpFIJBKbkAGWRCKRSCQSiUQikdiEDLAkEolEIpFIJBKJxCZkgCWRSCQSiUQikUgk\nNiEDLIlEIpFIJBKJRCKxCRlgSSQSiUQikUgkEolNyABLIpFIJBKJRCKRSGxCBlgSiUQikUgkEolE\nYhMywJJIJBKJRCKRSCQSm5ABlkQikUgkEolEIpHYhAywJBKJRCKRSCQSicQmZIAlkUgkEolEIpFI\nJDYhAyyJRCKRSCQSiUQisQkZYEkkEolEIpFIJBKJTcgASyKRSCQSiUQikUhsQgZYEolEIpFIJBKJ\nRGITMsCSSCQSiUQikUgkEpuQAZZEIpFIJBKJRCKR2IQMsCQSiUQikUgkEonEJmSAJZFIJBKJRCKR\nSCQ2ca4AS1GUJ9947XeKovxWUZS/tm9ZEolEIpFIJBKJROI/vhtgKYryW+DffOW1JwCmaf4RqHwr\nEJNIJBKJRCKRSCSSoPPdAKsbPG185eW/ACrd7zeA39q0LolEIpFIJBKJRCLxHVftwRoGDk89Hr3i\n8SQ2YxgmP29+6PcynKe8Cs2Tfq/CUconZUrHpX4vw1GMep3a2lq/l+E45Y0jDMPs9zIc5bBUpKod\n9XsZjtI5adHarfZ7GY5iGAZbW1v9Xobj6PpzOp1g/1sW600K9Wa/l+EotWaHfDHY1x0Atv4RjE6/\nVyH5Bo6bXCiK8ntFUf6kKMqf9vb2nD6d5Az/5/My//n/8P/y9H2Ag6z6EfzhP4B/99/1eyWO8jf/\nz9/wT//vf9rvZTjK4b/6V7z7L/6C9v5+v5fiGPuFY/63v/2ZN/+40++lOIZpmvyv/+3f8H/9L/9T\nv5fiKEf/xy/s/ctlzAAHyy9evODv/u7vKBaL/V6KY7RaR/zjn/4zNt//Xb+X4ij/zfNN/mrtXb+X\n4Sj/87/7hf/kv/93HBw3+r0U59hegb/7Laz97/1eieQbXDXAqgAj3e+HgYOzbzBN8w+maf7GNM3f\njI+PX/F0kosiqleBrmKVnoLRgq3/r98rcYy20Sa/n+fFwQsaneDeOGpPn0GnQ211td9LcYzyxtEn\nX4OItrfLyYdDSq9f9HspjtLc1DBO2rQPav1eimOI6lWQq1iavopptjg6+rnfS3GMlmHyTK+yotdo\nGEa/l+MYS5sf6BgmK4XgXl97e50A73mCwKUCLEVRhrvf/mvgVvf7W8Af7ViUxD6WuxeZQF9sikvW\n19ISmMHMJK9X1ql36rTNNi8PX/Z7OY5gmia11RUA6qv5Pq/GOXbfaZ98DSLl9TcAHO2UqenB/DmN\nepv2vhVYtQrHfV6Nc5RKliw5yBUsXbOuO5q2ihnQe8jLkxp1w6RlmqwdBzMhYJpmb8+zXKh8590+\npvTU+ir2PhJPch4Xwd8Bv+l+FfwDgGmaS933/BaoiMcSb9AxzJ4WOdAXm2I361g/gsOv+bH4m9X9\njxWd/H4wg4/2zg6dPUsaGOQK1k43sNovHNNpBTOTXF5/fer7N31ciXM0C8fQ3Ys3t/T+LsYhOp3O\nryLAOtKWAWi3K9Rq7/u8Gmd4qlW/+H2QKB3V2e9KA5e3fgV7nvIKtIPdU+dnzuMi+PemaV4zTfPv\nTz3306nv/2Ca5h9N0/yDU4uUXI63u8dUmx3uTgyyeVClUg3oH2LpKYzft74PaEYnv58nHUsznhwP\nbIAlgqr4ndvUV4OZSW41OnzYPmFkegCjY7JfDGblo7z+mpHsLCjKJ8FWkGgWrKAqkkn1vg8ae3t7\ntNttxsfHOTw8pFYLZuVD11YZGLgDgKav9Hk1zvBMr3ItEmY8FuGZHswAa6UbVN2dGGSlcBTIewgN\nHfZeWXueThN2g28K5VccN7mQ9A9Rtfqv/r2bQEBlgnoZtCI8+i8hkrRkggFk7WCN+bF55sfmAxtg\n1VfzEIkw/Od/TqdSoRXAjPneex3ThNy/nwWCKRM0jA47G+tcn19kZHomsBWsVkEnPJogcfcazdIJ\nZid41UhRvfqzP/uzTx4HiXqjTKO5w9TU7wiF4uhaMKvnz7Qqj9IpHqspngW0grVcOCIaVviLf3Kd\ng5MmxUoAEwLby4AJf/ZfW48DmlQOAjLACjDLWxXUeIT/eHG69zhwiIvL7J/B1OLH0nmAqLVrvPnw\nhoejD5kfm+ed9g6tGbyNeW11hcTduyR/sgrk9ZXgZZKFPPDW4wxJNRrIAOuwWKBVrzE5d4fJuTuU\n374OZCa5uXVMbEYlNjsIbYNWOXib1mKxSCKRYH5+vvc4aIj+q+GhJ6iDD3pywSBx0unw8qTOIzXF\no3SKt9UGejt4Ft/LWxXuT6X5JzevdR8HMKks9jgP/lNIjcoAy8PIACvArBSOyM0MMZSMcmt8oNf8\nGShKS6CEYXIBsk8s+9JOu9+rspVXh6/omB2rgjVqbXSeHzzv86rsxTQM6vk1Erkcibt3UWIxagE0\nutjd1BgciZNKx8jcTLOzGTxpmahYTc7dZXLuDtWjCvpBsGz3O3qTzlGD2MwgsRkVIJAywWKxyPT0\nNMlkkpGRkUBWsDRtBUWJMDj4ADW9gK6vYRjBuofk9RoG8Did4pGawgSWAyYTNLo95wszQ9ybTBML\nh1gJYu95cQmGr8PAGEw/CaxqJwjIACug1FsdXpY1Fmctw8dHM8MsFyrByyQXlyDzAGIpyP4E7Rrs\nBcsaWkgCc2M5Ho49/OS
"text/plain": [
"<matplotlib.figure.Figure at 0x7f64a8854550>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from pyFTS.partitioners import Grid, Util as pUtil\n",
"\n",
"fuzzy_sets = Grid.GridPartitioner(data=enrollments, npart=12)\n",
"fuzzy_sets2 = Grid.GridPartitioner(data=enrollments, npart=5, transformation=tdiff)\n",
"\n",
"pUtil.plot_partitioners(enrollments, [fuzzy_sets,fuzzy_sets2])"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ 14:39:06] Start training\n",
"[ 14:39:06] Starting batch 1\n",
"[ 14:39:06] Finish batch 1\n",
"[ 14:39:06] Starting batch 2\n",
"[ 14:39:06] Finish batch 2\n",
"[ 14:39:06] Starting batch 3\n",
"[ 14:39:06] Finish batch 3\n",
"[ 14:39:06] Starting batch 4\n",
"[ 14:39:06] Finish batch 4\n",
"[ 14:39:06] Starting batch 5\n",
"[ 14:39:06] Finish batch 5\n",
"[ 14:39:06] Starting batch 6\n",
"[ 14:39:06] Finish batch 6\n",
"[ 14:39:06] Starting batch 7\n",
"[ 14:39:06] Finish batch 7\n",
"[ 14:39:06] Starting batch 8\n",
"[ 14:39:06] Finish batch 8\n",
"[ 14:39:06] Starting batch 9\n",
"[ 14:39:06] Finish batch 9\n",
"[ 14:39:06] Starting batch 10\n",
"[ 14:39:06] Finish batch 10\n",
"[ 14:39:06] Starting batch 11\n",
"[ 14:39:06] Finish batch 11\n",
"[ 14:39:06] Finish training\n",
"Interval FTS:\n",
"A1 -> A2,A3\n",
"A10 -> A10,A8,A9\n",
"A2 -> A2,A3,A4\n",
"A3 -> A2,A3,A4,A5\n",
"A4 -> A4,A5,A6\n",
"A5 -> A4,A5,A6,A7\n",
"A6 -> A4,A5,A6,A7,A8,A9\n",
"A7 -> A5,A6,A7,A8,A9\n",
"A8 -> A10,A9\n",
"A9 -> A10,A8,A9\n",
"\n"
]
}
],
"source": [
"model1 = ifts.IntervalFTS(\"FTS\", partitioner=fuzzy_sets)\n",
"model1.fit(enrollments, order=1)\n",
"\n",
"print(model1)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ 14:39:07] Start training\n",
"[ 14:39:07] Starting batch 1\n",
"[ 14:39:07] Finish batch 1\n",
"[ 14:39:07] Starting batch 2\n",
"[ 14:39:07] Finish batch 2\n",
"[ 14:39:07] Starting batch 3\n",
"[ 14:39:07] Finish batch 3\n",
"[ 14:39:07] Starting batch 4\n",
"[ 14:39:07] Finish batch 4\n",
"[ 14:39:07] Starting batch 5\n",
"[ 14:39:07] Finish batch 5\n",
"[ 14:39:07] Starting batch 6\n",
"[ 14:39:07] Finish batch 6\n",
"[ 14:39:07] Starting batch 7\n",
"[ 14:39:07] Finish batch 7\n",
"[ 14:39:07] Starting batch 8\n",
"[ 14:39:07] Finish batch 8\n",
"[ 14:39:07] Starting batch 9\n",
"[ 14:39:07] Finish batch 9\n",
"[ 14:39:07] Starting batch 10\n",
"[ 14:39:07] Finish batch 10\n",
"[ 14:39:07] Starting batch 11\n",
"[ 14:39:07] Finish batch 11\n",
"[ 14:39:07] Finish training\n",
"Interval FTS:\n",
"A1 -> A2,A3\n",
"A10 -> A10,A8,A9\n",
"A2 -> A2,A3,A4\n",
"A3 -> A2,A3,A4,A5\n",
"A4 -> A4,A5,A6\n",
"A5 -> A4,A5,A6,A7\n",
"A6 -> A4,A5,A6,A7,A8,A9\n",
"A7 -> A5,A6,A7,A8,A9\n",
"A8 -> A10,A9\n",
"A9 -> A10,A8,A9\n",
"\n"
]
}
],
"source": [
"model2 = ifts.IntervalFTS(\"FTS\", partitioner=fuzzy_sets2)\n",
"model2.append_transformation(tdiff)\n",
"model2.fit(enrollments, order=1)\n",
"\n",
"print(model1)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABPQAAAE/CAYAAADBrp2/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3WdwW+eZPvwLYK8gCYCdBEiCvRdJ\nFkUVq7jIco9WmU3sxIklJetxNpNknZ11sv9skkmyHidbvI5DyY4369lkbTkTO5LcZItWoyobWCUW\nkQB7B0gCRD3vB4l4SZGUVQgCIK/fDMbAOQcHN0wRBC489/OIBEEAEREREREREREReQaxqwsgIiIi\nIiIiIiKiW8dAj4iIiIiIiIiIyIMw0CMiIiIiIiIiIvIgDPSIiIiIiIiIiIg8CAM9IiIiIiIiIiIi\nD8JAj4iIiIiIiIiIyIMw0CMiIiIiIiIiIvIgDPSIiIiIiIiIiIg8CAM9IiIiIiIiIiIiD8JAj4iI\niIiIiIiIyIN4u7oAZ5DJZIJSqXR1GUREREREREREK0ZVVdWwIAhyV9dBKzTQUyqVuHTpkqvLICIi\nIiIiIiJaMUQiUZera6Br2HJLRERERERERETkQRjoEREREREREREReRAGekRERERERERERB5kRc6h\nR0REREREREREzldVVRXp7e39OoAccODYUrEDaLBarc8WFxcPLnQAAz0iIiIiIiIiIroj3t7er0dH\nR2fK5fIxsVgsuLqelcBut4uGhoay+vv7XwfwyELHMDklIiIiIiIiIqI7lSOXy/UM85aOWCwW5HK5\nDtdGPS58zDLWQ0REREREREREK4uYYd7Su/7/dNHcjoEeERERERERERF5rKamJt/S0tLU7OzszOzs\n7My//du/VQwPD3vdeNybb74Z/qMf/ShqsfN80f6b3e/b3/523O3e725wDj0iIiIiIiIiIrorFosF\nHR0dvs44d3JystnHx2fBfcPDw173339/2p/+9KeOsrIyAwC8/PLLss2bN6c1NjY2zz72mWeeGbvZ\n43zRfnfCQI+IiIiIiIiIiO5KR0eHb0ZGRq4zzt3S0lKfnp5uXmjfv//7v8u+9rWvDc2EeQDwgx/8\nYPjNN9+Unz59OrC1tdXv2LFjoadOnQr59re/PaDVan1fe+21ngcffDBZp9N5KZVKc11dXWBjY2Pz\nm2++GX7hwoXA+++/X19eXi7X6XReOp3O+wc/+EH/TNhXWlqaOvM4e/fuHXZVCMiWWyIiIiIiIiIi\n8kgdHR3+KSkp88K+/Px8Q2trqx8A1NXVBWq12oaYmBgrAHz729+OKy4unqqsrGz9m7/5m1G9Xj+v\nPVej0fhVVla2njhx4so///M/xwHXWnv37t07XFlZ2frSSy/1HDx4UObs57cYjtAjIiIiIiIiIqK7\nkpycbG5paal31rlvsm+6vb19XqtvZ2en77p166bOnz8ftGnTJv0N+/y+8pWvjAHAY489NvH888/P\nO+/MfWQymW1mW2RkpO3YsWOhx44dC72Lp7MkGOgREREREREREdFd8fHxwWJtsc703e9+d7iwsDDz\ngQcemJg9hx4AZGVlmc+fPx90432USqXpo48+CikrKzO89957Ibf6WD/+8Y+ji4qKpn7wgx8Mv/fe\neyEvvfRS9NI9k9vDQI+IiIiIiIiIiDySTCazffzxx1eeffZZhU6n8wautdv+9a9/7VjsPj/72c/6\nH3nkkeTS0tLQ/Px8w2LH3egrX/nK2AsvvBD32WefhSqVSpNWq/U7ffp04FI8j9slEgTBFY/rVCUl\nJcKlS5dcXQYRERERERER0YohEomqBEEomb2trq6uMz8/f9hVNd2JmVF5jz322MTp06cDX3jhhbjK\nyspWV9d1o7q6Oll+fr5yoX0coUdERERERERERKtGWVmZ4amnnlLMrGT7+uuvd7m6ptvFQI+IiIiI\niIiIiFYNmUxm+/DDDxdtyfUEYlcXQERERERERERERLeOgR4REREREREREZEHYaBHRERERERERETk\nQRjoEREREREREREReRAuikFERERERERERB4pNDS0QK/X1w4PD3vJ5fKC9evX62f2KZVKMwB0dnb6\narVaP51O552TkzMlkUhsH374YcePfvSjqL/85S8RM8eXl5d3lZWVGWZuO+Ocs7388suy8fFxr5//\n/OcDt/u8GegRERERERHRqmOz2XD58mU0NTXBYrG4uhwiWgLx8fGmysrK1oX2vfzyy7L29na/1157\nrQcATp8+HfiHP/xBrtVqGwCgqanJd/fu3SmNjY3Nzj4nAJSWlqaePXs29MUXX+y+k+fKQI+IiIiI\niIhWjaGhIVRXV0OtVsNgMCA4OBghISGuLouIlllGRoZJp9N5v/feeyGPPfbYRFZWlvnEiRNXluuc\nlZWVrTMj9O7ksRjoERERERER0YpmNpvR2NiImpoaaLVaiMVipKeno6ioCMnJyRCLOb28OzEajZiY\nmAAACILg2L7QdWfsX6pzz5DJZJBKpRCJRAs+X0+yf//+m+5///33EwYHBwOX8jEjIyMNjz76qPZW\nju3u7vYrLS1Nnbn90ksv9SzW7iqTyWwffPDBld/+9rfyF198MV4ikVgXOt4Z51wKDPSIiIiIiIho\nxREEAb29vaiurkZDQwPMZjNkMhl27NiB/Px8BAUFubpEmsVqtaKnpwednZ0YHBycF4p5urCwMKhU\nKiQmJsLbm1GMs9ysPfZGTU1NvhEREdY//vGPXcC1dtmdO3em6fX6WmefcynwXxERERERERGtGAaD\nAWq1GjU1NRgcHISPjw+ys7NRWFiIhISEFTFKaqUQBAGDg4Po6upCd3c3rFYrgoKCkJmZCblc7vhZ\nzf6ZLXT9TvY745wL7bfb7dBqtWhra8OlS5egVquRlJSElJQUBAcH3/T/jye61ZF07uD8+fNBBw8e\nlM2EdWVlZQaJRGJ1t3MuhoEeEREREREReTRBEHD16lVUV1ejpaUFNpsNcXFx2LVrF3JycuDn5+fq\nEmkWvV6Pzs5OaDQaGAwG+Pj4ICEhAUqlEjKZbMWFrikpKUhOTsbw8DBaW1tx5coVXL58GbGxsVCp\nVIiKilpxz9kTPPPMM2Pt7e2+2dnZmTPbfvrTn/a42zkXI1ppw1gBoKSkRLh06ZKryyAiIiIiIiIn\n0uv1qKmpQW1tLcbHxxEQEIDc3FwUFRUhKirK1eXRLNPT09Bqtejs7MTY2BhEIhGio6OhUCgQGxu7\nqtpQDQYD2tvb0dHRAZPJhJCQEKSkpECpVMLX19fV5d2USCSqEgShZPa2urq6zvz8/GFX1bSS1dXV\nyfLz85UL7Vs9vzFERERERETk8Ww2G65cuYKamhq0tbVBEAQkJSVh27ZtyMjIWFXBkLuz2Wzo7e1F\nV1cX+vr6IAgCwsLCUFBQgMTERPj7+7u6RJcIDAxEbm4usrKy0N3djba2NtTW1qKhoQEKhQIqlQoS\nicTVZZKb4ysdERERERERub3h4WHU1NSgrq4OU1NTCAkJQVlZGQoLCxEeHu7q8ug6QRAwMjKCzs5O\naLVaWCwWBAQEIC0tDQqFAmFhYa4u0W14eXlBoVBAoVBgdHQUbW1tuHr1Ktrb2xEZGQmVSoXY2Fiu\nwkwLclqgJxKJ9l2/miIIwg+vb/sSgHEARYIgvHS324iIiIiIiGjlMpvNaGpqQk1NDTQaDcRiMdLS\n0lBYWAiVSsWgw41MTk6iq6sLXV1dmJychJeXF+Lj46FQKBAZGcmf1ReIiIjA2rVrkZ+fj46ODrS3\nt6OyshIBAQGOOfhW64hGWphTAj2RSLQdwKeCIHSIRKJD12+PAoAgCJ+KRKJkkUhUNHP8nWwTBKHa\nGbUTERERERGR6wiCgL6+PlRXV6O+vh5msxlSqRTbt29Hfn7+ilwZ1FOZzWZotVp0dXVhePjaFGqR\nkZHIyspCXFwcfHx8XFy
"text/plain": [
"<matplotlib.figure.Figure at 0x7f64a6475be0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"bchmk.plot_compared_series(enrollments, [model1, model2], bchmk.colors, \n",
" points=False, intervals=True)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model\t& Order & Sharpness\t\t& Resolution\t\t& Coverage & .05 & .25 & .75 & .95\t\\\\ \n",
"IFTS FTS\t\t& 1\t\t& 3797.83\t\t& 631.23\t\t& 1.0 &88.61 &443.05 &514.01 &102.8\\\\ \n",
"IFTS FTS\t\t& 1\t\t& 2436.2\t\t& 491.02\t\t& 0.81 &96.02 &480.08 &214.85 &105.31\\\\ \n",
"\n"
]
}
],
"source": [
"bchmk.print_interval_statistics(enrollments, [model1, model2])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}