pyFTS/benchmarks/ResidualAnalysis.py
Petrônio Cândido de Lima e Silva 15b4aa1137 - Several bugfixes;
-  class Transformation
- Inclusion of cascaded transformations in FTS
2017-01-26 10:19:34 -02:00

73 lines
2.0 KiB
Python

#!/usr/bin/python
# -*- coding: utf8 -*-
import numpy as np
import pandas as pd
import matplotlib as plt
import matplotlib.pyplot as plt
from pyFTS.common import Transformations,Util
from pyFTS.benchmarks import Measures
from scipy import stats
def residuals(targets, forecasts, order=1):
return np.array(targets[order:]) - np.array(forecasts[:-1])
def ChiSquared(q,h):
p = stats.chi2.sf(q, h)
return p
def compareResiduals(data, models):
ret = "Model & Order & Mean & STD & Box-Pierce & Box-Ljung & P-value \\\\ \n"
for mfts in models:
forecasts = mfts.forecast(data)
res = residuals(data, forecasts, mfts.order)
mu = np.mean(res)
sig = np.std(res)
ret += mfts.shortname + " & "
ret += str(mfts.order) + " & "
ret += str(round(mu,2)) + " & "
ret += str(round(sig,2)) + " & "
q1 = Measures.BoxPierceStatistic(res, 10)
ret += str(round(q1,2)) + " & "
q2 = Measures.BoxLjungStatistic(res, 10)
ret += str(round(q2,2)) + " & "
ret += str(ChiSquared(q2, 10))
ret += " \\\\ \n"
return ret
def plotResiduals(targets, models, tam=[8, 8], save=False, file=None):
fig, axes = plt.subplots(nrows=len(models), ncols=3, figsize=tam)
c = 0
for mfts in models:
forecasts = mfts.forecast(targets)
res = residuals(targets,forecasts,mfts.order)
mu = np.mean(res)
sig = np.std(res)
axes[c][0].set_title("Residuals Mean=" + str(mu) + " STD = " + str(sig))
axes[c][0].set_ylabel('E')
axes[c][0].set_xlabel('T')
axes[c][0].plot(res)
axes[c][1].set_title("Residuals Autocorrelation")
axes[c][1].set_ylabel('ACS')
axes[c][1].set_xlabel('Lag')
axes[c][1].acorr(res)
axes[c][2].set_title("Residuals Histogram")
axes[c][2].set_ylabel('Freq')
axes[c][2].set_xlabel('Bins')
axes[c][2].hist(res)
c += 1
plt.tight_layout()
Util.showAndSaveImage(fig, file, save)