pyFTS/pyFTS/models/yu.py
Petrônio Cândido 386f28c47d pySpark support
2018-12-17 21:49:48 -02:00

109 lines
3.3 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
First Order Weighted Fuzzy Time Series by Yu(2005)
H.-K. Yu, “Weighted fuzzy time series models for TAIEX forecasting,”
Phys. A Stat. Mech. its Appl., vol. 349, no. 3, pp. 609624, 2005.
"""
import numpy as np
from pyFTS.common import FuzzySet, FLR, fts, flrg
from pyFTS.models import chen
class WeightedFLRG(flrg.FLRG):
"""First Order Weighted Fuzzy Logical Relationship Group"""
def __init__(self, LHS, **kwargs):
super(WeightedFLRG, self).__init__(1, **kwargs)
self.LHS = LHS
self.RHS = []
self.count = 1.0
self.w = None
def append_rhs(self, c, **kwargs):
count = kwargs.get('count', 1.0)
self.RHS.append(c)
self.count += count
def weights(self, sets):
if self.w is None:
tot = sum(np.arange(1.0, self.count, 1.0))
self.w = np.array([k / tot for k in np.arange(1.0, self.count, 1.0)])
return self.w
def __str__(self):
tmp = self.LHS + " -> "
tmp2 = ""
cc = 1.0
tot = sum(np.arange(1.0, self.count, 1.0))
for c in sorted(self.RHS):
if len(tmp2) > 0:
tmp2 = tmp2 + ","
tmp2 = tmp2 + c + "(" + str(round(cc / tot, 3)) + ")"
cc = cc + 1.0
return tmp + tmp2
class WeightedFTS(fts.FTS):
"""First Order Weighted Fuzzy Time Series"""
def __init__(self, **kwargs):
super(WeightedFTS, self).__init__(order=1, name="WFTS", **kwargs)
self.name = "Weighted FTS"
self.detail = "Yu"
def generate_FLRG(self, flrs):
for flr in flrs:
if flr.LHS in self.flrgs:
self.flrgs[flr.LHS].append_rhs(flr.RHS)
else:
self.flrgs[flr.LHS] = WeightedFLRG(flr.LHS);
self.flrgs[flr.LHS].append_rhs(flr.RHS)
def train(self, ndata, **kwargs):
tmpdata = FuzzySet.fuzzyfy(ndata, partitioner=self.partitioner, method='maximum', mode='sets')
flrs = FLR.generate_recurrent_flrs(tmpdata)
self.generate_FLRG(flrs)
def forecast(self, ndata, **kwargs):
explain = kwargs.get('explain', False)
if self.partitioner is not None:
ordered_sets = self.partitioner.ordered_sets
else:
ordered_sets = FuzzySet.set_ordered(self.sets)
ndata = np.array(ndata)
l = len(ndata) if not explain else 1
ret = []
for k in np.arange(0, l):
actual = FuzzySet.get_maximum_membership_fuzzyset(ndata[k], self.sets, ordered_sets)
if explain:
print("Fuzzyfication:\n\n {} -> {} \n\n".format(ndata[k], actual.name))
if actual.name not in self.flrgs:
ret.append(actual.centroid)
if explain:
print("Rules:\n\n {} -> {} (Naïve)\t Midpoint: {} \n\n".format(actual.name, actual.name,actual.centroid))
else:
flrg = self.flrgs[actual.name]
mp = flrg.get_midpoints(self.sets)
final = mp.dot(flrg.weights(self.sets))
ret.append(final)
if explain:
print("Rules:\n\n {} \n\n ".format(str(flrg)))
print("Midpoints: \n\n {}\n\n".format(mp))
print("Deffuzyfied value: {} \n".format(final))
return ret