152 lines
4.7 KiB
Python
152 lines
4.7 KiB
Python
#!/usr/bin/python
|
|
# -*- coding: utf8 -*-
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import math
|
|
from operator import itemgetter
|
|
from pyFTS.common import FLR, FuzzySet, SortedCollection
|
|
from pyFTS import fts
|
|
|
|
|
|
class EnsembleFTS(fts.FTS):
|
|
def __init__(self, name, **kwargs):
|
|
super(EnsembleFTS, self).__init__("Ensemble FTS")
|
|
self.shortname = "Ensemble FTS " + name
|
|
self.name = "Ensemble FTS"
|
|
self.flrgs = {}
|
|
self.has_point_forecasting = True
|
|
self.has_interval_forecasting = True
|
|
self.has_probability_forecasting = True
|
|
self.is_high_order = True
|
|
self.models = []
|
|
self.parameters = []
|
|
|
|
def build(self, data, models, partitioners, partitions, max_order=3, transformation=None, indexer=None):
|
|
|
|
self.models = []
|
|
|
|
for count, model in enumerate(models, start=0):
|
|
mfts = model("")
|
|
if mfts.benchmark_only:
|
|
if transformation is not None:
|
|
mfts.appendTransformation(transformation)
|
|
mfts.train(data,None, order=1, parameters=None)
|
|
self.models.append(mfts)
|
|
else:
|
|
for partition in partitions:
|
|
for partitioner in partitioners:
|
|
data_train_fs = partitioner(data, partition, transformation=transformation)
|
|
mfts = model("")
|
|
|
|
mfts.partitioner = data_train_fs
|
|
if not mfts.is_high_order:
|
|
|
|
if transformation is not None:
|
|
mfts.appendTransformation(transformation)
|
|
|
|
mfts.train(data, data_train_fs.sets)
|
|
self.models.append(mfts)
|
|
else:
|
|
for order in np.arange(1, max_order + 1):
|
|
if order >= mfts.min_order:
|
|
mfts = model("")
|
|
mfts.partitioner = data_train_fs
|
|
|
|
if transformation is not None:
|
|
mfts.appendTransformation(transformation)
|
|
|
|
mfts.train(data, data_train_fs.sets, order=order)
|
|
self.models.append(mfts)
|
|
|
|
def train(self, data, sets, order=1,parameters=None):
|
|
pass
|
|
|
|
def forecast(self, data, **kwargs):
|
|
|
|
method = kwargs.get('method','mean')
|
|
|
|
ndata = np.array(self.doTransformations(data))
|
|
|
|
l = len(ndata)
|
|
|
|
ret = []
|
|
|
|
for k in np.arange(0, l+1):
|
|
tmp = []
|
|
for model in self.models:
|
|
if k >= model.minOrder - 1:
|
|
sample = ndata[k - model.order : k]
|
|
tmp.append( model.forecast(sample) )
|
|
if method == 'mean':
|
|
ret.append( np.nanmean(tmp))
|
|
elif method == 'median':
|
|
ret.append(np.percentile(tmp,50))
|
|
|
|
ret = self.doInverseTransformations(ret, params=[data[self.order - 1:]])
|
|
|
|
return ret
|
|
|
|
def forecastInterval(self, data, **kwargs):
|
|
|
|
method = kwargs.get('method', 'extremum')
|
|
|
|
ndata = np.array(self.doTransformations(data))
|
|
|
|
l = len(ndata)
|
|
|
|
ret = []
|
|
|
|
for k in np.arange(0, l):
|
|
tmp = []
|
|
for model in self.models:
|
|
if k >= model.minOrder - 1:
|
|
sample = ndata[k - model.order : k]
|
|
tmp.append( model.forecast(sample) )
|
|
if method == 'extremum':
|
|
ret.append( [ min(tmp), max(tmp) ] )
|
|
elif method == 'quantile':
|
|
q = kwargs.get('q', [.05, .95])
|
|
ret.append(np.percentile(tmp,q=q*100))
|
|
|
|
return ret
|
|
|
|
def forecastAhead(self, data, steps, **kwargs):
|
|
pass
|
|
|
|
def forecastAheadInterval(self, data, steps, **kwargs):
|
|
pass
|
|
|
|
|
|
def getGridClean(self, resolution):
|
|
grid = {}
|
|
|
|
if len(self.transformations) == 0:
|
|
_min = self.sets[0].lower
|
|
_max = self.sets[-1].upper
|
|
else:
|
|
_min = self.original_min
|
|
_max = self.original_max
|
|
|
|
for sbin in np.arange(_min,_max, resolution):
|
|
grid[sbin] = 0
|
|
|
|
return grid
|
|
|
|
def gridCount(self, grid, resolution, index, interval):
|
|
#print(interval)
|
|
for k in index.inside(interval[0],interval[1]):
|
|
#print(k)
|
|
grid[k] += 1
|
|
return grid
|
|
|
|
def gridCountPoint(self, grid, resolution, index, point):
|
|
k = index.find_ge(point)
|
|
# print(k)
|
|
grid[k] += 1
|
|
return grid
|
|
|
|
def forecastAheadDistribution(self, data, steps, **kwargs):
|
|
pass
|
|
|