pyFTS/pyFTS/common/fts.py
2018-04-14 10:22:02 -03:00

386 lines
12 KiB
Python

import numpy as np
import pandas as pd
from pyFTS.common import FuzzySet, SortedCollection, tree, Util
class FTS(object):
"""
Fuzzy Time Series object model
"""
def __init__(self, order, name, **kwargs):
"""
Create a Fuzzy Time Series model
:param order: model order
:param name: model name
:param kwargs: model specific parameters
"""
self.sets = {}
self.flrgs = {}
self.order = order
self.shortname = name
self.name = name
self.detail = name
self.is_high_order = False
self.min_order = 1
self.has_seasonality = False
self.has_point_forecasting = True
self.has_interval_forecasting = False
self.has_probability_forecasting = False
self.is_multivariate = False
self.dump = False
self.transformations = []
self.transformations_param = []
self.original_max = 0
self.original_min = 0
self.partitioner = kwargs.get("partitioner", None)
if self.partitioner != None:
self.sets = self.partitioner.sets
self.auto_update = False
self.benchmark_only = False
self.indexer = None
def fuzzy(self, data):
"""
Fuzzify a data point
:param data: data point
:return: maximum membership fuzzy set
"""
best = {"fuzzyset": "", "membership": 0.0}
for f in self.sets:
fset = self.sets[f]
if best["membership"] <= fset.membership(data):
best["fuzzyset"] = fset.name
best["membership"] = fset.membership(data)
return best
def predict(self, data, **kwargs):
"""
Forecast using trained model
:param data: time series with minimal length to the order of the model
:param kwargs:
:keyword
type: the forecasting type, one of these values: point(default), interval or distribution.
steps_ahead: The forecasting horizon, i. e., the number of steps ahead to forecast
start: in the multi step forecasting, the index of the data where to start forecasting
distributed: boolean, indicate if the forecasting procedure will be distributed in a dispy cluster
nodes: a list with the dispy cluster nodes addresses
:return: a numpy array with the forecasted data
"""
if self.is_multivariate:
ndata = data
else:
ndata = self.apply_transformations(data)
if 'distributed' in kwargs:
distributed = kwargs.pop('distributed')
else:
distributed = False
if distributed is None or distributed == False:
if 'type' in kwargs:
type = kwargs.pop("type")
else:
type = 'point'
steps_ahead = kwargs.get("steps_ahead", None)
if steps_ahead == None or steps_ahead == 1:
if type == 'point':
ret = self.forecast(ndata, **kwargs)
elif type == 'interval':
ret = self.forecast_interval(ndata, **kwargs)
elif type == 'distribution':
ret = self.forecast_distribution(ndata, **kwargs)
elif steps_ahead > 1:
if type == 'point':
ret = self.forecast_ahead(ndata, steps_ahead, **kwargs)
elif type == 'interval':
ret = self.forecast_ahead_interval(ndata, steps_ahead, **kwargs)
elif type == 'distribution':
ret = self.forecast_ahead_distribution(ndata, steps_ahead, **kwargs)
if not ['point', 'interval', 'distribution'].__contains__(type):
raise ValueError('The argument \'type\' has an unknown value.')
else:
nodes = kwargs.get("nodes", ['127.0.0.1'])
num_batches = kwargs.get('num_batches', 10)
ret = Util.distributed_predict(self, kwargs, nodes, ndata, num_batches)
if type != 'distribution' and not self.is_multivariate:
interval = True if type == 'interval' else False
ret = self.apply_inverse_transformations(ret, params=[data[self.order - 1:]], interval=interval)
return ret
def forecast(self, data, **kwargs):
"""
Point forecast one step ahead
:param data: time series with minimal length to the order of the model
:param kwargs:
:return:
"""
raise NotImplementedError('This model do not perform one step ahead point forecasts!')
def forecast_interval(self, data, **kwargs):
"""
Interval forecast one step ahead
:param data:
:param kwargs:
:return:
"""
raise NotImplementedError('This model do not perform one step ahead interval forecasts!')
def forecast_distribution(self, data, **kwargs):
"""
Probabilistic forecast one step ahead
:param data:
:param kwargs:
:return:
"""
raise NotImplementedError('This model do not perform one step ahead distribution forecasts!')
def forecast_ahead(self, data, steps, **kwargs):
"""
Point forecast n steps ahead
:param data:
:param steps:
:param kwargs:
:return:
"""
ret = []
for k in np.arange(0,steps):
tmp = self.forecast(data[-self.order:], **kwargs)
if isinstance(tmp,(list, np.ndarray)):
tmp = tmp[0]
ret.append(tmp)
data.append_rhs(tmp)
return ret
def forecast_ahead_interval(self, data, steps, **kwargs):
"""
Interval forecast n steps ahead
:param data:
:param steps:
:param kwargs:
:return:
"""
raise NotImplementedError('This model do not perform multi step ahead interval forecasts!')
def forecast_ahead_distribution(self, data, steps, **kwargs):
"""
Probabilistic forecast n steps ahead
:param data:
:param steps:
:param kwargs:
:return:
"""
raise NotImplementedError('This model do not perform multi step ahead distribution forecasts!')
def train(self, data, **kwargs):
"""
:param data:
:param sets:
:param order:
:param parameters:
:return:
"""
pass
def fit(self, ndata, **kwargs):
"""
:param data: the training time series
:param kwargs:
:keyword
num_batches: split the training data in num_batches to save memory during the training process
save_model: save final model on disk
batch_save: save the model between each batch
file_path: path to save the model
distributed: boolean, indicate if the training procedure will be distributed in a dispy cluster
nodes: a list with the dispy cluster nodes addresses
:return:
"""
import datetime
if self.is_multivariate:
data = ndata
else:
data = self.apply_transformations(ndata)
dump = kwargs.get('dump', None)
num_batches = kwargs.get('num_batches', None)
save = kwargs.get('save_model', False) # save model on disk
batch_save = kwargs.get('batch_save', False) #save model between batches
file_path = kwargs.get('file_path', None)
distributed = kwargs.get('distributed', False)
batch_save_interval = kwargs.get('batch_save_interval', 10)
if distributed:
nodes = kwargs.get('nodes', False)
train_method = kwargs.get('train_method', Util.simple_model_train)
Util.distributed_train(self, train_method, nodes, type(self), data, num_batches, {},
batch_save=batch_save, file_path=file_path,
batch_save_interval=batch_save_interval)
else:
if dump == 'time':
print("[{0: %H:%M:%S}] Start training".format(datetime.datetime.now()))
if num_batches is not None:
n = len(data)
batch_size = int(n / num_batches)
bcount = 1
rng = range(self.order, n, batch_size)
if dump == 'tqdm':
from tqdm import tqdm
rng = tqdm(rng)
for ct in rng:
if dump == 'time':
print("[{0: %H:%M:%S}] Starting batch ".format(datetime.datetime.now()) + str(bcount))
if self.is_multivariate:
mdata = data.iloc[ct - self.order:ct + batch_size]
else:
mdata = data[ct - self.order : ct + batch_size]
self.train(mdata, **kwargs)
if batch_save:
Util.persist_obj(self,file_path)
if dump == 'time':
print("[{0: %H:%M:%S}] Finish batch ".format(datetime.datetime.now()) + str(bcount))
bcount += 1
else:
self.train(data, **kwargs)
if dump == 'time':
print("[{0: %H:%M:%S}] Finish training".format(datetime.datetime.now()))
if save:
Util.persist_obj(self, file_path)
def clone_parameters(self, model):
self.order = model.order
self.shortname = model.shortname
self.name = model.name
self.detail = model.detail
self.is_high_order = model.is_high_order
self.min_order = model.min_order
self.has_seasonality = model.has_seasonality
self.has_point_forecasting = model.has_point_forecasting
self.has_interval_forecasting = model.has_interval_forecasting
self.has_probability_forecasting = model.has_probability_forecasting
self.is_multivariate = model.is_multivariate
self.dump = model.dump
self.transformations = model.transformations
self.transformations_param = model.transformations_param
self.original_max = model.original_max
self.original_min = model.original_min
self.partitioner = model.partitioner
self.sets = model.sets
self.auto_update = model.auto_update
self.benchmark_only = model.benchmark_only
self.indexer = model.indexer
def merge(self, model):
for key in model.flrgs.keys():
flrg = model.flrgs[key]
if flrg.get_key() not in self.flrgs:
self.flrgs[flrg.get_key()] = flrg
else:
if isinstance(flrg.RHS, (list, set)):
for k in flrg.RHS:
self.flrgs[flrg.get_key()].append_rhs(k)
elif isinstance(flrg.RHS, dict):
for k in flrg.RHS.keys():
self.flrgs[flrg.get_key()].append_rhs(flrg.RHS[k])
else:
self.flrgs[flrg.get_key()].append_rhs(flrg.RHS)
def append_transformation(self, transformation):
if transformation is not None:
self.transformations.append(transformation)
def apply_transformations(self, data, params=None, updateUoD=False, **kwargs):
ndata = data
if updateUoD:
if min(data) < 0:
self.original_min = min(data) * 1.1
else:
self.original_min = min(data) * 0.9
if max(data) > 0:
self.original_max = max(data) * 1.1
else:
self.original_max = max(data) * 0.9
if len(self.transformations) > 0:
if params is None:
params = [ None for k in self.transformations]
for c, t in enumerate(self.transformations, start=0):
ndata = t.apply(ndata,params[c])
return ndata
def apply_inverse_transformations(self, data, params=None, **kwargs):
if len(self.transformations) > 0:
if params is None:
params = [None for k in self.transformations]
for c, t in enumerate(reversed(self.transformations), start=0):
ndata = t.inverse(data, params[c], **kwargs)
return ndata
else:
return data
def get_UoD(self):
return [self.original_min, self.original_max]
def __str__(self):
tmp = self.name + ":\n"
for r in sorted(self.flrgs):
tmp = tmp + str(self.flrgs[r]) + "\n"
return tmp
def __len__(self):
return len(self.flrgs)
def len_total(self):
return sum([len(k) for k in self.flrgs])