2019-05-07 16:24:59 -03:00

554 lines
83 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="X-UA-Compatible" content="IE=Edge" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /><script type="text/javascript">
var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-55120145-3']);
_gaq.push(['_trackPageview']);
(function() {
var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
})();
</script>
<title>pyFTS.benchmarks.Measures &#8212; pyFTS 1.6 documentation</title>
<link rel="stylesheet" href="../../../_static/bizstyle.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<script type="text/javascript" src="../../../_static/documentation_options.js"></script>
<script type="text/javascript" src="../../../_static/jquery.js"></script>
<script type="text/javascript" src="../../../_static/underscore.js"></script>
<script type="text/javascript" src="../../../_static/doctools.js"></script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="../../../_static/bizstyle.js"></script>
<link rel="index" title="Index" href="../../../genindex.html" />
<link rel="search" title="Search" href="../../../search.html" />
<meta name="viewport" content="width=device-width,initial-scale=1.0">
<!--[if lt IE 9]>
<script type="text/javascript" src="_static/css3-mediaqueries.js"></script>
<![endif]-->
</head><body>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="../../../genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="../../../py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="nav-item nav-item-0"><a href="../../../index.html">pyFTS 1.6 documentation</a> &#187;</li>
<li class="nav-item nav-item-1"><a href="../../index.html" accesskey="U">Module code</a> &#187;</li>
</ul>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<p class="logo"><a href="../../../index.html">
<img class="logo" src="../../../_static/logo_heading2.png" alt="Logo"/>
</a></p>
<div id="searchbox" style="display: none" role="search">
<h3>Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="../../../search.html" method="get">
<input type="text" name="q" />
<input type="submit" value="Go" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
</div>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<h1>Source code for pyFTS.benchmarks.Measures</h1><div class="highlight"><pre>
<span></span><span class="c1"># -*- coding: utf8 -*-</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd">pyFTS module for common benchmark metrics</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="kn">import</span> <span class="nn">time</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
<span class="kn">from</span> <span class="nn">pyFTS.common</span> <span class="k">import</span> <span class="n">FuzzySet</span><span class="p">,</span> <span class="n">SortedCollection</span>
<span class="kn">from</span> <span class="nn">pyFTS.probabilistic</span> <span class="k">import</span> <span class="n">ProbabilityDistribution</span>
<div class="viewcode-block" id="acf"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.acf">[docs]</a><span class="k">def</span> <span class="nf">acf</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">k</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Autocorrelation function estimative</span>
<span class="sd"> :param data: </span>
<span class="sd"> :param k: </span>
<span class="sd"> :return: </span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">mu</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">nanmean</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="n">sigma</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">var</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="n">s</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">for</span> <span class="n">t</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">n</span> <span class="o">-</span> <span class="n">k</span><span class="p">):</span>
<span class="n">s</span> <span class="o">+=</span> <span class="p">(</span><span class="n">data</span><span class="p">[</span><span class="n">t</span><span class="p">]</span> <span class="o">-</span> <span class="n">mu</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="n">data</span><span class="p">[</span><span class="n">t</span> <span class="o">+</span> <span class="n">k</span><span class="p">]</span> <span class="o">-</span> <span class="n">mu</span><span class="p">)</span>
<span class="k">return</span> <span class="mi">1</span> <span class="o">/</span> <span class="p">((</span><span class="n">n</span> <span class="o">-</span> <span class="n">k</span><span class="p">)</span> <span class="o">*</span> <span class="n">sigma</span><span class="p">)</span> <span class="o">*</span> <span class="n">s</span></div>
<div class="viewcode-block" id="rmse"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.rmse">[docs]</a><span class="k">def</span> <span class="nf">rmse</span><span class="p">(</span><span class="n">targets</span><span class="p">,</span> <span class="n">forecasts</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Root Mean Squared Error</span>
<span class="sd"> :param targets: </span>
<span class="sd"> :param forecasts: </span>
<span class="sd"> :return: </span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">targets</span><span class="p">,</span> <span class="nb">list</span><span class="p">):</span>
<span class="n">targets</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">targets</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">forecasts</span><span class="p">,</span> <span class="nb">list</span><span class="p">):</span>
<span class="n">forecasts</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">forecasts</span><span class="p">)</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">nanmean</span><span class="p">((</span><span class="n">targets</span> <span class="o">-</span> <span class="n">forecasts</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">))</span></div>
<div class="viewcode-block" id="rmse_interval"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.rmse_interval">[docs]</a><span class="k">def</span> <span class="nf">rmse_interval</span><span class="p">(</span><span class="n">targets</span><span class="p">,</span> <span class="n">forecasts</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Root Mean Squared Error</span>
<span class="sd"> :param targets: </span>
<span class="sd"> :param forecasts: </span>
<span class="sd"> :return: </span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">fmean</span> <span class="o">=</span> <span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">i</span><span class="p">)</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">forecasts</span><span class="p">]</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">nanmean</span><span class="p">((</span><span class="n">fmean</span> <span class="o">-</span> <span class="n">targets</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">))</span></div>
<div class="viewcode-block" id="mape"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.mape">[docs]</a><span class="k">def</span> <span class="nf">mape</span><span class="p">(</span><span class="n">targets</span><span class="p">,</span> <span class="n">forecasts</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Mean Average Percentual Error</span>
<span class="sd"> :param targets: </span>
<span class="sd"> :param forecasts: </span>
<span class="sd"> :return: </span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">targets</span><span class="p">,</span> <span class="nb">list</span><span class="p">):</span>
<span class="n">targets</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">targets</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">forecasts</span><span class="p">,</span> <span class="nb">list</span><span class="p">):</span>
<span class="n">forecasts</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">forecasts</span><span class="p">)</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">nanmean</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">divide</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">subtract</span><span class="p">(</span><span class="n">targets</span><span class="p">,</span> <span class="n">forecasts</span><span class="p">),</span> <span class="n">targets</span><span class="p">)))</span> <span class="o">*</span> <span class="mi">100</span></div>
<div class="viewcode-block" id="smape"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.smape">[docs]</a><span class="k">def</span> <span class="nf">smape</span><span class="p">(</span><span class="n">targets</span><span class="p">,</span> <span class="n">forecasts</span><span class="p">,</span> <span class="nb">type</span><span class="o">=</span><span class="mi">2</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Symmetric Mean Average Percentual Error</span>
<span class="sd"> :param targets: </span>
<span class="sd"> :param forecasts: </span>
<span class="sd"> :param type: </span>
<span class="sd"> :return: </span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">targets</span><span class="p">,</span> <span class="nb">list</span><span class="p">):</span>
<span class="n">targets</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">targets</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">forecasts</span><span class="p">,</span> <span class="nb">list</span><span class="p">):</span>
<span class="n">forecasts</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">forecasts</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">type</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">nanmean</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">forecasts</span> <span class="o">-</span> <span class="n">targets</span><span class="p">)</span> <span class="o">/</span> <span class="p">((</span><span class="n">forecasts</span> <span class="o">+</span> <span class="n">targets</span><span class="p">)</span> <span class="o">/</span> <span class="mi">2</span><span class="p">))</span>
<span class="k">elif</span> <span class="nb">type</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">nanmean</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">forecasts</span> <span class="o">-</span> <span class="n">targets</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">forecasts</span><span class="p">)</span> <span class="o">+</span> <span class="nb">abs</span><span class="p">(</span><span class="n">targets</span><span class="p">)))</span> <span class="o">*</span> <span class="mi">100</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">forecasts</span> <span class="o">-</span> <span class="n">targets</span><span class="p">))</span> <span class="o">/</span> <span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">forecasts</span> <span class="o">+</span> <span class="n">targets</span><span class="p">)</span></div>
<div class="viewcode-block" id="mape_interval"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.mape_interval">[docs]</a><span class="k">def</span> <span class="nf">mape_interval</span><span class="p">(</span><span class="n">targets</span><span class="p">,</span> <span class="n">forecasts</span><span class="p">):</span>
<span class="n">fmean</span> <span class="o">=</span> <span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">i</span><span class="p">)</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">forecasts</span><span class="p">]</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="nb">abs</span><span class="p">(</span><span class="n">fmean</span> <span class="o">-</span> <span class="n">targets</span><span class="p">)</span> <span class="o">/</span> <span class="n">fmean</span><span class="p">)</span> <span class="o">*</span> <span class="mi">100</span></div>
<div class="viewcode-block" id="UStatistic"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.UStatistic">[docs]</a><span class="k">def</span> <span class="nf">UStatistic</span><span class="p">(</span><span class="n">targets</span><span class="p">,</span> <span class="n">forecasts</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Theil&#39;s U Statistic</span>
<span class="sd"> :param targets: </span>
<span class="sd"> :param forecasts: </span>
<span class="sd"> :return: </span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">l</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">targets</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">targets</span><span class="p">,</span> <span class="nb">list</span><span class="p">):</span>
<span class="n">targets</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">targets</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">forecasts</span><span class="p">,</span> <span class="nb">list</span><span class="p">):</span>
<span class="n">forecasts</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">forecasts</span><span class="p">)</span>
<span class="n">naive</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">y</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">l</span> <span class="o">-</span> <span class="mi">1</span><span class="p">):</span>
<span class="n">y</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">subtract</span><span class="p">(</span><span class="n">forecasts</span><span class="p">[</span><span class="n">k</span><span class="p">],</span> <span class="n">targets</span><span class="p">[</span><span class="n">k</span><span class="p">])</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">naive</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">subtract</span><span class="p">(</span><span class="n">targets</span><span class="p">[</span><span class="n">k</span> <span class="o">+</span> <span class="mi">1</span><span class="p">],</span> <span class="n">targets</span><span class="p">[</span><span class="n">k</span><span class="p">])</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">divide</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">y</span><span class="p">),</span> <span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">naive</span><span class="p">)))</span></div>
<div class="viewcode-block" id="TheilsInequality"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.TheilsInequality">[docs]</a><span class="k">def</span> <span class="nf">TheilsInequality</span><span class="p">(</span><span class="n">targets</span><span class="p">,</span> <span class="n">forecasts</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Theils Inequality Coefficient</span>
<span class="sd"> :param targets: </span>
<span class="sd"> :param forecasts: </span>
<span class="sd"> :return: </span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">res</span> <span class="o">=</span> <span class="n">targets</span> <span class="o">-</span> <span class="n">forecasts</span>
<span class="n">t</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">res</span><span class="p">)</span>
<span class="n">us</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="nb">sum</span><span class="p">([</span><span class="n">u</span> <span class="o">**</span> <span class="mi">2</span> <span class="k">for</span> <span class="n">u</span> <span class="ow">in</span> <span class="n">res</span><span class="p">]))</span>
<span class="n">ys</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="nb">sum</span><span class="p">([</span><span class="n">y</span> <span class="o">**</span> <span class="mi">2</span> <span class="k">for</span> <span class="n">y</span> <span class="ow">in</span> <span class="n">targets</span><span class="p">]))</span>
<span class="n">fs</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="nb">sum</span><span class="p">([</span><span class="n">f</span> <span class="o">**</span> <span class="mi">2</span> <span class="k">for</span> <span class="n">f</span> <span class="ow">in</span> <span class="n">forecasts</span><span class="p">]))</span>
<span class="k">return</span> <span class="n">us</span> <span class="o">/</span> <span class="p">(</span><span class="n">ys</span> <span class="o">+</span> <span class="n">fs</span><span class="p">)</span></div>
<div class="viewcode-block" id="BoxPierceStatistic"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.BoxPierceStatistic">[docs]</a><span class="k">def</span> <span class="nf">BoxPierceStatistic</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">h</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Q Statistic for Box-Pierce test</span>
<span class="sd"> :param data: </span>
<span class="sd"> :param h: </span>
<span class="sd"> :return: </span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="n">s</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">h</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span>
<span class="n">r</span> <span class="o">=</span> <span class="n">acf</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">k</span><span class="p">)</span>
<span class="n">s</span> <span class="o">+=</span> <span class="n">r</span> <span class="o">**</span> <span class="mi">2</span>
<span class="k">return</span> <span class="n">n</span> <span class="o">*</span> <span class="n">s</span></div>
<div class="viewcode-block" id="BoxLjungStatistic"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.BoxLjungStatistic">[docs]</a><span class="k">def</span> <span class="nf">BoxLjungStatistic</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">h</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Q Statistic for LjungBox test</span>
<span class="sd"> :param data: </span>
<span class="sd"> :param h: </span>
<span class="sd"> :return: </span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="n">s</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">h</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span>
<span class="n">r</span> <span class="o">=</span> <span class="n">acf</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">k</span><span class="p">)</span>
<span class="n">s</span> <span class="o">+=</span> <span class="n">r</span> <span class="o">**</span> <span class="mi">2</span> <span class="o">/</span> <span class="p">(</span><span class="n">n</span> <span class="o">-</span> <span class="n">k</span><span class="p">)</span>
<span class="k">return</span> <span class="n">n</span> <span class="o">*</span> <span class="p">(</span><span class="n">n</span> <span class="o">-</span> <span class="mi">2</span><span class="p">)</span> <span class="o">*</span> <span class="n">s</span></div>
<div class="viewcode-block" id="sharpness"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.sharpness">[docs]</a><span class="k">def</span> <span class="nf">sharpness</span><span class="p">(</span><span class="n">forecasts</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;Sharpness - Mean size of the intervals&quot;&quot;&quot;</span>
<span class="n">tmp</span> <span class="o">=</span> <span class="p">[</span><span class="n">i</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">i</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">forecasts</span><span class="p">]</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">tmp</span><span class="p">)</span></div>
<div class="viewcode-block" id="resolution"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.resolution">[docs]</a><span class="k">def</span> <span class="nf">resolution</span><span class="p">(</span><span class="n">forecasts</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;Resolution - Standard deviation of the intervals&quot;&quot;&quot;</span>
<span class="n">shp</span> <span class="o">=</span> <span class="n">sharpness</span><span class="p">(</span><span class="n">forecasts</span><span class="p">)</span>
<span class="n">tmp</span> <span class="o">=</span> <span class="p">[</span><span class="nb">abs</span><span class="p">((</span><span class="n">i</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">i</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span> <span class="o">-</span> <span class="n">shp</span><span class="p">)</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">forecasts</span><span class="p">]</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">tmp</span><span class="p">)</span></div>
<div class="viewcode-block" id="coverage"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.coverage">[docs]</a><span class="k">def</span> <span class="nf">coverage</span><span class="p">(</span><span class="n">targets</span><span class="p">,</span> <span class="n">forecasts</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;Percent of target values that fall inside forecasted interval&quot;&quot;&quot;</span>
<span class="n">preds</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">forecasts</span><span class="p">)):</span>
<span class="k">if</span> <span class="n">targets</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">&gt;=</span> <span class="n">forecasts</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span> <span class="ow">and</span> <span class="n">targets</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">&lt;=</span> <span class="n">forecasts</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">1</span><span class="p">]:</span>
<span class="n">preds</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">preds</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">nanmean</span><span class="p">(</span><span class="n">preds</span><span class="p">)</span></div>
<div class="viewcode-block" id="pinball"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.pinball">[docs]</a><span class="k">def</span> <span class="nf">pinball</span><span class="p">(</span><span class="n">tau</span><span class="p">,</span> <span class="n">target</span><span class="p">,</span> <span class="n">forecast</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Pinball loss function. Measure the distance of forecast to the tau-quantile of the target</span>
<span class="sd"> :param tau: quantile value in the range (0,1)</span>
<span class="sd"> :param target: </span>
<span class="sd"> :param forecast: </span>
<span class="sd"> :return: float, distance of forecast to the tau-quantile of the target</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">target</span> <span class="o">&gt;=</span> <span class="n">forecast</span><span class="p">:</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">subtract</span><span class="p">(</span><span class="n">target</span><span class="p">,</span> <span class="n">forecast</span><span class="p">)</span> <span class="o">*</span> <span class="n">tau</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">subtract</span><span class="p">(</span><span class="n">forecast</span><span class="p">,</span> <span class="n">target</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="n">tau</span><span class="p">)</span></div>
<div class="viewcode-block" id="pinball_mean"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.pinball_mean">[docs]</a><span class="k">def</span> <span class="nf">pinball_mean</span><span class="p">(</span><span class="n">tau</span><span class="p">,</span> <span class="n">targets</span><span class="p">,</span> <span class="n">forecasts</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Mean pinball loss value of the forecast for a given tau-quantile of the targets</span>
<span class="sd"> :param tau: quantile value in the range (0,1)</span>
<span class="sd"> :param targets: list of target values</span>
<span class="sd"> :param forecasts: list of prediction intervals</span>
<span class="sd"> :return: float, the pinball loss mean for tau quantile</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">tau</span> <span class="o">&lt;=</span> <span class="mf">0.5</span><span class="p">:</span>
<span class="n">preds</span> <span class="o">=</span> <span class="p">[</span><span class="n">pinball</span><span class="p">(</span><span class="n">tau</span><span class="p">,</span> <span class="n">targets</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">forecasts</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">0</span><span class="p">])</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">forecasts</span><span class="p">))]</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">preds</span> <span class="o">=</span> <span class="p">[</span><span class="n">pinball</span><span class="p">(</span><span class="n">tau</span><span class="p">,</span> <span class="n">targets</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">forecasts</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">1</span><span class="p">])</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">forecasts</span><span class="p">))]</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">nanmean</span><span class="p">(</span><span class="n">preds</span><span class="p">)</span></div>
<div class="viewcode-block" id="winkler_score"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.winkler_score">[docs]</a><span class="k">def</span> <span class="nf">winkler_score</span><span class="p">(</span><span class="n">tau</span><span class="p">,</span> <span class="n">target</span><span class="p">,</span> <span class="n">forecast</span><span class="p">):</span>
<span class="sd">&#39;&#39;&#39;R. L. Winkler, A Decision-Theoretic Approach to Interval Estimation, J. Am. Stat. Assoc. 67 (337) (1972) 187191. doi:10.2307/2284720. &#39;&#39;&#39;</span>
<span class="n">delta</span> <span class="o">=</span> <span class="n">forecast</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">forecast</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="k">if</span> <span class="n">forecast</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">&lt;</span> <span class="n">target</span> <span class="ow">and</span> <span class="n">target</span> <span class="o">&lt;</span> <span class="n">forecast</span><span class="p">[</span><span class="mi">1</span><span class="p">]:</span>
<span class="k">return</span> <span class="n">delta</span>
<span class="k">elif</span> <span class="n">forecast</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">&gt;</span> <span class="n">target</span><span class="p">:</span>
<span class="k">return</span> <span class="n">delta</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">*</span> <span class="p">(</span><span class="n">forecast</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">-</span> <span class="n">target</span><span class="p">)</span> <span class="o">/</span> <span class="n">tau</span>
<span class="k">elif</span> <span class="n">forecast</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">&lt;</span> <span class="n">target</span><span class="p">:</span>
<span class="k">return</span> <span class="n">delta</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">*</span> <span class="p">(</span><span class="n">target</span> <span class="o">-</span> <span class="n">forecast</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span> <span class="o">/</span> <span class="n">tau</span></div>
<div class="viewcode-block" id="winkler_mean"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.winkler_mean">[docs]</a><span class="k">def</span> <span class="nf">winkler_mean</span><span class="p">(</span><span class="n">tau</span><span class="p">,</span> <span class="n">targets</span><span class="p">,</span> <span class="n">forecasts</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Mean Winkler score value of the forecast for a given tau-quantile of the targets</span>
<span class="sd"> :param tau: quantile value in the range (0,1)</span>
<span class="sd"> :param targets: list of target values</span>
<span class="sd"> :param forecasts: list of prediction intervals</span>
<span class="sd"> :return: float, the Winkler score mean for tau quantile</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">preds</span> <span class="o">=</span> <span class="p">[</span><span class="n">winkler_score</span><span class="p">(</span><span class="n">tau</span><span class="p">,</span> <span class="n">targets</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">forecasts</span><span class="p">[</span><span class="n">i</span><span class="p">])</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">forecasts</span><span class="p">))]</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">nanmean</span><span class="p">(</span><span class="n">preds</span><span class="p">)</span></div>
<div class="viewcode-block" id="brier_score"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.brier_score">[docs]</a><span class="k">def</span> <span class="nf">brier_score</span><span class="p">(</span><span class="n">targets</span><span class="p">,</span> <span class="n">densities</span><span class="p">):</span>
<span class="sd">&#39;&#39;&#39;Brier (1950). &quot;Verification of Forecasts Expressed in Terms of Probability&quot;. Monthly Weather Review. 78: 13. &#39;&#39;&#39;</span>
<span class="n">ret</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">ct</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">densities</span><span class="p">):</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">v</span> <span class="o">=</span> <span class="n">d</span><span class="o">.</span><span class="n">bin_index</span><span class="o">.</span><span class="n">find_ge</span><span class="p">(</span><span class="n">targets</span><span class="p">[</span><span class="n">ct</span><span class="p">])</span>
<span class="n">score</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">([</span><span class="n">d</span><span class="o">.</span><span class="n">distribution</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">**</span> <span class="mi">2</span> <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">d</span><span class="o">.</span><span class="n">bins</span> <span class="k">if</span> <span class="n">k</span> <span class="o">!=</span> <span class="n">v</span><span class="p">])</span>
<span class="n">score</span> <span class="o">+=</span> <span class="p">(</span><span class="n">d</span><span class="o">.</span><span class="n">distribution</span><span class="p">[</span><span class="n">v</span><span class="p">]</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">score</span><span class="p">)</span>
<span class="k">except</span> <span class="ne">ValueError</span> <span class="k">as</span> <span class="n">ex</span><span class="p">:</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">sum</span><span class="p">([</span><span class="n">d</span><span class="o">.</span><span class="n">distribution</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">**</span> <span class="mi">2</span> <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">d</span><span class="o">.</span><span class="n">bins</span><span class="p">]))</span>
<span class="k">return</span> <span class="nb">sum</span><span class="p">(</span><span class="n">ret</span><span class="p">)</span> <span class="o">/</span> <span class="nb">len</span><span class="p">(</span><span class="n">ret</span><span class="p">)</span></div>
<div class="viewcode-block" id="pmf_to_cdf"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.pmf_to_cdf">[docs]</a><span class="k">def</span> <span class="nf">pmf_to_cdf</span><span class="p">(</span><span class="n">density</span><span class="p">):</span>
<span class="n">ret</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">row</span> <span class="ow">in</span> <span class="n">density</span><span class="o">.</span><span class="n">index</span><span class="p">:</span>
<span class="n">tmp</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">prev</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">for</span> <span class="n">col</span> <span class="ow">in</span> <span class="n">density</span><span class="o">.</span><span class="n">columns</span><span class="p">:</span>
<span class="n">prev</span> <span class="o">+=</span> <span class="n">density</span><span class="p">[</span><span class="n">col</span><span class="p">][</span><span class="n">row</span><span class="p">]</span> <span class="k">if</span> <span class="ow">not</span> <span class="n">np</span><span class="o">.</span><span class="n">isnan</span><span class="p">(</span><span class="n">density</span><span class="p">[</span><span class="n">col</span><span class="p">][</span><span class="n">row</span><span class="p">])</span> <span class="k">else</span> <span class="mi">0</span>
<span class="n">tmp</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">prev</span><span class="p">)</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">tmp</span><span class="p">)</span>
<span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">ret</span><span class="p">,</span> <span class="n">columns</span><span class="o">=</span><span class="n">density</span><span class="o">.</span><span class="n">columns</span><span class="p">)</span>
<span class="k">return</span> <span class="n">df</span></div>
<div class="viewcode-block" id="heavyside"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.heavyside">[docs]</a><span class="k">def</span> <span class="nf">heavyside</span><span class="p">(</span><span class="nb">bin</span><span class="p">,</span> <span class="n">target</span><span class="p">):</span>
<span class="k">return</span> <span class="mi">1</span> <span class="k">if</span> <span class="nb">bin</span> <span class="o">&gt;=</span> <span class="n">target</span> <span class="k">else</span> <span class="mi">0</span></div>
<div class="viewcode-block" id="heavyside_cdf"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.heavyside_cdf">[docs]</a><span class="k">def</span> <span class="nf">heavyside_cdf</span><span class="p">(</span><span class="n">bins</span><span class="p">,</span> <span class="n">targets</span><span class="p">):</span>
<span class="n">ret</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">t</span> <span class="ow">in</span> <span class="n">targets</span><span class="p">:</span>
<span class="n">result</span> <span class="o">=</span> <span class="p">[</span><span class="mi">1</span> <span class="k">if</span> <span class="n">b</span> <span class="o">&gt;=</span> <span class="n">t</span> <span class="k">else</span> <span class="mi">0</span> <span class="k">for</span> <span class="n">b</span> <span class="ow">in</span> <span class="n">bins</span><span class="p">]</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">result</span><span class="p">)</span>
<span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">ret</span><span class="p">,</span> <span class="n">columns</span><span class="o">=</span><span class="n">bins</span><span class="p">)</span>
<span class="k">return</span> <span class="n">df</span></div>
<div class="viewcode-block" id="crps"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.crps">[docs]</a><span class="k">def</span> <span class="nf">crps</span><span class="p">(</span><span class="n">targets</span><span class="p">,</span> <span class="n">densities</span><span class="p">):</span>
<span class="sd">&#39;&#39;&#39;</span>
<span class="sd"> Continuous Ranked Probability Score</span>
<span class="sd"> :param targets: a list with the target values</span>
<span class="sd"> :param densities: a list with pyFTS.probabil objectsistic.ProbabilityDistribution</span>
<span class="sd"> :return: float</span>
<span class="sd"> &#39;&#39;&#39;</span>
<span class="n">_crps</span> <span class="o">=</span> <span class="nb">float</span><span class="p">(</span><span class="mf">0.0</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">densities</span><span class="p">,</span> <span class="n">ProbabilityDistribution</span><span class="o">.</span><span class="n">ProbabilityDistribution</span><span class="p">):</span>
<span class="n">densities</span> <span class="o">=</span> <span class="p">[</span><span class="n">densities</span><span class="p">]</span>
<span class="n">l</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">densities</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">bins</span><span class="p">)</span>
<span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">densities</span><span class="p">)</span>
<span class="k">for</span> <span class="n">ct</span><span class="p">,</span> <span class="n">df</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">densities</span><span class="p">):</span>
<span class="n">_crps</span> <span class="o">+=</span> <span class="nb">sum</span><span class="p">([(</span><span class="n">df</span><span class="o">.</span><span class="n">cumulative</span><span class="p">(</span><span class="nb">bin</span><span class="p">)</span> <span class="o">-</span> <span class="p">(</span><span class="mi">1</span> <span class="k">if</span> <span class="nb">bin</span> <span class="o">&gt;=</span> <span class="n">targets</span><span class="p">[</span><span class="n">ct</span><span class="p">]</span> <span class="k">else</span> <span class="mi">0</span><span class="p">))</span> <span class="o">**</span> <span class="mi">2</span> <span class="k">for</span> <span class="nb">bin</span> <span class="ow">in</span> <span class="n">df</span><span class="o">.</span><span class="n">bins</span><span class="p">])</span>
<span class="k">return</span> <span class="n">_crps</span> <span class="o">/</span> <span class="nb">float</span><span class="p">(</span><span class="n">l</span> <span class="o">*</span> <span class="n">n</span><span class="p">)</span></div>
<div class="viewcode-block" id="get_point_statistics"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.get_point_statistics">[docs]</a><span class="k">def</span> <span class="nf">get_point_statistics</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">model</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">&#39;&#39;&#39;</span>
<span class="sd"> Condensate all measures for point forecasters</span>
<span class="sd"> :param data: test data</span>
<span class="sd"> :param model: FTS model with point forecasting capability</span>
<span class="sd"> :param kwargs:</span>
<span class="sd"> :return: a list with the RMSE, SMAPE and U Statistic</span>
<span class="sd"> &#39;&#39;&#39;</span>
<span class="n">steps_ahead</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;steps_ahead&#39;</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;type&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="s1">&#39;point&#39;</span>
<span class="n">indexer</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;indexer&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="k">if</span> <span class="n">indexer</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">ndata</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">indexer</span><span class="o">.</span><span class="n">get_data</span><span class="p">(</span><span class="n">data</span><span class="p">))</span>
<span class="k">elif</span> <span class="n">model</span><span class="o">.</span><span class="n">is_multivariate</span><span class="p">:</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;Multivariate data must be a Pandas DataFrame!&quot;</span><span class="p">)</span>
<span class="n">ndata</span> <span class="o">=</span> <span class="n">data</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">ndata</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="n">ret</span> <span class="o">=</span> <span class="nb">list</span><span class="p">()</span>
<span class="k">if</span> <span class="n">steps_ahead</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="n">forecasts</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">ndata</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">if</span> <span class="n">model</span><span class="o">.</span><span class="n">is_multivariate</span> <span class="ow">and</span> <span class="n">model</span><span class="o">.</span><span class="n">has_seasonality</span><span class="p">:</span>
<span class="n">ndata</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">indexer</span><span class="o">.</span><span class="n">get_data</span><span class="p">(</span><span class="n">ndata</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">model</span><span class="o">.</span><span class="n">is_multivariate</span><span class="p">:</span>
<span class="n">ndata</span> <span class="o">=</span> <span class="n">ndata</span><span class="p">[</span><span class="n">model</span><span class="o">.</span><span class="n">target_variable</span><span class="o">.</span><span class="n">data_label</span><span class="p">]</span><span class="o">.</span><span class="n">values</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">forecasts</span><span class="p">,</span> <span class="p">(</span><span class="nb">list</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">)):</span>
<span class="n">forecasts</span> <span class="o">=</span> <span class="p">[</span><span class="n">forecasts</span><span class="p">]</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">forecasts</span><span class="p">)</span> <span class="o">!=</span> <span class="nb">len</span><span class="p">(</span><span class="n">ndata</span><span class="p">)</span> <span class="o">-</span> <span class="n">model</span><span class="o">.</span><span class="n">max_lag</span><span class="p">:</span>
<span class="n">forecasts</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">forecasts</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">forecasts</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">forecasts</span><span class="p">)</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">rmse</span><span class="p">(</span><span class="n">ndata</span><span class="p">[</span><span class="n">model</span><span class="o">.</span><span class="n">max_lag</span><span class="p">:],</span> <span class="n">forecasts</span><span class="p">),</span> <span class="mi">2</span><span class="p">))</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">mape</span><span class="p">(</span><span class="n">ndata</span><span class="p">[</span><span class="n">model</span><span class="o">.</span><span class="n">max_lag</span><span class="p">:],</span> <span class="n">forecasts</span><span class="p">),</span> <span class="mi">2</span><span class="p">))</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">UStatistic</span><span class="p">(</span><span class="n">ndata</span><span class="p">[</span><span class="n">model</span><span class="o">.</span><span class="n">max_lag</span><span class="p">:],</span> <span class="n">forecasts</span><span class="p">),</span> <span class="mi">2</span><span class="p">))</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">steps_ahead_sampler</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;steps_ahead_sampler&#39;</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">nforecasts</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">order</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">ndata</span><span class="p">)</span> <span class="o">-</span> <span class="n">steps_ahead</span><span class="p">,</span> <span class="n">steps_ahead_sampler</span><span class="p">):</span>
<span class="n">sample</span> <span class="o">=</span> <span class="n">ndata</span><span class="p">[</span><span class="n">k</span> <span class="o">-</span> <span class="n">model</span><span class="o">.</span><span class="n">order</span><span class="p">:</span> <span class="n">k</span><span class="p">]</span>
<span class="n">tmp</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">sample</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="n">nforecasts</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">tmp</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span>
<span class="n">start</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">max_lag</span> <span class="o">+</span> <span class="n">steps_ahead</span> <span class="o">-</span> <span class="mi">1</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">rmse</span><span class="p">(</span><span class="n">ndata</span><span class="p">[</span><span class="n">start</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">:</span><span class="n">steps_ahead_sampler</span><span class="p">],</span> <span class="n">nforecasts</span><span class="p">),</span> <span class="mi">2</span><span class="p">))</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">mape</span><span class="p">(</span><span class="n">ndata</span><span class="p">[</span><span class="n">start</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">:</span><span class="n">steps_ahead_sampler</span><span class="p">],</span> <span class="n">nforecasts</span><span class="p">),</span> <span class="mi">2</span><span class="p">))</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">UStatistic</span><span class="p">(</span><span class="n">ndata</span><span class="p">[</span><span class="n">start</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">:</span><span class="n">steps_ahead_sampler</span><span class="p">],</span> <span class="n">nforecasts</span><span class="p">),</span> <span class="mi">2</span><span class="p">))</span>
<span class="k">return</span> <span class="n">ret</span></div>
<div class="viewcode-block" id="get_interval_statistics"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.get_interval_statistics">[docs]</a><span class="k">def</span> <span class="nf">get_interval_statistics</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">model</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Condensate all measures for point interval forecasters</span>
<span class="sd"> :param data: test data</span>
<span class="sd"> :param model: FTS model with interval forecasting capability</span>
<span class="sd"> :param kwargs:</span>
<span class="sd"> :return: a list with the sharpness, resolution, coverage, .05 pinball mean,</span>
<span class="sd"> .25 pinball mean, .75 pinball mean and .95 pinball mean.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">steps_ahead</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;steps_ahead&#39;</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;type&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="s1">&#39;interval&#39;</span>
<span class="n">ret</span> <span class="o">=</span> <span class="nb">list</span><span class="p">()</span>
<span class="k">if</span> <span class="n">steps_ahead</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="n">forecasts</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">sharpness</span><span class="p">(</span><span class="n">forecasts</span><span class="p">),</span> <span class="mi">2</span><span class="p">))</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">resolution</span><span class="p">(</span><span class="n">forecasts</span><span class="p">),</span> <span class="mi">2</span><span class="p">))</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">coverage</span><span class="p">(</span><span class="n">data</span><span class="p">[</span><span class="n">model</span><span class="o">.</span><span class="n">order</span><span class="p">:],</span> <span class="n">forecasts</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">]),</span> <span class="mi">2</span><span class="p">))</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">pinball_mean</span><span class="p">(</span><span class="mf">0.05</span><span class="p">,</span> <span class="n">data</span><span class="p">[</span><span class="n">model</span><span class="o">.</span><span class="n">max_lag</span><span class="p">:],</span> <span class="n">forecasts</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">]),</span> <span class="mi">2</span><span class="p">))</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">pinball_mean</span><span class="p">(</span><span class="mf">0.25</span><span class="p">,</span> <span class="n">data</span><span class="p">[</span><span class="n">model</span><span class="o">.</span><span class="n">max_lag</span><span class="p">:],</span> <span class="n">forecasts</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">]),</span> <span class="mi">2</span><span class="p">))</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">pinball_mean</span><span class="p">(</span><span class="mf">0.75</span><span class="p">,</span> <span class="n">data</span><span class="p">[</span><span class="n">model</span><span class="o">.</span><span class="n">max_lag</span><span class="p">:],</span> <span class="n">forecasts</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">]),</span> <span class="mi">2</span><span class="p">))</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">pinball_mean</span><span class="p">(</span><span class="mf">0.95</span><span class="p">,</span> <span class="n">data</span><span class="p">[</span><span class="n">model</span><span class="o">.</span><span class="n">max_lag</span><span class="p">:],</span> <span class="n">forecasts</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">]),</span> <span class="mi">2</span><span class="p">))</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">winkler_mean</span><span class="p">(</span><span class="mf">0.05</span><span class="p">,</span> <span class="n">data</span><span class="p">[</span><span class="n">model</span><span class="o">.</span><span class="n">max_lag</span><span class="p">:],</span> <span class="n">forecasts</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">]),</span> <span class="mi">2</span><span class="p">))</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">winkler_mean</span><span class="p">(</span><span class="mf">0.25</span><span class="p">,</span> <span class="n">data</span><span class="p">[</span><span class="n">model</span><span class="o">.</span><span class="n">max_lag</span><span class="p">:],</span> <span class="n">forecasts</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">]),</span> <span class="mi">2</span><span class="p">))</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">forecasts</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">order</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> <span class="o">-</span> <span class="n">steps_ahead</span><span class="p">):</span>
<span class="n">sample</span> <span class="o">=</span> <span class="n">data</span><span class="p">[</span><span class="n">k</span> <span class="o">-</span> <span class="n">model</span><span class="o">.</span><span class="n">order</span><span class="p">:</span> <span class="n">k</span><span class="p">]</span>
<span class="n">tmp</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">sample</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="n">forecasts</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">tmp</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span>
<span class="n">start</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">max_lag</span> <span class="o">+</span> <span class="n">steps_ahead</span> <span class="o">-</span> <span class="mi">1</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">sharpness</span><span class="p">(</span><span class="n">forecasts</span><span class="p">),</span> <span class="mi">2</span><span class="p">))</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">resolution</span><span class="p">(</span><span class="n">forecasts</span><span class="p">),</span> <span class="mi">2</span><span class="p">))</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">coverage</span><span class="p">(</span><span class="n">data</span><span class="p">[</span><span class="n">model</span><span class="o">.</span><span class="n">max_lag</span><span class="p">:],</span> <span class="n">forecasts</span><span class="p">),</span> <span class="mi">2</span><span class="p">))</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">pinball_mean</span><span class="p">(</span><span class="mf">0.05</span><span class="p">,</span> <span class="n">data</span><span class="p">[</span><span class="n">start</span><span class="p">:],</span> <span class="n">forecasts</span><span class="p">),</span> <span class="mi">2</span><span class="p">))</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">pinball_mean</span><span class="p">(</span><span class="mf">0.25</span><span class="p">,</span> <span class="n">data</span><span class="p">[</span><span class="n">start</span><span class="p">:],</span> <span class="n">forecasts</span><span class="p">),</span> <span class="mi">2</span><span class="p">))</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">pinball_mean</span><span class="p">(</span><span class="mf">0.75</span><span class="p">,</span> <span class="n">data</span><span class="p">[</span><span class="n">start</span><span class="p">:],</span> <span class="n">forecasts</span><span class="p">),</span> <span class="mi">2</span><span class="p">))</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">pinball_mean</span><span class="p">(</span><span class="mf">0.95</span><span class="p">,</span> <span class="n">data</span><span class="p">[</span><span class="n">start</span><span class="p">:],</span> <span class="n">forecasts</span><span class="p">),</span> <span class="mi">2</span><span class="p">))</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">winkler_mean</span><span class="p">(</span><span class="mf">0.05</span><span class="p">,</span> <span class="n">data</span><span class="p">[</span><span class="n">start</span><span class="p">:],</span> <span class="n">forecasts</span><span class="p">),</span> <span class="mi">2</span><span class="p">))</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">winkler_mean</span><span class="p">(</span><span class="mf">0.25</span><span class="p">,</span> <span class="n">data</span><span class="p">[</span><span class="n">start</span><span class="p">:],</span> <span class="n">forecasts</span><span class="p">),</span> <span class="mi">2</span><span class="p">))</span>
<span class="k">return</span> <span class="n">ret</span></div>
<div class="viewcode-block" id="get_distribution_statistics"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Measures.get_distribution_statistics">[docs]</a><span class="k">def</span> <span class="nf">get_distribution_statistics</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">model</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Get CRPS statistic and time for a forecasting model</span>
<span class="sd"> :param data: test data</span>
<span class="sd"> :param model: FTS model with probabilistic forecasting capability</span>
<span class="sd"> :param kwargs:</span>
<span class="sd"> :return: a list with the CRPS and execution time</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">steps_ahead</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;steps_ahead&#39;</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;type&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="s1">&#39;distribution&#39;</span>
<span class="n">ret</span> <span class="o">=</span> <span class="nb">list</span><span class="p">()</span>
<span class="k">if</span> <span class="n">steps_ahead</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="n">_s1</span> <span class="o">=</span> <span class="n">time</span><span class="o">.</span><span class="n">time</span><span class="p">()</span>
<span class="n">forecasts</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="n">_e1</span> <span class="o">=</span> <span class="n">time</span><span class="o">.</span><span class="n">time</span><span class="p">()</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">crps</span><span class="p">(</span><span class="n">data</span><span class="p">[</span><span class="n">model</span><span class="o">.</span><span class="n">max_lag</span><span class="p">:],</span> <span class="n">forecasts</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">]),</span> <span class="mi">3</span><span class="p">))</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">_e1</span> <span class="o">-</span> <span class="n">_s1</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">brier_score</span><span class="p">(</span><span class="n">data</span><span class="p">[</span><span class="n">model</span><span class="o">.</span><span class="n">max_lag</span><span class="p">:],</span> <span class="n">forecasts</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">]),</span> <span class="mi">3</span><span class="p">))</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">skip</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;steps_ahead_sampler&#39;</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">forecasts</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">_s1</span> <span class="o">=</span> <span class="n">time</span><span class="o">.</span><span class="n">time</span><span class="p">()</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">max_lag</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> <span class="o">-</span> <span class="n">steps_ahead</span><span class="p">,</span> <span class="n">skip</span><span class="p">):</span>
<span class="n">sample</span> <span class="o">=</span> <span class="n">data</span><span class="p">[</span><span class="n">k</span> <span class="o">-</span> <span class="n">model</span><span class="o">.</span><span class="n">max_lag</span><span class="p">:</span> <span class="n">k</span><span class="p">]</span>
<span class="n">tmp</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">sample</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="n">forecasts</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">tmp</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span>
<span class="n">_e1</span> <span class="o">=</span> <span class="n">time</span><span class="o">.</span><span class="n">time</span><span class="p">()</span>
<span class="n">start</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">max_lag</span> <span class="o">+</span> <span class="n">steps_ahead</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">crps</span><span class="p">(</span><span class="n">data</span><span class="p">[</span><span class="n">start</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">:</span><span class="n">skip</span><span class="p">],</span> <span class="n">forecasts</span><span class="p">),</span> <span class="mi">3</span><span class="p">))</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">_e1</span> <span class="o">-</span> <span class="n">_s1</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">brier_score</span><span class="p">(</span><span class="n">data</span><span class="p">[</span><span class="n">start</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">:</span><span class="n">skip</span><span class="p">],</span> <span class="n">forecasts</span><span class="p">),</span> <span class="mi">3</span><span class="p">))</span>
<span class="k">return</span> <span class="n">ret</span></div>
</pre></div>
</div>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="../../../genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="../../../py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="nav-item nav-item-0"><a href="../../../index.html">pyFTS 1.6 documentation</a> &#187;</li>
<li class="nav-item nav-item-1"><a href="../../index.html" >Module code</a> &#187;</li>
</ul>
</div>
<div class="footer" role="contentinfo">
&#169; Copyright 2018, Machine Intelligence and Data Science Laboratory - UFMG - Brazil.
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.7.2.
</div>
</body>
</html>