pyFTS/hwang.py
2017-05-07 11:41:31 -03:00

56 lines
1.8 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
High Order Fuzzy Time Series by Hwang, Chen and Lee (1998)
Jeng-Ren Hwang, Shyi-Ming Chen, and Chia-Hoang Lee, “Handling forecasting problems using fuzzy time series,”
Fuzzy Sets Syst., no. 100, pp. 217228, 1998.
"""
import numpy as np
from pyFTS.common import FuzzySet,FLR,Transformations
from pyFTS import fts
class HighOrderFTS(fts.FTS):
def __init__(self, name, **kwargs):
super(HighOrderFTS, self).__init__(1, name)
self.is_high_order = True
self.min_order = 2
self.name = "Hwang High Order FTS"
self.shortname = "Hwang" + name
self.detail = "Hwang"
def forecast(self, data, **kwargs):
ndata = self.doTransformations(data)
cn = np.array([0.0 for k in range(len(self.sets))])
ow = np.array([[0.0 for k in range(len(self.sets))] for z in range(self.order - 1)])
rn = np.array([[0.0 for k in range(len(self.sets))] for z in range(self.order - 1)])
ft = np.array([0.0 for k in range(len(self.sets))])
ret = []
for t in np.arange(self.order-1, len(ndata)):
for s in range(len(self.sets)):
cn[s] = self.sets[s].membership(ndata[t])
for w in range(self.order - 1):
ow[w, s] = self.sets[s].membership(ndata[t - w])
rn[w, s] = ow[w, s] * cn[s]
ft[s] = max(ft[s], rn[w, s])
mft = max(ft)
out = 0.0
count = 0.0
for s in range(len(self.sets)):
if ft[s] == mft:
out = out + self.sets[s].centroid
count += 1.0
ret.append(out / count)
ret = self.doInverseTransformations(ret, params=[data[self.order - 1:]])
return ret
def train(self, data, sets, order=1, parameters=None):
self.sets = sets
self.order = order