pyFTS/pyFTS/song.py
2017-09-08 14:18:02 -03:00

75 lines
2.2 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
First Order Traditional Fuzzy Time Series method by Song & Chissom (1993)
Q. Song and B. S. Chissom, “Fuzzy time series and its models,” Fuzzy Sets Syst., vol. 54, no. 3, pp. 269277, 1993.
"""
import numpy as np
from pyFTS.common import FuzzySet, FLR
from pyFTS import fts
class ConventionalFTS(fts.FTS):
"""Traditional Fuzzy Time Series"""
def __init__(self, name, **kwargs):
super(ConventionalFTS, self).__init__(1, "FTS " + name, **kwargs)
self.name = "Traditional FTS"
self.detail = "Song & Chissom"
self.R = None
def flr_membership_matrix(self, flr):
lm = [flr.LHS.membership(k.centroid) for k in self.sets]
rm = [flr.RHS.membership(k.centroid) for k in self.sets]
r = np.zeros((len(self.sets), len(self.sets)))
for k in range(0,len(self.sets)):
for l in range(0, len(self.sets)):
r[k][l] = min(lm[k],rm[l])
return r
def operation_matrix(self, flrs):
r = np.zeros((len(self.sets),len(self.sets)))
for k in flrs:
mm = self.flr_membership_matrix(k)
for k in range(0, len(self.sets)):
for l in range(0, len(self.sets)):
r[k][l] = max(r[k][l], mm[k][l])
return r
def train(self, data, sets,order=1,parameters=None):
self.sets = sets
ndata = self.doTransformations(data)
tmpdata = FuzzySet.fuzzySeries(ndata, sets)
flrs = FLR.generateNonRecurrentFLRs(tmpdata)
self.R = self.operation_matrix(flrs)
def forecast(self, data, **kwargs):
ndata = np.array(self.doTransformations(data))
l = len(ndata)
npart = len(self.sets)
ret = []
for k in np.arange(0, l):
mv = FuzzySet.fuzzyInstance(ndata[k], self.sets)
r = [max([ min(self.R[i][j], mv[j]) for j in np.arange(0,npart) ]) for i in np.arange(0,npart)]
fs = np.ravel(np.argwhere(r == max(r)))
if len(fs) == 1:
ret.append(self.sets[fs[0]].centroid)
else:
mp = [self.sets[s].centroid for s in fs]
ret.append( sum(mp)/len(mp))
ret = self.doInverseTransformations(ret, params=[data[self.order - 1:]])
return ret