101 lines
3.0 KiB
Python
101 lines
3.0 KiB
Python
#!/usr/bin/python
|
|
# -*- coding: utf8 -*-
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import matplotlib as plt
|
|
import matplotlib.pyplot as plt
|
|
from pyFTS.common import Transformations,Util
|
|
from pyFTS.benchmarks import Measures
|
|
from scipy import stats
|
|
|
|
|
|
def residuals(targets, forecasts, order=1):
|
|
return np.array(targets[order:]) - np.array(forecasts[:-1])
|
|
|
|
|
|
def ChiSquared(q,h):
|
|
p = stats.chi2.sf(q, h)
|
|
return p
|
|
|
|
|
|
def compareResiduals(data, models):
|
|
ret = "Model & Order & Mean & STD & Box-Pierce & Box-Ljung & P-value \\\\ \n"
|
|
for mfts in models:
|
|
forecasts = mfts.forecast(data)
|
|
res = residuals(data, forecasts, mfts.order)
|
|
mu = np.mean(res)
|
|
sig = np.std(res)
|
|
ret += mfts.shortname + " & "
|
|
ret += str(mfts.order) + " & "
|
|
ret += str(round(mu,2)) + " & "
|
|
ret += str(round(sig,2)) + " & "
|
|
q1 = Measures.BoxPierceStatistic(res, 10)
|
|
ret += str(round(q1,2)) + " & "
|
|
q2 = Measures.BoxLjungStatistic(res, 10)
|
|
ret += str(round(q2,2)) + " & "
|
|
ret += str(ChiSquared(q2, 10))
|
|
ret += " \\\\ \n"
|
|
return ret
|
|
|
|
|
|
def plotResiduals(targets, models, tam=[8, 8], save=False, file=None):
|
|
|
|
fig, axes = plt.subplots(nrows=len(models), ncols=3, figsize=tam)
|
|
c = 0
|
|
for mfts in models:
|
|
forecasts = mfts.forecast(targets)
|
|
res = residuals(targets,forecasts,mfts.order)
|
|
mu = np.mean(res)
|
|
sig = np.std(res)
|
|
|
|
axes[c][0].set_title("Residuals Mean=" + str(mu) + " STD = " + str(sig))
|
|
axes[c][0].set_ylabel('E')
|
|
axes[c][0].set_xlabel('T')
|
|
axes[c][0].plot(res)
|
|
|
|
axes[c][1].set_title("Residuals Autocorrelation")
|
|
axes[c][1].set_ylabel('ACS')
|
|
axes[c][1].set_xlabel('Lag')
|
|
axes[c][1].acorr(res)
|
|
|
|
axes[c][2].set_title("Residuals Histogram")
|
|
axes[c][2].set_ylabel('Freq')
|
|
axes[c][2].set_xlabel('Bins')
|
|
axes[c][2].hist(res)
|
|
|
|
c += 1
|
|
|
|
plt.tight_layout()
|
|
|
|
Util.showAndSaveImage(fig, file, save)
|
|
|
|
|
|
def plotResiduals2(targets, models, tam=[8, 8], save=False, file=None):
|
|
fig, axes = plt.subplots(nrows=len(models), ncols=3, figsize=tam)
|
|
|
|
for c, mfts in enumerate(models, start=0):
|
|
forecasts = mfts.forecast(targets)
|
|
res = residuals(targets, forecasts, mfts.order)
|
|
mu = np.mean(res)
|
|
sig = np.std(res)
|
|
|
|
if c == 0: axes[c][0].set_title("Residuals", size='large')
|
|
axes[c][0].set_ylabel(mfts.shortname, size='large')
|
|
axes[c][0].set_xlabel(' ')
|
|
axes[c][0].plot(res)
|
|
|
|
if c == 0: axes[c][1].set_title("Residuals Autocorrelation", size='large')
|
|
axes[c][1].set_ylabel('ACS')
|
|
axes[c][1].set_xlabel('Lag')
|
|
axes[c][1].acorr(res)
|
|
|
|
if c == 0: axes[c][2].set_title("Residuals Histogram", size='large')
|
|
axes[c][2].set_ylabel('Freq')
|
|
axes[c][2].set_xlabel('Bins')
|
|
axes[c][2].hist(res)
|
|
|
|
plt.tight_layout()
|
|
|
|
Util.showAndSaveImage(fig, file, save)
|